Crystal ECAL Optimization studies: transverse granularity and longitudinal depth

Chunxiu Liu Yong Liu Junguang Lv Institute of High Energy Physics, CAS

July 22, 2020

Online mini-workshop on a detector concept with a crystal ECAL

Contents

- Motivation
- Simulation in GEANT4 and Cluster reconstruction
- Crystal longitudinal depth optimization
	- Correction of the longitudinal shower energy leakage
	- Several factors affecting energy resolution
- Crystal transverse segmentation optimization
	- Separation performance of merged π^0 and γ

• Summary

Overview: motivations

- Background: future lepton colliders (e.g. CEPC) Precision measurements with Higgs and Z/W
- Why crystal calorimeter?
	- Homogeneous structure
		- Optimal intrinsic energy resolution: ~3%/ $\sqrt{E} \oplus \sim 1\%$
	- Energy recovery of electrons: to improve Higgs recoil mass
		- Corrections to the Bremsstrahlung of electrons
	- **≻Capability to trigger single photons**
		- Flavour physics at Z-pole, potentials in search of new physics, …
- Fine segmentation
	- Potentials in PFA for precision measurements of jets

Simulation in Geant4 and Cluster reconstruction

- Construct a 3D BGO Matrix module with $60 \times 60 \times 60$ cells/ cell size $1\times1\times1$ cm³
	- Easily merge cells / layers
	- The front face of the array is 1835mm from zero (origin of coordinates), the inner radius of CEPC baseline ECAL Barrel.
- Without any photodetector materials and wrappers
- Without any materials in front of BGO Matrix module
- Geant4 simulates the energy deposited in crystal cell
- Cluster reconstruction of each layer is based on the method of the traditional crystal ECAL without longitudinal layer.

 $z = 1835$ mm BGO crystal material properties: Crystal radiation length: ~1.12cm; Moliere radius R_M : 2.23cm;

Energy leakage correction using longitudinal shower profile

- Based on the fine segmentation in crystal length
- Crystal layer depth with 3cm: The longitudinal shower profile can be described well.
- The longitudinal energy leakage can be corrected by fitting the shower profile.
- A good fitting needs at least 7-8 data points, so the depth of layer should not be larger than 3cm .
- So the 3cm/layer is set in the following studies

Energy leakage correction using longitudinal shower profile

- γ energy reconstruction with all longitudinal layers
- The shower energy peak and resolution have a big improvement.
^{2×2×3cm³, cut 1.0MeV}

Impact of cell size and cell energy threshold on energy peak

- Given the cell energy detection threshold
	- the larger cell size, the energy peak get closer to 1.
- Given the cell size
	- The larger cell energy threshold, the smaller the energy peak.
	- The energy linearity can be corrected.

Energy peak after energy leakage correction

Impact of cell size and cell energy threshold on energy resolution

- The larger cell size, the energy resolution is better
- The smaller cell energy threshold, the energy resolution is better
- They mainly effect on the stochastic term of energy resolution.

Impact of the digitization

- The fluctuations of photon electron and electronics gain **EXECT OF THE digitization**
And fluctuations of photon electron and electronics gain
• have effect on the stochastic term of energy resolution.
	-
	- Almost no effect on the energy peak

 \bullet Digitizer

 \blacksquare no Digitizer

cell $2 \times 2 \times 3$ cm³

 1.8

1.6

ا2.

৳

Impact of the crystal ECAL longitudinal depth

- Energy peak and resolution have been a big improvement after longitudinal energy leakage correction
- For 7 layers/18.7 X_0
	- The effect of the energy leakage is very large.
	- The constant term of the energy resolution is larger than 1%

Performance of Longitudinal depth with different cell threshold

- Stochastic and constant terms of energy resolution
	- Cell energy threshold mainly effects on the Stochastic term
	- The longitudinal depth mainly effects on the constant term. For 7 layers/18.7 X_0 the constant term is large than 1%

Energy resolution after the longitudinal energy leakage correction

Performance after the longitudinal energy leakage correction

Crystal transverse segmentation optimization

• In CEPC CDR requirement:

over all solid angle. To identify the τ -leptons in the different decay modes, the photons should be distinguishable from π^0 's with an efficiency and purity higher than 95% measured in the $Z \rightarrow \tau^+\tau^-$ event sample at the CEPC Z factory operation.

CEPC Preliminary Momentum of π^0 • Two types of π^0 event in ECAL reconstruction $10⁵$ • One is the "resolved" π^0 from pair of photons. Entries/1.0GeV/c • Another is the "merged" π^0 from single cluster. $10³$ • The merged π^0 events • may become the background of the isolated photons 10 • will also increase as the π^0 momentum and crystal transverse segmentation get bigger. 10^{-1}

• In the following we study the separation performance of γ and merged π^0 . π^0 Momentum **⁰Momentum Cell 113cm³ Cell223cm³**

Longitudinal energy profile of γ and merged π^0

• There are some differences between γ and merged π^0 , especially, 2nd and 3rd layers

Study of the separation performance of γ and merged π^0

- Using the toolkit of multivariate data analysis (TMVA)
- Energy- related variables defined , and describe transverse shower profiles: S1/S4, S1/S9, S1/S25, S9/S25, S4/S9, F9, F16 and Second moment

Separation performance of merged π^0 and γ

- As an example, for 40 and 50GeV the separation performance of γ and merged π^0 .
	- The separation performance of 2^{nd} and 3^{rd} layers are very good, \sim 100%.

Separation efficiency of merged π^0 and γ

- Criteria of effective separation: efficiency of $\gamma \rightarrow 1$ and efficiency of $\pi^0 \rightarrow 0$
- 2nd and 3rd layers: ~100% separation for the different high energy

Summary

- Construct the BGO matrix module in G4, and reconstruct cluster of each layer
- Longitudinal depth optimization
	- several factors affecting energy resolution
		- cell size/cell energy threshold /digitization
		- crystal ECAL longitudinal depth
	- Correction of the longitudinal shower energy leakage
		- The energy resolution has a big improvement
		- Balance cost and performance of crystal ECAL: 9 layers/24.1X₀ or 8 layers/21.4X₀ can be better
- Transverse granularity optimization
	- Separation performance of merged π^0 and γ /40-100GeV by using TMVA
	- For cell $2\times2\times3$ cm³, the 2nd and 3rd layers: ~100% separation

Thank you!

Backup slides

New idea : High-granularity Crystal ECAL

• Homogeneous crystal structure:

Cell size: ~moliere radius in transverse direction \triangleright N layers in longitudinal direction

- Key issues: optimization
	- Crystal options: BGO, PWO, etc.
	- \triangleright Segmentation: in longitudinal and lateral directions
	- Performance: single particles and jets with PFA

Impacts from dead materials: upstream, services (cabling, cooling)

≻Costing

 \triangleright Fine timing information

Transverse direction

Simulation in GEANT4 and Cluster reconstruction

MC simulation of a simplified crystal calorimeter module for CEPC

- Construct the Matrix module in GEANT4 v10.5.0
	- \triangleright Cell size:1×1×1cm³
		- ▶ Easily merge cells / layers
	- \triangleright Construct a 3D BGO array with 60 \times 60 \times 60 cells
	- \triangleright The front face of the array is 1835mm from zero (origin of coordinates), the inner radius of baseline ECAL Barrel.
	- \triangleright Cell Size 1cm is \sim 0.31224 \circ solid angle at θ =90 \circ in Barrel
- Without any photodetector materials and wrappers
- Geant4 simulates the energy deposited in crystal cell
- Cluster reconstruction of each layer based on the traditional Crystal ECAL

BGO crystal material properties: Crystal radiation length:~1.12cm; Moliere radius R_M : 2.23cm;

Crystal cell optimization

- Crystal longitudinal depth
	- Use shower profiles in segmented layers to correct for tails (energy leakage)
	- Aim for shorter crystal depth(cost), balance with performance (correction precision)
- Crystal transverse segmentation
	- Crystal transverse size: separation of merged π^0 and γ

Simplified digitization in the simulation

Cell deposition energy \Rightarrow MIP number \Rightarrow N_{pe} the number of photon electron \Rightarrow ADC

 N_{pe} = Poisson(Edep(MeV)/10.16×300(p.e.) ADC = N_{pe} × Gaus(15, 4.5/ $\sqrt{N_{pe}}$)

Here using 4 Parameters:

- 1. Scintillator Mean Light Yield:300 p.e. per MIP
- 2. SiPM Mean Gain:15ADC tics per p.e.,
- 3. Gain Sigma: 4.5ADC tics per p.e.
- 4. 1 MIP(120GeV muon) yields 10.16MeV energy deposition in the BGO crystal

Crystal cell dynamic range: simulation with $100GeV \gamma$

For 100GeV γ , MIP number per cell $2\times 2 \times 3$ cm² can reach around 2500.

• alone the energy information of each layer with 3cm Depth with Cell 2x2cm²:1st layer

• alone the energy information of each layer with 3cm Depth with Cell 2x2cm²:2nd layer

• alone the energy information of each layer with 3cm Depth with Cell 2x2cm²:3rd layer

• alone the energy information of each layer with 3cm Depth with Cell 2x2cm²:4th layer

Separation performance of 2 γ 's from the high energy π^0 decay

- Convert the θ_{\min} into the cell numbers at θ =90° for CEPC with Radius(1.835m) and the cell size 10mm.
- One crystal has the maximum angle~0.31224 \degree at θ =90 \degree in barrel.

Separation performance of merged π^0 and γ

- For example, the separation performance of 60GeV γ and merged π^0 .
	- The separation performance of 2^{nd} and 3^{rd} layers are very good.

Summary

- Construct the BGO matrix module: $60\times60\times60$ cm³ in Geant4, and cluster reconstruction of each layer
- Longitudinal depth optimization
	- Study of factors affecting energy resolution
		- cell size/cell energy threshold /simplified digitization
		- crystal ECAL longitudinal depth
	- Correction of the longitudinal shower energy leakage

• 10 layers/26.7X₀:
$$
\frac{\sigma_E}{E} = \frac{1.14\%}{\sqrt{E(GeV)}} \oplus 0.13\%
$$
, $\sigma_{M(H\rightarrow\gamma\gamma)} = 171$ MeV (fast sim.)

• 9 layers/24.1X₀:
$$
\frac{\sigma_E}{E} = \frac{1.18\%}{\sqrt{E(GeV)}} \oplus 0.27\%
$$
, $\sigma_{M(H\to\gamma\gamma)} = 273$ MeV (fast sim.)

• 8 layers/21.4X₀:
$$
\frac{\sigma_E}{E} = \frac{1.20\%}{\sqrt{E(GeV)}} \oplus 0.51\%, \sigma_{M(H\rightarrow\gamma\gamma)} = 472 \text{MeV (fast sim.)}
$$

• 7 layers/18.7X₀:
$$
\frac{\sigma_E}{E} = \frac{1.11\%}{\sqrt{E(GeV)}} \oplus 1.06\%
$$
, $\sigma_{M(H\to\gamma\gamma)} = 950$ MeV (fast sim.)

- Transverse granularity optimization
	- Separation performance of 2 γ 's from high energy π^0 decay
		- Cell 1 \times 1 \times 3cm 3 : ~100%/30GeV π^0 , ~60%/40GeV π^0
		- Cell 2 \times 2 \times 3cm³ : \sim 0%/30GeV and 40GeV π^0
	- Separation performance of merged π^0 and γ /40-100GeV by using TMVA
		- For cell $2\times2\times3$ cm³, the 2nd and 3rd layers: ~100% separation

