Review of past DREAM work on dual-readout crystals

Gabriella Gaudio

INFN-Pavia

G. Gaudio - Online mini-workshop on a detector concept with a crystal ECAL - July 22nd-23rd, 2020

Online mini-workshop on a detector concept with a crystal ECAL

Dual-readout in a nutshell

Calibration of a hadron calorimeter just with electrons

High resolution EM and HAD calorimetry

✦ **Compensation** achieved without construction constraints

Simultaneous measurement on event-by-event basis of em fraction of hadron showers

Θ and χ are independent of both energy and particle type

$$
S = [f_{em} + (h/e)_s \times (1 - f_{em})] \times E
$$

$$
C = [f_{em} + (h/e)_c \times (1 - f_{em})] \times E
$$

t is possible
to evaluate
$$
f = \frac{c - s(C/S)}{(C/S)(1 - s) - (1 - c)}
$$
 and $E = \frac{S - \chi C}{1 - \chi}$

$$
\cot g \theta = \frac{I - (h/e)_s}{I - (h/e)_c} = \chi
$$

e/h ratios
$$
(c = (h/e)_c
$$
 and $s = (h/e)_s$ for
either Cherenkov or scintillation structure)

Before Correction

Dual-Readout approach at work

$$
\partial t \theta = \frac{I - (h/e)_s}{I - (h/e)_C} = \chi
$$

$$
= \frac{S - \chi C}{I - \chi}
$$

Motivation for Crystal calorimeters

Original DREAM module showed a quite low Cherenkov photostatistic

8p.e./GeV

Fluctuation in the number of photoelectrons contribute as

 $\sim \frac{35\%}{\sqrt{E}}$

Need to increase Cherenkov light yield especially for electromagnetic perfomance

Motivation for Crystal calorimeters

Crystal calorimeters can achieve excellent electromagnetic resolution.

High density scintillating crystals widely used in particle physics experiment: ensure excellent energy resolution for electromagnetic showers

CMS ECAL

Drawbacks of Crystal Calorimeters

Calorimeters with a crystal EM compartment usually have a poor had. resolution due to

Measuring f_{em} on an event-by-event basis allows to correct for such fluctuations and allows to eliminate the main reasons for poor hadronic resolution

- fluctuation of the starting point of the hadronic shower in the EM section
- different response to the em and non-em (e/h) components of the shower in the two calorimeters

Dual readout applied to an hybrid system:

Separation of Cherenkov and scintillation light in homogeneous media is required

-
-

Cherenkov to scintillation separation

Eillation

s isotropic: excited no memory of the particle that

s characterized by) time constant(s). ot unusual (slow

dent on the crystal ncentrated in a ength range

C to S separation: directionality

G. Gaudio - Online mini-workshop on a detector concept with a crystal ECAL - July 22nd-23rd, 2020

S **cintillation**

ht emission is isotropic: excited lecules have no memory of the on of the particle that excited them

PbWO4 crystal was studied 15% of the emitted light is due to Cherenkov

in downstream PMT

 $\alpha = \frac{R-L}{R+L}$

Fraction of Cherenkov light to the total (downstream) PMTs signal

$$
f_C = \frac{2\alpha}{1+\alpha}
$$

C to S separation: optical spectra

G. Gaudio - Online mini-workshop on a detector concept with a crystal ECAL - July 22nd-23rd, 2020

S **cintillation**

dependent on the crystal type, usually trated in a (narrow) wavelength range

Nucl. Instr. and Meth. A 595 (2008) 359

C to S separation: optical spectra

PbWO₄

Doping with Molybdenum impurities allows to shift the scintillation peak to higher wavelenght \rightarrow possible to use

C to S separation: optical spectra

C and S (peak 420nm) are competitive in the same spectral region

filters

Nucl. Instr. and Meth. A 621 (2010) 212

Mo impurities substitute W ions in the matrix and forms MoO4 complex, which acts as a wavelength shifter

Detection efficiency (%) 20 15 $1₀$

C to S separation: optical spectra

C to S separation: time structure

ssion is characterized by one (or several) stant(s). Long tails are not unusual (slow component)

PMT signal (inverted) containing both

$$
-f_S)*Q_B
$$

$$
-\,f_S\ast Q_B
$$

- ✦ From pure scintillation channel determine S content
- Integration over to gates gives
	- $S = (1 +$
 $C = Q_A -$
	-

S **cintillation**

Cherenkov and scintillation.

G. Gaudio - Online mini-workshop on a detector concept with a crystal ECAL - July 22nd-23rd, 2020

BGO: different time structures of C and S components manifest themself in the (optically) filtered signal from PMT

C to S separation: polarization

Nucl. Instr. and Meth. A 638 (2011) 47

G. Gaudio - Online mini-workshop on a detector concept with a crystal ECAL - July 22nd-23rd, 2020

Eillation

- Polarization vector is perpendicular to
	-

C to S separation: polarization

Cherenkov to scintillation separation

G. Gaudio - Online mini-workshop on a detector concept with a crystal ECAL - July 22nd-23rd, 2020

Combination of these two techniques were applied to crystal matrix readout together with DREAM fiber calorimeter

BGO ECAL

✦100 BGO crystals from a projective tower of the L3 experiment

✦Dimensions:

- ◆ 24 cm long and tapered
- \rightarrow end faces: 2.4 x 2.4 cm², 3.2 x 3.2 cm²
- ← effective thickness: 2.8 cm = 25 X_0
- ✦ 16 PMTs Hamamatsu R1355 ✦ Each PMT collected light produced by a cluster of at least 9 adjacent crystals

-COLZ COL3 COL4

Col 1

BGO C and S signal extraction

BGO matrix results: EM performance

Results:

- **Cerenkov energy resolution** shows a constant term of about 1.5%
- good linearity (within \pm 3%)
- ✦ Čerenkov light yield about 6 p.e./GeV

G. Gaudio - Online mini-workshop on a detector concept with a crystal ECAL - July 22nd-23rd, 2020 23

Nucl. Instr. and Meth. A 686 (2012) 125

BGO vs BSO: single crystals

Comparison of BGO and BSO in terms of properties for use for dual readout calorimetry

- single crystal test (18 cm long, 2.2×2.2 cm² in x-sect)
- pion beam 180 GeV

Results:

1.purity of the *Č* signal obtained with filters: separation power better by a factor of 6

BGO vs BSO: single crystals

Results:

- *2. Č* light yield: p.e. detected per unit deposited energy 2-3 times larger in BSO
- 3. light attenuation length for *Č* light: mostly the same in both crystals

BSO is promising as crystal for dual readout No further test performed afterwards

10

Dual-readout hybrid calorimeter

Nucl. Instr. and Meth. A 598 (2009) 710

Dual-readout hybrid calorimeter

Nucl. Instr. and Meth. A 598 (2009) 710

Mo:PbWO4 measurements

- ✦ 7 custom made(*) PbW04 crystals doped with 0.3% Mo
- ✦Dimensions:
	- \div 3x3x20 cm³
	- ← 25 X_0 1.36 ρ_M
- ✦ 2 PMTs for each crystal (14 in total) ✦ Hamamatsu 8900 and 8900 (SBA)

Different filter combinations were used during the $PbWO₄$ matrix test, each optimizing one aspect of the readout

M0:PbWO4 results: Cerenkov

- ✦ good for Č (sum of two sides)
- almost no S signal

G. Gaudio - Online mini-workshop on a detector concept with a crystal ECAL $-$ July 22nd-23rd, 2020 $30\,$

M0:PbWO4 results: Cerenkov

U330 both sides Linearity

M0:PbWO4 results: Cerenkov

G. Gaudio - Online mini-workshop on a detector concept with a crystal ECAL - July 22nd-23rd, 2020

Upstream UG5 (blue), downstream U330

- good for \check{C} : sum of two sides, reduction of effects of self absorption. Linearity at 3%
- poor for S: S extracted from the tail of the time structure, hence few photoelectrons.

To separate the C and S component, crystals have to be *readout in non conventional way* \rightarrow results not good as the ones obtained by standard EM calorimetry

- No sampling fluctuations
- simpler calibration

Extraction of pure C and S signals implies •*To sacrifice a large fraction of available C photons* (optical filters) •*C photons are attenuated by crystal UV self absorption*

Conclusion from testing DR crystals

ADVANTAGES: FORESEEN

DISADVANTAGES:

- No sensitivity to neutrons
- high cost
- rad hardness

Consideration before testing

Additional outcomes from performed tests:

Conclusions and Outlook

- DREAM/RD52 collaboration didn't proceed in the DR crystals calo studies due to new results obtained with an optimized layout with DR fiber calorimeter (13%/sqrt(E) with a costant term smaller than 1%.)
- ✦ A proof of principle that DR xtal ECAL combined with DR fiber HCAL can hold both good EM and HAD resolutions was made
- Advancements/improvements in RO techniques could overcome limitation on DR crystals found $($ \sim 10 y ago)

