Online mini-workshop on a detector concept with a crystal ECAL

Review of past DREAM work on dual-readout crystals

Gabriella Gaudio

INFN-Pavia

Dual-readout in a nutshell

V	only produced by relativistic particles, dominated by electromagnetic shower component
on	measure dE/dx

Compensation achieved without construction constraints

Calibration of a hadron calorimeter just with electrons

High resolution EM and HAD calorimetry

Simultaneous measurement on event-by-event basis of em fraction of hadron showers

$$S = [f_{em} + (h/e)_{s} \times (1 - f_{em})] \times E$$
$$C = [f_{em} + (h/e)_{c} \times (1 - f_{em})] \times E$$

e/h ratios (c = $(h/e)_c$ and s = $(h/e)_s$ for either Cherenkov or scintillation structure) can be measured

It is possible
$$f=rac{c-s(C/S)}{(C/S)(1-s)-(1-c)}$$
 and $E=rac{S-\chi C}{1-\chi}$

G. Gaudio – Online mini-workshop on a detector concept with a crystal ECAL – July 22nd-23rd, 2020

$$\cot g \theta = \frac{1 - (h/e)_S}{1 - (h/e)_C} = \chi$$

Θ and χ are independent of both energy and particle type

Before Correction

Dual-Readout approach at work

$$pt \theta = \frac{1 - (h/e)_S}{1 - (h/e)_C} = \chi$$

$$=\frac{S-\chi C}{I-\chi}$$

Motivation for Crystal calorimeters

Original DREAM module showed a quite low Cherenkov photostatistic

8p.e./GeV

Fluctuation in the number of photoelectrons contribute as

 $\sim \frac{35\%}{\sqrt{E}}$

Need to increase Cherenkov light yield especially for electromagnetic perfomance

Motivation for Crystal calorimeters

CMS ECAL

Crystal calorimeters can achieve excellent electromagnetic resolution.

High density scintillating crystals widely used in particle physics experiment: ensure excellent energy resolution for electromagnetic showers

Drawbacks of Crystal Calorimeters

Calorimeters with a crystal EM compartment usually have a poor had. resolution due to

- fluctuation of the starting point of the hadronic shower in the EM section
- different response to the em and non-em (e/h) components of the shower in the two calorimeters

Dual readout applied to an hybrid system:

Measuring f_{em} on an event-by-event basis allows to correct for such fluctuations and allows to eliminate the main reasons for poor hadronic resolution

Separation of Cherenkov and scintillation light in homogeneous media is required

Cherenkov to scintillation separation

Properties	Čerenkov	Scint
Angular distribution	Light emitted at a characteristic angle by the shower particles that generate it $\cos\theta = I/(n\beta)$	Light emission is molecules have direction of the excited them
Time structure	Instantaneous, short signal duration	Light emission is one (or several) Long tails are no component)
Optical spectra	$\frac{dN_C}{d\lambda} = \frac{k}{\lambda^2}$	Strongly depend type, usually con (narrow) wavele
Polarization	polarized	not polarized

tillation

s isotropic: excited no memory of the particle that

s characterized by) time constant(s). ot unusual (slow

dent on the crystal ncentrated in a ength range

C to S separation: directionality

Properties	Čerenkov	
Angular distribution	Light emitted at a characteristic angle by the shower particles that generate it $\cos\theta = I/(n\beta)$	Ligł mo directic
Trigger counters L PMT	$n = 2.2, \cos \theta_C = 1/n \rightarrow \theta_C = 63^{\circ}$	P
Calibration: L = R	L > R $L < R$	

G. Gaudio – Online mini-workshop on a detector concept with a crystal ECAL – July 22nd-23rd, 2020

Scintillation

ht emission is isotropic: excited lecules have no memory of the on of the particle that excited them

Asymmetry: Cherenkov light only detected in downstream PMT

 $\alpha = \frac{R-L}{R+L}$

Fraction of Cherenkov light to the total (downstream) PMTs signal

$$f_C = \frac{2\alpha}{1+\alpha}$$

PbWO4 crystal was studied 15% of the emitted light is due to Cherenkov

G. Gaudio – Online mini-workshop on a detector concept with a crystal ECAL – July 22nd-23rd, 2020

Nucl. Instr. and Meth. A 582 (2007) 474

Properties	Čerenkov	
Optical spectra	$\frac{dN_C}{d\lambda} = \frac{k}{\lambda^2}$	Strongly concent

Nucl. Instr. and Meth. A 595 (2008) 359

G. Gaudio – Online mini-workshop on a detector concept with a crystal ECAL – July 22nd-23rd, 2020

Scintillation

dependent on the crystal type, usually trated in a (narrow) wavelength range

PbWO₄

C and S (peak 420nm) are competitive in the same spectral region

filters

Detection efficiency (%)

Mo impurities substitute W ions in the matrix and forms MoO4 complex, which acts as a wavelength shifter

Nucl. Instr. and Meth. A 621 (2010) 212

Doping with Molybdenum impurities allows to shift the scintillation peak to higher wavelenght \rightarrow possible to use

C to S separation: time structure

Properties	Čerenkov	
Time structure	Instantaneous, short signal duration	Light emis time cons

Cherenkov and scintillation.

- From pure scintillation channel determine S content
- Integration over to gates gives
 - $S = (1 + Q_A + Q$

Scintillation

ssion is characterized by one (or several) stant(s). Long tails are not unusual (slow component)

PMT signal (inverted) containing both

$$(f_S) * Q_B$$

$$-f_S * Q_B$$

BGO: different time structures of C and S components manifest themself in the (optically) filtered signal from PMT

C to S separation: polarization

Properties	Čerenkov	Scint
Polarization	polarized	not polarized

Nucl. Instr. and Meth. A 638 (2011) 47

G. Gaudio – Online mini-workshop on a detector concept with a crystal ECAL – July 22nd-23rd, 2020

tillation

- Polarization vector is perpendicular to

C to S separation: polarization

Cherenkov to scintillation separation

Properties	Čerenkov	Scintillation
Angular distribution	Light emitted at a characteristic angle by the shower particles that generate it $\cos\theta = I/(n\beta)$	Light emission is isotropic: excited molecules have no memory of the direction of the particle that excited them
Time structure	Instantaneous, short signal duration	Light emission is characterized by one (or several) time constant(s). Long tails are not unusual (slow component)
Optical spectra	$\frac{dN_C}{d\lambda} = \frac{k}{\lambda^2}$	Strongly dependent on the crystal type, usually concentrated in a (narrow) wavelength range
Polarization	polarized	not polarized

G. Gaudio – Online mini-workshop on a detector concept with a crystal ECAL – July 22nd-23rd, 2020

Combination of these two techniques were applied to crystal matrix readout together with DREAM fiber calorimeter

BGO ECAL

I 00 BGO crystals from a projective tower of the L3 experiment

Dimensions:

- + 24 cm long and tapered
- ✦ end faces: 2.4 x 2.4 cm², 3.2 x 3.2 cm²
- effective thickness: 2.8 cm = $25 \times_0$
- I6 PMTs Hamamatsu R1355
 Each PMT collected light produced by a cluster of at least 9 adjacent crystals

	Electron Beam			
Row 1	PMT 1	PMT 5	PMT 9	PMT 13
Row 2	PMT 2	PMT 6	PMT 10	PMT 14
Row 3	PMT 3	PMT 7	PMT 11	PMT 15
Row 4	PMT 4	PMT 8	PMT 12	PMT 16
	Cal 1	Col 2	Col 2	Col 4

BGO C and S signal extraction

BGO matrix results: EM performance

Results:

- Čerenkov energy resolution shows a constant term of about 1.5%
- good linearity (within ± 3%)
- Čerenkov light yield about 6 p.e./GeV

G. Gaudio – Online mini-workshop on a detector concept with a crystal ECAL – July 22nd-23rd, 2020

Nucl. Instr. and Meth. A 686 (2012) 125

BGO vs BSO: single crystals

Crystal	Density (g cm ⁻³)	Radiation length (mm)	Decay constant (ns)	Peak emission (nm)	Refractive index n	Relative light output
BSO	6.80	11.5	~ 100	480	2.06	0.04

Comparison of BGO and BSO in terms of properties for use for dual readout calorimetry

- single crystal test (18 cm long, 2.2 x 2.2 cm² in x-sect)
- pion beam 180 GeV

Results:

I.purity of the C signal obtained with filters: separation power better by a factor of 6

0.20Absorption coefficient crystal (cm⁻¹) а b 0.4 Čerenkov/scintillation signal ratio 0.03 0.15 0.3 0.02 0.10 . 0.2 0.01 0.05 **BSO** BGO 250 300 -60 -20 -60 -20 60 -40 40 20 40 60 -40 0 20 0 Angle of incidence θ (degrees)

G. Gaudio – Online mini-workshop on a detector concept with a crystal ECAL – July 22nd-23rd, 2020

0.5

BGO vs BSO: single crystals

Results:

- \dot{C} light yield: p.e. detected per unit deposited energy 2-3 times larger in BSO 2.
- light attenuation length for \check{C} light: mostly the same in both crystals 3.

G. Gaudio – Online mini-workshop on a detector concept with a crystal ECAL - July 22nd-23rd, 2020

BSO is promising as crystal for dual readout No further test performed afterwards

10

Dual-readout hybrid calorimeter

G. Gaudio – Online mini-workshop on a detector concept with a crystal ECAL – July 22nd-23rd, 2020

Nucl. Instr. and Meth. A 598 (2009) 710

Dual-readout hybrid calorimeter

G. Gaudio – Online mini-workshop on a detector concept with a crystal ECAL – July 22nd-23rd, 2020

Nucl. Instr. and Meth. A 598 (2009) 710

Mo:PbWO₄ measurements

- ★ 7 custom made(*) PbW04 crystals doped with 0.3% Mo
- ♦ Dimensions:
 - ♦ 3x3x20 cm³
 - ◆ 25 X₀ 1.36ρ_M
- ◆ 2 PMTs for each crystal (14 in total) ✦ Hamamatsu 8900 and 8900 (SBA)

Different filter combinations were used during the PbWO₄ matrix test, each optimizing one aspect of the readout

MO:PbWO₄ results: Cerenkov

MO:PbWO₄ results: Cerenkov

U330 both sides

- good for Č (sum of two sides)

G. Gaudio – Online mini-workshop on a detector concept with a crystal ECAL – July 22nd-23rd, 2020

Linearity

MO:PbWO₄ results: Cerenkov

Upstream UG5 (blue), downstream U330

- good for Č: sum of two sides, reduction of effects of self absorption. Linearity at 3%
- poor for S: S extracted from the tail of the time structure, hence few photoelectrons.

Conclusion from testing DR crystals

Consideration before testing

ADVANTAGES:

- No sampling fluctuations
- simpler calibration

Additional outcomes from performed tests:

To separate the C and S component, crystals have to be *readout in non conventional way* \rightarrow results not good as the ones obtained by standard EM calorimetry

•

Extraction of pure C and S signals implies •To sacrifice a large fraction of available C photons (optical filters) •C photons are attenuated by crystal UV self absorption

FORESEEN DISADVANTAGES:

- No sensitivity to neutrons
- high cost ullet
- rad hardness

Conclusions and Outlook

- DREAM/RD52 collaboration didn't proceed in the DR crystals calo studies due to new results obtained with an optimized layout with DR fiber calorimeter (13%/sqrt(E) with a costant term smaller than 1%.)
- A proof of principle that DR xtal ECAL combined with DR fiber HCAL can hold both good EM and HAD resolutions was made
- Advancements/improvements in RO techniques could overcome limitation on DR crystals found (~ 10 y ago)

