Identification Performance of Leptons in Jets

Online mini-workshop on a detector concept with a crystal ECAL <u>Dan YU</u>, Manqi RUAN

中国科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

Plan

2

Introduction Lepton Identification Single lepton Lepton in jets * τ Identification Summary

CEPC

- * Higgs factory: 240 GeV, 10⁶ Higgs,
 - * Advantage: Clean, Known initial states
 - Measurements: Higgs boson mass, cross section, decay modes, branching ratio

* Z factory: 91 GeV, 6×1011

CEPC Full Simulation

4

- Software chain
- CDR Samples:
 - Full simulated Higgs signal
 - small cross-section(<20 fb): simulated to a minimal statistic of 100k
 - 4 fermion background Full simulated
 - 2 fermion background: 20% simulated

Isolate Leptons

- LICH uses TMVA methods to summarize 24 input variables into two likelihoods, corresponding to electrons and muons.
- The efficiency for electron and muon is higher than 99.5% (E>2 GeV). Pion efficiency ~ 98%.

Lepton in jets

 The performance for lepton in jets degrades comparing to the single particle results

Likelihood vs Energy

* For higher energy, still nice separation

* For lower energy, pion mixed with muon

7

Online mini-workshop

Clustering Performance

Use clustering

efficiency (correct collected hits/particle hits)
purity (correct collected hits/cluster hits)
to characterize clustering performance

8

Online mini-workshop

Clustering Performance

9

 Higher energy, better clustering performance

✤ Muon:

- ✤ 85% perfect
- ✤ 5% eff*pur< 0.9</p>
- ✤ Electron:
 - ★ 64% perfect
 - ✤ 22% eff*pur<0.9</p>
- * Pion:
 - ✤ 52% perfect
 - ✤ 24% eff*pur<0.9</p>

Clustering vs PID

✤ Electrons:

- low energy: dE/dx dominate
- clusters are compact, the splitting clusters still electron-like

* Muon:

- cluster is not MIP-like if mixed with other hits
- muon likeliness is lost when the muon cluster splits into small pieces

* Pion:

- likely to be a EM cluster with some branches
- more likely to be mis-identified as an electron for lower clustering efficiency

Clustering vs PID

✤ Electrons:

- low energy: dE/dx dominate
- clusters are compact, the splitting clusters still electron-like

* Muon:

- cluster is not MIP-like if mixed with other hits
- muon likeliness is lost when the muon cluster splits into small pieces

* Pion:

- likely to be a EM cluster with some branches
- more likely to be mis-identified as an electron for lower clustering efficiency

Online mini-workshop

11

Comparison

- Comparison of lepton identification performance for perfect clusters and the performance of single particle
- * Pion in jets more likely to be mu-like

Tau event topology

* llH channel / $Z \rightarrow \tau \tau$ * qqH (isolate τ with jets) * τ inside jets

- (Veto the two isolate lepton)
- Divide the whole space into 2 part
- Multiplicity & Impact parameter

- Tau jet reconstruction package: TAURUS
- TAURUS with different parameters

Taurus

- Double cone based algorithm
 - Find seeds(Tracks with enough energy)
 - Collect particle in two cones
 - Use the multiplicity, energy ratio between two cones, invariant mass for τ tagging

Event topology

* llH channel / $Z \rightarrow \tau \tau$ * qqH (isolate τ with jets) * τ inside jets

- (Veto the two isolate lepton)
- Divide the whole space into 2 part
- Multiplicity & Impact parameter
- Efficiency > 90%

Eur. Phys. J. C (2020) 80:7

15

Online mini-workshop

Summary

* TMVA based lepton identification has been developed with high efficiency

- ✤ For >2GeV isolate lepton: 99.5%
- * For leptons in jets, clustering performance defined (testbed)
- At perfect clustering (eff*purity=1), identification performance converge to isolated lepton cases

* Inclusive τ identification developed

* isolate τ efficiency/purity ~ 80%/90%

* τ in jet efficiency/purity ~ 70%/0/70%

Application

- * Flavor physics: $Bc \rightarrow \tau v$
- ✤ Flavor tag

Thank you for your attention!