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In memoriam: Prof. Roberto Peccei (1942-2020)

PecceiZhanga

Peccei, along with Stanford University colleague Helen Quinn, made major contributions to physics, 
including the Peccei-Quinn Symmetry — an elegant theory that ties together several branches of  
physics and has important implications for our universe. The Peccei-Quinn Symmetry predicts the  
existence of very light particles called axions, which may nevertheless be the dominant source of mass 
in the universe. Axions, the subject of intense experimental and theoretical investigation for four decades, 
may be the mysterious “dark matter” that account for most of the matter in the universe.  
                                                                                                                               ——from UCLA website.
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➢Explore axion cold dark matter (DM) by       
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➢Fast radio bursts from axion stars moving 
through pulsar magnetospheres  

➢Summary



    Motivation:Dark Matter
What is the nature of the dark matter (DM)?
A lot of experiments have be done.
However, there is no signals of new physics 
at LHC and dark matter direct search.
This situation may just point us towards new
approaches, especially (my personal interest)  
Radio telescope experiments (SKA, FAST, GBT…)                              

I will focus on new approaches to explore axion cold DM or 
axion star by SKA-like radio telescope.

Axions, that arise from a natural solution to the strong CP-
problem, or more generic axion-like particles (ALPs) predicted by 
string theory, are promising DM candidates.  In recent years, an 
increased interest on axion DM has bolstered a broad 
experimental program.



    Motivation: FRBs
In recent ten years,  Fast Radio Bursts (FRBs) become the most 
mysterious phenomenon in astrophysics and cosmology, especially 
from 2013(D. Thornton, et al., (2013)  Science, 341, 53).  They are intense,  
transient radio signals with large dispersion measure, light years away. 
However, their origin and physical nature are still obscure.

From Universe Today
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We study the radio signals generated when an axion star enters into the magnetosphere of a
neutron star. As the axion star moves through the resonant region where the plasma-induced
photon mass becomes equal to the axion mass, the axions can e�ciently convert into photons,
giving rise to an intense, transient radio signal. The energy released is determined by the axion star
mass and conversion probability. Similarly, the peak frequency of the emitted radio signal is fixed
by the axion mass, while cosmological redshift and Doppler shift could give rise to a wide range of
frequencies. In particular, we show that a dense axion star with a mass ⇠ 10�13M� composed of
⇠ 10µeV axions can account for most of the mysterious fast radio bursts in a wide frequency range.

I. INTRODUCTION

Weakly coupled pseudoscalar particles such as axions,
that arise from a solution to the strong CP-problem [1–
7], or more generic axion-like particles (ALPs) predicted
by string theory [8–10], are promising dark matter (DM)
candidates and may contribute significantly to the energy
density of the Universe [11–13]. In recent years, renewed
increased interest in axion DM has motivated a broad
experimental program (see e.g. Ref. [14] for a recent re-
view). Most of these experimental searches are based
on the Primako↵ process [15], whereby axions transform
into photons in external magnetic fields and vice versa.

Low mass (long wavelength) axions or ALPs that con-
tribute appreciably to the DM must have extremely high
occupation numbers, and can be modeled by a classical
field condensate. If such condensates or other substruc-
tures survive to the present, the large number density
in astrophysical environments makes it possible to probe
their existence indirectly through the detection of low
energy photons; for axion masses consistent with the ob-
served DM density, ma ⇠ a few µeV, the emitted pho-
tons have frequencies in the range probed by radio tele-
scopes. Along these lines, signals resulting from the axion
decay to two photons [16, 17], or from resonant axion-
photon conversion [18–20] have been recently explored.

If the Peccei-Quinn (PQ) symmetry [1] is broken after
inflation, the axionic DM distribution is expected to be
highly inhomogeneous, leading to the formation of axion
miniclusters as soon as the Universe enters the matter-
domination regime [21–23], which in turn may lead to
the formation of dense boson stars [24, 25]. Boson stars
made of axionic Bose-Einstein condensate are called ax-
ion stars, when the kinetic pressure is balanced by self-
gravity, or axitons, when stabilized by self-interactions
(see Ref. [26] for a recent review). In this scenario, part
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of the DM could be in the form of axion stars [27]. Gravi-
tational microlensing could potentially constrain the frac-
tion of DM in collapsed structures [28], but typical axion
star signals fall in the femtolensing regime which is not
robustly constrained [29]. Although their presence may
be unveiled in future by observations of highly magnified
stars [30], it is important to look for other experimental
probes.

Such dense clumps of axion DM can lead to enhanced
radio signals, which might explain the mysterious ob-
servation of Fast Radio Bursts (FRBs) [31, 32]. For
instance, the oscillating axion configuration associated
with a dilute axion star hitting the atmosphere of a neu-
tron star was conjectured to induce dipolar radiation of
the dense electrons in the atmosphere, which would in
turn give rise to a powerful radio signal [33] similar to
the FRBs. A related proposal considered neutrons in the
interior of the neutron star as the source of FRBs [34].
However, as pointed out in Ref. [35], the radius of a di-
lute axion star is about several hundred kilometers, which
means that tidal e↵ects will destroy it well before it can
reach the surface of the neutron star, at about 106 km.
Moreover, the photon radiated at the surface of the neu-
tron star has a plasma mass, which is much larger than
the intrinsic frequency of the dipole radiation (equivalent
to the axion mass). Hence, medium e↵ects would greatly
suppress the signal.

Even in the optimistic scenario of a dense axion
star directly hitting the surface of a neutron star,
this would lead to, at most, a µJy radio signal [36],
whereas FRBs range from O(0.1) to O(100) Jy (where
1 Jy=10�23 erg · s�1

· cm�2
· Hz�1). Their large disper-

sion measure suggests that the FRBs are of extragalac-
tic origin, generated at redshift 0.1 . z . 2.2. This
means that the total energy released in an FRB is about
O(1038) to O(1040) erg, and their observed millisecond
duration requires that the radiated power reaches 1041–
1043 erg · s�1. Although their origin and physical na-
ture are still obscure [37–40], the fact that the energy
released by FRBs is about a few percent of 10�13M�
(where 1 M� = 1.1⇥ 1057 GeV is the solar mass), which
is the typical axion star mass, and that their frequency
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We study the radio signals generated when an axion star enters into the magnetosphere of a
neutron star. As the axion star moves through the resonant region where the plasma-induced
photon mass becomes equal to the axion mass, the axions can e�ciently convert into photons,
giving rise to an intense, transient radio signal. The energy released is determined by the axion star
mass and conversion probability. Similarly, the peak frequency of the emitted radio signal is fixed
by the axion mass, while cosmological redshift and Doppler shift could give rise to a wide range of
frequencies. In particular, we show that a dense axion star with a mass ⇠ 10�13M� composed of
⇠ 10µeV axions can account for most of the mysterious fast radio bursts in a wide frequency range.

I. INTRODUCTION

Weakly coupled pseudoscalar particles such as axions,
that arise from a solution to the strong CP-problem [1–
7], or more generic axion-like particles (ALPs) predicted
by string theory [8–10], are promising dark matter (DM)
candidates and may contribute significantly to the energy
density of the Universe [11–13]. In recent years, renewed
increased interest in axion DM has motivated a broad
experimental program (see e.g. Ref. [14] for a recent re-
view). Most of these experimental searches are based
on the Primako↵ process [15], whereby axions transform
into photons in external magnetic fields and vice versa.

Low mass (long wavelength) axions or ALPs that con-
tribute appreciably to the DM must have extremely high
occupation numbers, and can be modeled by a classical
field condensate. If such condensates or other substruc-
tures survive to the present, the large number density
in astrophysical environments makes it possible to probe
their existence indirectly through the detection of low
energy photons; for axion masses consistent with the ob-
served DM density, ma ⇠ a few µeV, the emitted pho-
tons have frequencies in the range probed by radio tele-
scopes. Along these lines, signals resulting from the axion
decay to two photons [16, 17], or from resonant axion-
photon conversion [18–20] have been recently explored.

If the Peccei-Quinn (PQ) symmetry [1] is broken after
inflation, the axionic DM distribution is expected to be
highly inhomogeneous, leading to the formation of axion
miniclusters as soon as the Universe enters the matter-
domination regime [21–23], which in turn may lead to
the formation of dense boson stars [24, 25]. Boson stars
made of axionic Bose-Einstein condensate are called ax-
ion stars, when the kinetic pressure is balanced by self-
gravity, or axitons, when stabilized by self-interactions
(see Ref. [26] for a recent review). In this scenario, part
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of the DM could be in the form of axion stars [27]. Gravi-
tational microlensing could potentially constrain the frac-
tion of DM in collapsed structures [28], but typical axion
star signals fall in the femtolensing regime which is not
robustly constrained [29]. Although their presence may
be unveiled in future by observations of highly magnified
stars [30], it is important to look for other experimental
probes.

Such dense clumps of axion DM can lead to enhanced
radio signals, which might explain the mysterious ob-
servation of Fast Radio Bursts (FRBs) [31, 32]. For
instance, the oscillating axion configuration associated
with a dilute axion star hitting the atmosphere of a neu-
tron star was conjectured to induce dipolar radiation of
the dense electrons in the atmosphere, which would in
turn give rise to a powerful radio signal [33] similar to
the FRBs. A related proposal considered neutrons in the
interior of the neutron star as the source of FRBs [34].
However, as pointed out in Ref. [35], the radius of a di-
lute axion star is about several hundred kilometers, which
means that tidal e↵ects will destroy it well before it can
reach the surface of the neutron star, at about 106 km.
Moreover, the photon radiated at the surface of the neu-
tron star has a plasma mass, which is much larger than
the intrinsic frequency of the dipole radiation (equivalent
to the axion mass). Hence, medium e↵ects would greatly
suppress the signal.

Even in the optimistic scenario of a dense axion
star directly hitting the surface of a neutron star,
this would lead to, at most, a µJy radio signal [36],
whereas FRBs range from O(0.1) to O(100) Jy (where
1 Jy=10�23 erg · s�1

· cm�2
· Hz�1). Their large disper-

sion measure suggests that the FRBs are of extragalac-
tic origin, generated at redshift 0.1 . z . 2.2. This
means that the total energy released in an FRB is about
O(1038) to O(1040) erg, and their observed millisecond
duration requires that the radiated power reaches 1041–
1043 erg · s�1. Although their origin and physical na-
ture are still obscure [37–40], the fact that the energy
released by FRBs is about a few percent of 10�13M�
(where 1 M� = 1.1⇥ 1057 GeV is the solar mass), which
is the typical axion star mass, and that their frequency
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We study the radio signals generated when an axion star enters into the magnetosphere of a
neutron star. As the axion star moves through the resonant region where the plasma-induced
photon mass becomes equal to the axion mass, the axions can e�ciently convert into photons,
giving rise to an intense, transient radio signal. The energy released is determined by the axion star
mass and conversion probability. Similarly, the peak frequency of the emitted radio signal is fixed
by the axion mass, while cosmological redshift and Doppler shift could give rise to a wide range of
frequencies. In particular, we show that a dense axion star with a mass ⇠ 10�13M� composed of
⇠ 10µeV axions can account for most of the mysterious fast radio bursts in a wide frequency range.

I. INTRODUCTION

Weakly coupled pseudoscalar particles such as axions,
that arise from a solution to the strong CP-problem [1–
7], or more generic axion-like particles (ALPs) predicted
by string theory [8–10], are promising dark matter (DM)
candidates and may contribute significantly to the energy
density of the Universe [11–13]. In recent years, renewed
increased interest in axion DM has motivated a broad
experimental program (see e.g. Ref. [14] for a recent re-
view). Most of these experimental searches are based
on the Primako↵ process [15], whereby axions transform
into photons in external magnetic fields and vice versa.

Low mass (long wavelength) axions or ALPs that con-
tribute appreciably to the DM must have extremely high
occupation numbers, and can be modeled by a classical
field condensate. If such condensates or other substruc-
tures survive to the present, the large number density
in astrophysical environments makes it possible to probe
their existence indirectly through the detection of low
energy photons; for axion masses consistent with the ob-
served DM density, ma ⇠ a few µeV, the emitted pho-
tons have frequencies in the range probed by radio tele-
scopes. Along these lines, signals resulting from the axion
decay to two photons [16, 17], or from resonant axion-
photon conversion [18–20] have been recently explored.

If the Peccei-Quinn (PQ) symmetry [1] is broken after
inflation, the axionic DM distribution is expected to be
highly inhomogeneous, leading to the formation of axion
miniclusters as soon as the Universe enters the matter-
domination regime [21–23], which in turn may lead to
the formation of dense boson stars [24, 25]. Boson stars
made of axionic Bose-Einstein condensate are called ax-
ion stars, when the kinetic pressure is balanced by self-
gravity, or axitons, when stabilized by self-interactions
(see Ref. [26] for a recent review). In this scenario, part
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of the DM could be in the form of axion stars [27]. Gravi-
tational microlensing could potentially constrain the frac-
tion of DM in collapsed structures [28], but typical axion
star signals fall in the femtolensing regime which is not
robustly constrained [29]. Although their presence may
be unveiled in future by observations of highly magnified
stars [30], it is important to look for other experimental
probes.

Such dense clumps of axion DM can lead to enhanced
radio signals, which might explain the mysterious ob-
servation of Fast Radio Bursts (FRBs) [31, 32]. For
instance, the oscillating axion configuration associated
with a dilute axion star hitting the atmosphere of a neu-
tron star was conjectured to induce dipolar radiation of
the dense electrons in the atmosphere, which would in
turn give rise to a powerful radio signal [33] similar to
the FRBs. A related proposal considered neutrons in the
interior of the neutron star as the source of FRBs [34].
However, as pointed out in Ref. [35], the radius of a di-
lute axion star is about several hundred kilometers, which
means that tidal e↵ects will destroy it well before it can
reach the surface of the neutron star, at about 106 km.
Moreover, the photon radiated at the surface of the neu-
tron star has a plasma mass, which is much larger than
the intrinsic frequency of the dipole radiation (equivalent
to the axion mass). Hence, medium e↵ects would greatly
suppress the signal.

Even in the optimistic scenario of a dense axion
star directly hitting the surface of a neutron star,
this would lead to, at most, a µJy radio signal [36],
whereas FRBs range from O(0.1) to O(100) Jy (where
1 Jy=10�23 erg · s�1

· cm�2
· Hz�1). Their large disper-

sion measure suggests that the FRBs are of extragalac-
tic origin, generated at redshift 0.1 . z . 2.2. This
means that the total energy released in an FRB is about
O(1038) to O(1040) erg, and their observed millisecond
duration requires that the radiated power reaches 1041–
1043 erg · s�1. Although their origin and physical na-
ture are still obscure [37–40], the fact that the energy
released by FRBs is about a few percent of 10�13M�
(where 1 M� = 1.1⇥ 1057 GeV is the solar mass), which
is the typical axion star mass, and that their frequency
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Duration: milliseconds

We focus on FRBs events with 
frequency range 800 MHz to 1.4GHz, 
mainly observed by Parkes, ASKAP, 
and UTMOST.

We do not include other non- 
repeating FRBs with frequencies 
lower than 800 MHz, like the events 
from CHIME and Pushchino, which 
may be better explained by a lighter 
axion or other sources. 

 



The Square Kilometre Array (SKA) 

credit: SKA website

Early science observations are expected to start in near future with a partial array.



The Square Kilometre Array (SKA) 

credit: SKA website

Early science observations are expected to start in near future with a partial array.

Western Australia

Organisations from 13 countries are members of the SKA Organisation – Australia, Canada, China, France, 
Germany, India, Italy, New Zealand, Spain, South Africa, Sweden, The Netherlands and the United Kingdom. 



  Powerful SKA experiments

➢How do galaxies evolve? What is dark energy? 
➢ Strong-field tests of gravity using pulsars and 

black holes 
➢The origin and evolution of cosmic magnetism 
➢Probing the Cosmic Dawn 

➢Flexible design to enable exploration of the 
unknown, such as axion DM,

High sensitivity: SKA surveys will probe to sub-micro-Jy levels 
The extremely high sensitivity of the thousands of individual 
radio receivers, combining to create the world’s largest radio 
telescope will give us insight into many aspects of fundamental 
physics

credit: SKA website



The Five-hundred-meter Aperture Spherical radio Telescope (FAST)

Credit:FAST website 

In operation since 25th Sep. 2016



The Green Bank Telescope (GBT) 

credit:GBT website

GBT is running observations roughly 6,500 hours each year



We firstly study using the SKA-like experiments to 
explore the resonant conversion of axion cold DM to 
radio signal from magnetized astrophysical sources, 
such as neutron star, magnetar and pulsar.

FPH, K. Kadota, T. Sekiguchi, H. Tashiro, Phys.Rev. D97 (2018) no.12, 123001, arXiv:1803.08230

Axion or axion-like particle motivated from strong 
CP problem or string theory is still one of the most 
attractive and promising DM candidate.

I.Explore the axion cold DM by 
SKA



FPH, K. Kadota, T. Sekiguchi, H. Tashiro, Phys.Rev. D97 (2018) no.12, 123001



Radio telescope search for the resonant 
conversion of cold DM axions  

from the magnetized astrophysical sources 

➢Cold DM is composed of non-relativistic axion or 
axion-like particles, and can be accreted around 
the neutron star 

➢Neutron star (or pulsar and magnetar) has the 
strongest position-dependent magnetic field in the 
universe 

➢Neutron star is covered by magnetosphere and 
photon becomes massive in the magnetosphere 

Three key points:



Quick sketch of the neutron star size 

Radius of the neutron star is slightly than the 
radius of the LHC circle. 



Strong magnetic field in the magnetosphere of   
Neutron star, Pulsar, Magnetar:  

the strongest magnetic field in the Universe

1.   Mass: from 1 to 2 solar mass 

2.  Radius: 

3. Strongest magnetic field at the surface  
of the neutron star

B0 ⇡ 1012 � 1015G

4. Neutron star is surrounded by large 
 region of magnetosphere,  

where photon becomes massive. 

r0 ⇠ 10� 20km

r ⇠ 100r0

B0 ⇠ 3.3⇥ 1019
p

PṖ G
P is the period of neutron star

The typical diameter of neutron star  
is  just  half-Marathon.

Alfven



  Axion-photon conversion in magnetosphere
The Lagrangian for axion-photon conversion the magnetosphere 

Massive Photon: In the magnetosphere 
of the neutron star, photon obtains the 
effective mass in the magnetized plasma.  

 

Radio telescope search for the resonant conversion of cold dark matter
axions from the magnetized astrophysical sources
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We study the conditions for the adiabatic resonant conversion of the cold dark matter (CDM) axions into
photons in the astrophysically sourced strong magnetic fields such as those in the neutron star
magnetosphere. We demonstrate the possibility that the forthcoming radio telescopes such as the SKA
(Square Kilometre Array) can probe those photon signals from the CDM axions.

DOI: 10.1103/PhysRevD.97.123001

I. INTRODUCTION

Since the proposal of the Peccei-Quinn (PQ) mechanism
as an elegant solution of the QCD strongCP problem, there
have been many attempts to search for the axion which
naturally arises as a pseudoscalar particle of the PQ
symmetry [1–7]. Besides the QCD axions, more generally,
the axion-like particles (ALPs) also have been widely
discussed and can commonly arise in the string theory
[8]. The possibility for these axions/ALPs to be the CDM
candidates also gives a tantalizing motivation to search for
them [9–12]. It is intriguing that the axion CDMmass range
μeV–meV (corresponding to the frequency 0.1–100 GHz)
which is motivated from the QCD axion as a CDM
candidate turns out to overlap with the frequency range
which the radio telescope can probe [13–15].
We seek the radio telescope probe of CDM axions

through their adiabatic resonant conversion into photons
in the astrophysically sourced strong magnetic fields such
as those in the vicinity of the neutron stars/magnetars. This
is in stark contrast to the relativistic axion with the X-ray
energy for which it has been claimed that the adiabatic
resonant conversion cannot be realized in the strongly
magnetized plasma, such as the neutron star magneto-
sphere, due to the significant vacuum polarization contri-
bution to the photon dispersion relation [16,17].
The axion and photon can convert to each other in

presence of the magnetic fields through the Primakoff
process, and many attempts have been made to seek the

axions using a powerful magnet in the laboratory to result
in the tight bounds on the axion mass and its coupling to
photons [18–24]. Many studies also have been done for the
axion search using the astrophysically sourced magnetic
fields such as the intergalactic magnetic fields and stellar
magnetic fields [16,17,25–30]. The use of actual astro-
physical data from the gamma ray, X-ray, optical, and radio
telescopes also helped in reducing the viable axion param-
eter space, but many of those analyses assumed the
relativistic axion converting into a photon or the CDM
axion decaying into two photons [31–34]. The potential
radio telescope probe of the nonrelativistic axion converted
into the photon in the presence of the astrophysical
magnetic fields has been recently studied assuming the
nonresonant conversion but little study has been done on
the resonant conversion for the radio surveys [35–38]. Our
study on the adiabatic resonant conversion of the CDM
axion would complement those previous studies for the
further radio telescope exploration of the axion search.
Section II outlines the setup of our study, and Sec. III
examines the conditions for the adiabatic resonant con-
version of axions into photons. Section IV discusses the
detectability of the photon flux by a radio telescope as a
result of such an efficient axion-photon conversion.

II. THE AXION-PHOTON WAVE PROPAGATION
IN THE MAGNETIC FIELDS

The Lagrangian for the axion-photon system in the
presence of the magnetic fields relevant for the magnetized
astrophysical sources such as the neutron stars is

L ¼ −
1

4
F μνF μν þ 1

2
ð∂μa∂μa −m2

aa2Þ þ Lint þ LQED; ð1Þ

where a is the axion with the mass ma, and F μν is the
electromagnetic field tensor. The pseudoscalar axion can

Published by the American Physical Society under the terms of
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convert to the spin-1 photon in the presence of the external
magnetic field perpendicular to the photon propagation,
and the interaction term in the Lagrangian for the electro-
magnetic field and the axion is

Lint ¼
1

4
gF̃ μνF μνa ¼ −gE ·Ba; ð2Þ

where g represents the axion-photon coupling with the
dimension ½mass%−1, E is the electric field associated with
the photon, and B is the transverse component (with respect
to the photon propagation) of the magnetic field.1 The
axion in our discussions, for the sake of brevity, refers to
the axion and more generally to the ALP as well defined by
this Lagrangian characterized by its mass and coupling to
the photon (we accordingly treat ma, g as independent
parameters).
LQED represents the quantum correction to the Maxwell

equation (due to the QED vacuum polarization), and it can
be given by the Euler-Heisenberg action whose leading
order term is [16,39]

LQED ¼ α2

90m4
e

7

4
ðF μν F̃ μνÞ2; ð3Þ

where α ¼ e2=4π is the fine-structure constant. The photon
obtains the effective mass in the magnetized plasma. The
contribution of the photon mass m2

γ ¼ Qpl −QQED comes
from the vacuum polarization

QQED ¼ 7α
45π

ω2 B 2

B 2
crit

; ð4Þ

with B crit ¼ m2
e=e ¼ 4.4 × 1013 G and the plasma mass

characterized by the plasma frequency ωpl,

Qplasma ¼ ω2
plasma ¼ 4πα

ne
me

; ð5Þ

with the charged plasma density ne. It has been pointed out
that the QED vacuum polarization effect spoils the reali-
zation of the adiabatic resonant conversion between the
relativistic axion (with the observable X-ray energy range)
and the photon in the vicinity of a neutron star with strong
magnetic fields [16,17]. We note here that the vacuum
polarization effect is not important compared with the
plasma effect for our axion CDM scenario. As a simple
estimation, adopting the Goldreich-Julian charge density
[40] for the plasma density,

nGJe ¼ 7 × 10−2
1s
P
B ðrÞ
1 G

1

cm3
; ð6Þ

where P is the neutron star spin period,

Qpl

QQED
∼ 5 × 108

!
μeV
ω

"
2 1012 G

B
1 sec
P

: ð7Þ

We can, hence, safely ignore QQED with respect to Qpl for
the parameter range of our interest because of a small
photon frequency ω relevant for the frequency range
sensitive to the radio telescopes in our CDM axion scenario
(ω ∼ma).
The equation for the axion-photon plane wave with a

frequency ω reads
#
ω2 þ ∂2

z þ
!−m2

γ gB ω

gB ω −m2
a

"$!
γ

a

"
¼ 0; ð8Þ

where we assumed for simplicity the time-independent
magnetic field B ðrÞ [16]. The mass matrix here can be
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If the magnetic field is homogeneous, the conversion
probability for the axion into photon becomes

pa→γ ¼ sin2 2θ̃ðzÞ sin2½zðk1 − k2Þ=2% ð13Þ

for the wave dominated by the axion component at z ¼ 0.
This is analogous to the neutrino oscillations, and we can
interpret the axion-photon conversion in an analogous
manner. Even though the magnetic field is inhomogeneous
in the neutron star magnetosphere, the conversion in such a

1The photon here has a liner polarization parallel to the
external magnetic field. The other photon polarization state
and the photon mass term due to the Cotton-Mouton effect
(which can cause the birefringence) are of little importance in our
discussions and thus will be ignored [16,39].
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discussions and thus will be ignored [16,39].
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The axion-photon conversion probability 

convert to the spin-1 photon in the presence of the external
magnetic field perpendicular to the photon propagation,
and the interaction term in the Lagrangian for the electro-
magnetic field and the axion is

Lint ¼
1

4
gF̃ μνF μνa ¼ −gE ·Ba; ð2Þ

where g represents the axion-photon coupling with the
dimension ½mass%−1, E is the electric field associated with
the photon, and B is the transverse component (with respect
to the photon propagation) of the magnetic field.1 The
axion in our discussions, for the sake of brevity, refers to
the axion and more generally to the ALP as well defined by
this Lagrangian characterized by its mass and coupling to
the photon (we accordingly treat ma, g as independent
parameters).
LQED represents the quantum correction to the Maxwell

equation (due to the QED vacuum polarization), and it can
be given by the Euler-Heisenberg action whose leading
order term is [16,39]

LQED ¼ α2

90m4
e

7

4
ðF μν F̃ μνÞ2; ð3Þ

where α ¼ e2=4π is the fine-structure constant. The photon
obtains the effective mass in the magnetized plasma. The
contribution of the photon mass m2

γ ¼ Qpl −QQED comes
from the vacuum polarization

QQED ¼ 7α
45π

ω2 B 2

B 2
crit

; ð4Þ

with B crit ¼ m2
e=e ¼ 4.4 × 1013 G and the plasma mass

characterized by the plasma frequency ωpl,

Qplasma ¼ ω2
plasma ¼ 4πα

ne
me

; ð5Þ

with the charged plasma density ne. It has been pointed out
that the QED vacuum polarization effect spoils the reali-
zation of the adiabatic resonant conversion between the
relativistic axion (with the observable X-ray energy range)
and the photon in the vicinity of a neutron star with strong
magnetic fields [16,17]. We note here that the vacuum
polarization effect is not important compared with the
plasma effect for our axion CDM scenario. As a simple
estimation, adopting the Goldreich-Julian charge density
[40] for the plasma density,

nGJe ¼ 7 × 10−2
1s
P
B ðrÞ
1 G

1

cm3
; ð6Þ

where P is the neutron star spin period,

Qpl

QQED
∼ 5 × 108

!
μeV
ω

"
2 1012 G

B
1 sec
P

: ð7Þ

We can, hence, safely ignore QQED with respect to Qpl for
the parameter range of our interest because of a small
photon frequency ω relevant for the frequency range
sensitive to the radio telescopes in our CDM axion scenario
(ω ∼ma).
The equation for the axion-photon plane wave with a

frequency ω reads
#
ω2 þ ∂2

z þ
!−m2

γ gB ω

gB ω −m2
a

"$!
γ

a

"
¼ 0; ð8Þ

where we assumed for simplicity the time-independent
magnetic field B ðrÞ [16]. The mass matrix here can be
diagonalized by the rotation unitary matrix,

U ¼
!

cos θ̃ sin θ̃

− sin θ̃ cos θ̃

"
; ð9Þ

with

cos 2θ̃ ¼
m2

a −m2
γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4g2B 2ω2 þ ðm2
γ −m2

aÞ2
q

sin 2θ̃ ¼ 2gB ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g2B 2ω2 þ ðm2

γ −m2
aÞ2

q ; ð10Þ

where the tilde represents the mixing angle in the medium
to be distinguished from that in the vacuum. The maximum
mixing can occur when m2

γðrÞ ≈ma. The mass eigenvalues
are

m2
1;2 ¼

ðm2
γ þm2

aÞ '
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

γ −m2
aÞ2 þ 4g2B 2ω2

q

2
ð11Þ

with the corresponding momentum for the mass eigen-
states:

k21;2 ¼ ω2 −m2
1;2: ð12Þ

If the magnetic field is homogeneous, the conversion
probability for the axion into photon becomes

pa→γ ¼ sin2 2θ̃ðzÞ sin2½zðk1 − k2Þ=2% ð13Þ

for the wave dominated by the axion component at z ¼ 0.
This is analogous to the neutrino oscillations, and we can
interpret the axion-photon conversion in an analogous
manner. Even though the magnetic field is inhomogeneous
in the neutron star magnetosphere, the conversion in such a

1The photon here has a liner polarization parallel to the
external magnetic field. The other photon polarization state
and the photon mass term due to the Cotton-Mouton effect
(which can cause the birefringence) are of little importance in our
discussions and thus will be ignored [16,39].
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nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for

the adiabatic resonant conversion of the CDM axion into
photons.

III. THE ADIABATIC RESONANT CONVERSION
OF AXIONS INTO PHOTONS

The resonance can occur when the maximum mixing
angle is realized for m2

γðrÞ ≈m2
a. The photon mass or the

plasma mass depends on the plasma density. The realistic
modeling of the magnetosphere of a neutron star is beyond
the scope of this paper, and we simply assume a simple
dipole magnetic field with a magnitude at the neutron star
surface B 0 and the charged plasma density obeying the
Goldreich-Julian density,

B ðrÞ ¼ B 0

!
r
r0

"−3
; ð14Þ

and

m2
γðrÞ ¼ 4πα

neðrÞ
me

;

neðrÞ ¼ nGJe ðrÞ ¼ 7 × 10−2
1s
P
B ðrÞ
1 G

1

cm3
; ð15Þ

where r0 is the neutron star radius. The resonance radius is
defined at the level crossing point m2

γðrresÞ ¼ m2
a given by

!
rres
r0

"−3
≈ 10−3

!
ma

μeV

"
2
!
1014 G
B 0

"!
P

10 sec

"
: ð16Þ

At the resonance, jm2
γ −m2

aj ≪ gB ω andm2
1;2 ≈m2

a $ gB ω.
From the mixing angle given in Eq. (10),

sin 2θ̃ ¼
ð2gB ω=m2

γÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4g2B 2ω2=m4

γÞ þ ð1 − ðma=mγÞ2Þ2
q

≡ c1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ ð1 − fðrÞÞ2

p ; ð17Þ

where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,

δr ∼ δfjdf=drj−1res ∼ 2c1jdf=drj−1res; ð18Þ

is sufficiently bigger than the oscillation length scale at the
resonance,

losc ¼
2π

jk1 − k2jres
; ð19Þ

δr > losc hence requires

jd ln f=drj−1res > 650½m'
!
ma

μeV

"
3
!
vres
10−1

"!
1=1010 GeV

g

"
2

×
!
1012 G
B ðrresÞ

"
2
!
μeV
ω

"
2

: ð20Þ

The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for

the adiabatic resonant conversion of the CDM axion into
photons.

III. THE ADIABATIC RESONANT CONVERSION
OF AXIONS INTO PHOTONS

The resonance can occur when the maximum mixing
angle is realized for m2

γðrÞ ≈m2
a. The photon mass or the

plasma mass depends on the plasma density. The realistic
modeling of the magnetosphere of a neutron star is beyond
the scope of this paper, and we simply assume a simple
dipole magnetic field with a magnitude at the neutron star
surface B 0 and the charged plasma density obeying the
Goldreich-Julian density,

B ðrÞ ¼ B 0

!
r
r0

"−3
; ð14Þ

and

m2
γðrÞ ¼ 4πα

neðrÞ
me

;

neðrÞ ¼ nGJe ðrÞ ¼ 7 × 10−2
1s
P
B ðrÞ
1 G

1

cm3
; ð15Þ

where r0 is the neutron star radius. The resonance radius is
defined at the level crossing point m2

γðrresÞ ¼ m2
a given by

!
rres
r0

"−3
≈ 10−3

!
ma

μeV

"
2
!
1014 G
B 0

"!
P

10 sec

"
: ð16Þ

At the resonance, jm2
γ −m2

aj ≪ gB ω andm2
1;2 ≈m2

a $ gB ω.
From the mixing angle given in Eq. (10),

sin 2θ̃ ¼
ð2gB ω=m2

γÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4g2B 2ω2=m4

γÞ þ ð1 − ðma=mγÞ2Þ2
q

≡ c1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ ð1 − fðrÞÞ2

p ; ð17Þ

where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,

δr ∼ δfjdf=drj−1res ∼ 2c1jdf=drj−1res; ð18Þ

is sufficiently bigger than the oscillation length scale at the
resonance,

losc ¼
2π

jk1 − k2jres
; ð19Þ

δr > losc hence requires

jd ln f=drj−1res > 650½m'
!
ma

μeV

"
3
!
vres
10−1

"!
1=1010 GeV

g

"
2

×
!
1012 G
B ðrresÞ

"
2
!
μeV
ω

"
2

: ð20Þ

The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for

the adiabatic resonant conversion of the CDM axion into
photons.

III. THE ADIABATIC RESONANT CONVERSION
OF AXIONS INTO PHOTONS

The resonance can occur when the maximum mixing
angle is realized for m2

γðrÞ ≈m2
a. The photon mass or the

plasma mass depends on the plasma density. The realistic
modeling of the magnetosphere of a neutron star is beyond
the scope of this paper, and we simply assume a simple
dipole magnetic field with a magnitude at the neutron star
surface B 0 and the charged plasma density obeying the
Goldreich-Julian density,

B ðrÞ ¼ B 0

!
r
r0

"−3
; ð14Þ

and

m2
γðrÞ ¼ 4πα

neðrÞ
me

;

neðrÞ ¼ nGJe ðrÞ ¼ 7 × 10−2
1s
P
B ðrÞ
1 G
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cm3
; ð15Þ

where r0 is the neutron star radius. The resonance radius is
defined at the level crossing point m2

γðrresÞ ¼ m2
a given by
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rres
r0

"−3
≈ 10−3
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μeV

"
2
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1014 G
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"
: ð16Þ

At the resonance, jm2
γ −m2

aj ≪ gB ω andm2
1;2 ≈m2

a $ gB ω.
From the mixing angle given in Eq. (10),

sin 2θ̃ ¼
ð2gB ω=m2

γÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4g2B 2ω2=m4

γÞ þ ð1 − ðma=mγÞ2Þ2
q

≡ c1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ ð1 − fðrÞÞ2

p ; ð17Þ

where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,

δr ∼ δfjdf=drj−1res ∼ 2c1jdf=drj−1res; ð18Þ

is sufficiently bigger than the oscillation length scale at the
resonance,

losc ¼
2π

jk1 − k2jres
; ð19Þ

δr > losc hence requires

jd ln f=drj−1res > 650½m'
!
ma

μeV

"
3
!
vres
10−1

"!
1=1010 GeV

g

"
2

×
!
1012 G
B ðrresÞ
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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convert to the spin-1 photon in the presence of the external
magnetic field perpendicular to the photon propagation,
and the interaction term in the Lagrangian for the electro-
magnetic field and the axion is

Lint ¼
1

4
gF̃ μνF μνa ¼ −gE ·Ba; ð2Þ

where g represents the axion-photon coupling with the
dimension ½mass%−1, E is the electric field associated with
the photon, and B is the transverse component (with respect
to the photon propagation) of the magnetic field.1 The
axion in our discussions, for the sake of brevity, refers to
the axion and more generally to the ALP as well defined by
this Lagrangian characterized by its mass and coupling to
the photon (we accordingly treat ma, g as independent
parameters).
LQED represents the quantum correction to the Maxwell

equation (due to the QED vacuum polarization), and it can
be given by the Euler-Heisenberg action whose leading
order term is [16,39]

LQED ¼ α2

90m4
e

7

4
ðF μν F̃ μνÞ2; ð3Þ

where α ¼ e2=4π is the fine-structure constant. The photon
obtains the effective mass in the magnetized plasma. The
contribution of the photon mass m2

γ ¼ Qpl −QQED comes
from the vacuum polarization

QQED ¼ 7α
45π

ω2 B 2

B 2
crit

; ð4Þ

with B crit ¼ m2
e=e ¼ 4.4 × 1013 G and the plasma mass

characterized by the plasma frequency ωpl,

Qplasma ¼ ω2
plasma ¼ 4πα

ne
me

; ð5Þ

with the charged plasma density ne. It has been pointed out
that the QED vacuum polarization effect spoils the reali-
zation of the adiabatic resonant conversion between the
relativistic axion (with the observable X-ray energy range)
and the photon in the vicinity of a neutron star with strong
magnetic fields [16,17]. We note here that the vacuum
polarization effect is not important compared with the
plasma effect for our axion CDM scenario. As a simple
estimation, adopting the Goldreich-Julian charge density
[40] for the plasma density,

nGJe ¼ 7 × 10−2
1s
P
B ðrÞ
1 G

1

cm3
; ð6Þ

where P is the neutron star spin period,

Qpl

QQED
∼ 5 × 108

!
μeV
ω

"
2 1012 G

B
1 sec
P

: ð7Þ

We can, hence, safely ignore QQED with respect to Qpl for
the parameter range of our interest because of a small
photon frequency ω relevant for the frequency range
sensitive to the radio telescopes in our CDM axion scenario
(ω ∼ma).
The equation for the axion-photon plane wave with a

frequency ω reads
#
ω2 þ ∂2

z þ
!−m2

γ gB ω

gB ω −m2
a

"$!
γ

a

"
¼ 0; ð8Þ

where we assumed for simplicity the time-independent
magnetic field B ðrÞ [16]. The mass matrix here can be
diagonalized by the rotation unitary matrix,

U ¼
!

cos θ̃ sin θ̃

− sin θ̃ cos θ̃

"
; ð9Þ

with

cos 2θ̃ ¼
m2

a −m2
γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4g2B 2ω2 þ ðm2
γ −m2

aÞ2
q

sin 2θ̃ ¼ 2gB ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g2B 2ω2 þ ðm2

γ −m2
aÞ2

q ; ð10Þ

where the tilde represents the mixing angle in the medium
to be distinguished from that in the vacuum. The maximum
mixing can occur when m2

γðrÞ ≈ma. The mass eigenvalues
are

m2
1;2 ¼

ðm2
γ þm2

aÞ '
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

γ −m2
aÞ2 þ 4g2B 2ω2

q

2
ð11Þ

with the corresponding momentum for the mass eigen-
states:

k21;2 ¼ ω2 −m2
1;2: ð12Þ

If the magnetic field is homogeneous, the conversion
probability for the axion into photon becomes

pa→γ ¼ sin2 2θ̃ðzÞ sin2½zðk1 − k2Þ=2% ð13Þ

for the wave dominated by the axion component at z ¼ 0.
This is analogous to the neutrino oscillations, and we can
interpret the axion-photon conversion in an analogous
manner. Even though the magnetic field is inhomogeneous
in the neutron star magnetosphere, the conversion in such a

1The photon here has a liner polarization parallel to the
external magnetic field. The other photon polarization state
and the photon mass term due to the Cotton-Mouton effect
(which can cause the birefringence) are of little importance in our
discussions and thus will be ignored [16,39].
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  Axion-photon conversion in magnetosphere

Here, we choose the simplest electron density distribution and magnetic field 
configuration to clearly see the physics process.  

Thus, the photon mass is position r dependent, and within some region the photon  
mass is close to the axion DM mass.

Here, for non-relativistic axion cold dark 
 matter,  the QED mass is negligible  

compared to plasma mass.



  The Adiabatic Resonant Conversion 

The resonance radius is defined at the level crossing point 
 

Within the resonance region, the axion-photon conversion  
rate is greatly enhanced due to large mixing angle.

nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for

the adiabatic resonant conversion of the CDM axion into
photons.

III. THE ADIABATIC RESONANT CONVERSION
OF AXIONS INTO PHOTONS

The resonance can occur when the maximum mixing
angle is realized for m2

γðrÞ ≈m2
a. The photon mass or the

plasma mass depends on the plasma density. The realistic
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where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is
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∼
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; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2
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requires that the region in which the resonance is approx-
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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The adiabatic resonant conversion requires the resonance region is approximately 
valid inside the resonance width. Coherent condition is also needed.

nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
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where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2
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We first examine the adiabatic condition for the sufficient
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requires that the region in which the resonance is approx-
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
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where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is
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which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,

δr ∼ δfjdf=drj−1res ∼ 2c1jdf=drj−1res; ð18Þ

is sufficiently bigger than the oscillation length scale at the
resonance,

losc ¼
2π
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δr > losc hence requires
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for

the adiabatic resonant conversion of the CDM axion into
photons.

III. THE ADIABATIC RESONANT CONVERSION
OF AXIONS INTO PHOTONS

The resonance can occur when the maximum mixing
angle is realized for m2

γðrÞ ≈m2
a. The photon mass or the

plasma mass depends on the plasma density. The realistic
modeling of the magnetosphere of a neutron star is beyond
the scope of this paper, and we simply assume a simple
dipole magnetic field with a magnitude at the neutron star
surface B 0 and the charged plasma density obeying the
Goldreich-Julian density,
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where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ
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which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for
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angle is realized for m2
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plasma mass depends on the plasma density. The realistic
modeling of the magnetosphere of a neutron star is beyond
the scope of this paper, and we simply assume a simple
dipole magnetic field with a magnitude at the neutron star
surface B 0 and the charged plasma density obeying the
Goldreich-Julian density,
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where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,

δr ∼ δfjdf=drj−1res ∼ 2c1jdf=drj−1res; ð18Þ

is sufficiently bigger than the oscillation length scale at the
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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N.B. Only for the non-relativistic 
axion, the resonant  

conversion can be achieved.  
For relativistic axion,  

QED effects make it impossible.

 Adiabatic resonant conversion is essential to observe 
the photon signal.



Line-like radio signal for non-relativistic axion 
conversion:  

⌫peak ⇡ ma

2⇡
⇡ 240

ma

µeV
MHz

The FAST covers 70 MHz–3 GHz, the SKA covers 50 MHz–
14 GHz, and the GBT covers 0.3–100 GHz, so that the radio 
telescopes can probe axion mass range of 0.2–400 µeV  

Radio Signal

1 GHz ~ 4 µeV

⌫ : 0.07 ! 100 GHz

ma : 0.2 ! 400 µeV



Signal:  For adiabatic resonant conversion, and the 
photon flux density can be estimated to be of order  

at the neutron star surface) and hence does not affect our
discussions.2 We also require the photon effective refractive
index to be real,

n21;2 ¼ 1 −
m2

1;2

ω2
¼

k21;2
ω2

> 0; ð23Þ

to avoid the loss of coherence in the axion-photon oscil-
lation and the attenuation of the wave propagation.

IV. THE PHOTON FLUX SEARCH BY
THE RADIO TELESCOPE

To estimate the photon flux, let us start by considering
the axion particle trajectory with the initial velocity v0 far
away from the neutron star in the Schwarzschild metric.
The impact parameter b, whose closest approach to the
neutron star is R, is given by

bðRÞ ¼ R
vescðRÞ
v0

ð1–2GM=RÞ−1=2; ð24Þ

where M is the neutron star mass and vesc ¼ ð2GM=RÞ1=2.
Recalling our discussion on the adiabatic resonance in

Sec. III (the efficient conversion can occur for m2
γðrresÞ ≈

m2
a with the resonance width Δm2

γ ≈ 4gBω), we can
estimate that the axion mass going through the efficient
axion-photon conversion region is of order [45–48]

dma

dt
∼πðb2ðrþ Þ−b2ðr−ÞÞρav0∼

8π
3
rresGMv−10 ρagBωm−2

a ;

ð25Þ

where ρa is the axion CDM density and we used gBω < m2
a

for the parameter range of our interest. r% is defined by
m2

γðr% Þ ¼ m2
a ∓ Δm2

γ=2, and we, for a conservative esti-
mation, do not count the axions going through r < r− to
avoid the wave attenuation. The photon energy from the
axion-photon conversion is

dE
dt

¼ pa→γ
dma

dt
ð26Þ

where the conversion probability p can be close to unity for
the adiabatic resonant conversion, and the photon flux
density can be estimated to be of order

Sγ ¼
dE=dt
4πd2Δν

∼ 4.2μJy
ð rres
100 kmÞð

M
Msun

Þð ρa
0.3 GeV=cm3Þð10

−3

v0
Þð g

1=1010 GeVÞð
BðrresÞ
1012 GÞð

ω
μeVÞð

μeV
ma

Þ2

ð d
1 kpcÞ

2ðma=2π
μeV=2πÞð

vdis
10−3

Þ;
ð27Þ

where d represents the distance from the neutron star to us.
The photon flux peaks around the frequency νpeak ∼ma=2π,
and Δν ∼ νpeakvdis represents the spectral line broadening
around this peak frequency due to the DM velocity
dispersion vdis.
We are interested in the detectability of this photon flux

as a result of the axion-photon resonant conversion by a
radio telescope. For this purpose, one can consider the
antenna temperature induced by the total flux density S,

T ¼ 1

2
AeffS; ð28Þ

where Aeff represents the effective collecting area of the
telescope [49]. The minimum detectable brightness temper-
ature (sensitivity) can be given by the root mean square
noise temperature of the system (which consists of the
added sky/instrumental noises of the system)

Tmin ≈
Tsysffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔBtobs

p ; ð29Þ

where ΔB is the bandwidth and tobs is the integrated
observation time. We can hence estimate, from Eqs. (28)
and (29), that the smallest detectable flux density is of order

Smin≈0.29μJy
"
1GHz
ΔB

#
1=2

"
24 hrs
tobs

#
1=2

"
103 m2=K
Aeff=Tsys

#

ð30Þ

to be compared with the photon flux from the axion
conversion given by Eq. (27). Aeff=Tsys differs for different
experiment specifications. For instance, the SKA-mid in
the Phase 1 (SKA1) will be able to provide Aeff=Tsys ∼
2.7 × 103 assuming Aeff ∼ ð180 mÞ2 and Tsys ∼ 12 K, and
it would increase by more than an order of magnitude
assuming Aeff ∼ ð1 kmÞ2 in the Phase 2 (SKA2) [50].
There still exists a wide range of axion parameter space

of ma, g which still has not been explored, and the radio
telescope can complement the other experiments to fill in
the gap of those unexplored parameter spaces. For instance
the FAST (Five Hundred Meter Aperture Spherical Radio
Telescope) covers 70 MHz–3 GHz, the SKA (Square
Kilometre Array) covers 50 MHz–14 GHz, and the GBT
(Green Bank Telescope) covers 0.3–100 GHz, so that the
radio telescopes can probe the axion mass range of

2The strong magnetic fields can possibly affect the Thomson
scattering cross section, which however does not lead to the
violation of this coherence condition for the parameter range of
our interest [43,44].
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where d represents the distance from the neutron star to us.
The photon flux peaks around the frequency νpeak ∼ma=2π,
and Δν ∼ νpeakvdis represents the spectral line broadening
around this peak frequency due to the DM velocity
dispersion vdis.
We are interested in the detectability of this photon flux

as a result of the axion-photon resonant conversion by a
radio telescope. For this purpose, one can consider the
antenna temperature induced by the total flux density S,

T ¼ 1
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AeffS; ð28Þ

where Aeff represents the effective collecting area of the
telescope [49]. The minimum detectable brightness temper-
ature (sensitivity) can be given by the root mean square
noise temperature of the system (which consists of the
added sky/instrumental noises of the system)
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to be compared with the photon flux from the axion
conversion given by Eq. (27). Aeff=Tsys differs for different
experiment specifications. For instance, the SKA-mid in
the Phase 1 (SKA1) will be able to provide Aeff=Tsys ∼
2.7 × 103 assuming Aeff ∼ ð180 mÞ2 and Tsys ∼ 12 K, and
it would increase by more than an order of magnitude
assuming Aeff ∼ ð1 kmÞ2 in the Phase 2 (SKA2) [50].
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telescope can complement the other experiments to fill in
the gap of those unexplored parameter spaces. For instance
the FAST (Five Hundred Meter Aperture Spherical Radio
Telescope) covers 70 MHz–3 GHz, the SKA (Square
Kilometre Array) covers 50 MHz–14 GHz, and the GBT
(Green Bank Telescope) covers 0.3–100 GHz, so that the
radio telescopes can probe the axion mass range of

2The strong magnetic fields can possibly affect the Thomson
scattering cross section, which however does not lead to the
violation of this coherence condition for the parameter range of
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Sensitivity:  The smallest detectable flux density of 
the radio telescope (SKA, FAST, GBT)  is of order  
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where d represents the distance from the neutron star to us.
The photon flux peaks around the frequency νpeak ∼ma=2π,
and Δν ∼ νpeakvdis represents the spectral line broadening
around this peak frequency due to the DM velocity
dispersion vdis.
We are interested in the detectability of this photon flux
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where Aeff represents the effective collecting area of the
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ature (sensitivity) can be given by the root mean square
noise temperature of the system (which consists of the
added sky/instrumental noises of the system)

Tmin ≈
Tsysffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔBtobs

p ; ð29Þ

where ΔB is the bandwidth and tobs is the integrated
observation time. We can hence estimate, from Eqs. (28)
and (29), that the smallest detectable flux density is of order
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to be compared with the photon flux from the axion
conversion given by Eq. (27). Aeff=Tsys differs for different
experiment specifications. For instance, the SKA-mid in
the Phase 1 (SKA1) will be able to provide Aeff=Tsys ∼
2.7 × 103 assuming Aeff ∼ ð180 mÞ2 and Tsys ∼ 12 K, and
it would increase by more than an order of magnitude
assuming Aeff ∼ ð1 kmÞ2 in the Phase 2 (SKA2) [50].
There still exists a wide range of axion parameter space

of ma, g which still has not been explored, and the radio
telescope can complement the other experiments to fill in
the gap of those unexplored parameter spaces. For instance
the FAST (Five Hundred Meter Aperture Spherical Radio
Telescope) covers 70 MHz–3 GHz, the SKA (Square
Kilometre Array) covers 50 MHz–14 GHz, and the GBT
(Green Bank Telescope) covers 0.3–100 GHz, so that the
radio telescopes can probe the axion mass range of

2The strong magnetic fields can possibly affect the Thomson
scattering cross section, which however does not lead to the
violation of this coherence condition for the parameter range of
our interest [43,44].
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Signal: For a trial parameter set,  

satisfies the constraints of the adiabatic resonance 
conditions and the existed axion search constraints 
produces the signal Sγ ∼0.51 µJy.  

Sensitivity:  

SKA-like experiment can probe the axion DM and the axion 
mass which corresponds to peak frequency. 
More detailed study taking into account astrophysical 
uncertainties and more precise numerical analysis is still 
working in progress.

0.2–400 μeV [50–52]. The current axion search experi-
mental upper bounds on the axion-photon coupling corre-
sponding to this radio telescope frequency range are
g < 6.6× 10−11 GeV−1, which comes from the helioscope
experiment and also from the energy loss rate enhancement
of the horizontal branch stars of global clusters through the
Primakoff effect [23,53]. The haloscope (microwave cav-
ity) experiments give even tighter bounds for some limited
axion mass ranges. For instance, g≲ 10−15 GeV−1 for the
axion mass of 2–3.5 μeV and g≲ 10−13GeV−1 for the
axion mass of 4.5–10 μeV [19,21,22,24,54]. The exclusive
parameter search for our study on the radio telescope probe
for axions is beyond the scope of this paper partly because
of the astrophysical uncertainties in the magnetosphere
modeling and a wide range of the possible parameters for
the neutron stars (e.g., the spin period can vary in a wide
range (Oð10−3–103Þ sec) and the magnetic field can reach
up to 1015 G) [55–63]). Dark matter properties such as the
dark matter velocity dispersion in the neighborhood of a
neutron star remain to be clarified too. The dark matter
density in the vicinity of a neutron star does not have to be
same as that in the solar neighborhood ρa ∼ 0.3GeV=cm3.
For instance, in the region where the neutron star
distribution peaks in our galaxy (∼ a few kpc from the
galactic center), the density can well be enhanced by more
than an order of magnitude (e.g., ρa ∼Oð10–100Þ×
0.3GeV=cm3) and could be even bigger ρa ∼Oð104Þ ×
0.3GeV=cm3 around the neutron star found near the
galactic center due to a dark matter spike [64–70].
For a trial parameter set, let us adopt the DM velocity and

the dispersion velocity of order v0 ∼ vdis ∼ 10−3and a factor
10 enhancement of the local DM density compared with the
value near the earth ρa ∼3GeV=cm3. Let us also assume a
neutron star of order a kpc away from us and take the DM
velocity in the resonance region of order the escape velocity
at the resonance radius. Then, for our toy magnetosphere
model with a simple dipole magnetic field profile [Eqs. (14)
and (15)], a parameter set (B 0 ¼ 1015 G, ma ¼ 50 μeV,
P¼ 10 s, g ¼ 5 × 10−11 GeV−1, r0 ¼ 10 km, M ¼
1.5Msun) satisfies the conditions for the adiabatic resonance
conditions with Sγ ∼ 0.51μJy. This can exceed the estimated
minimum required flux Smin ∼ 0.48μJy for the SKA1 and
Smin ∼ 0.016Jy for the SKA2 with 100 hour observation
time, wherewe assumed the optimized band width matching
the signal width ΔB ¼ Δν. This simple parameter set
examplewouldwork as an existence proof for themotivation
to seek a potential radio telescope probe of the adiabatic
resonant conversion of axions. Even though the further
parameter search with more detailed astrophysical model
setups is left for future work, we have a few comments
regarding the astrophysical uncertainties involved in our
estimation before concluding our work. The measurements
of the neutron star radiation in the different wavebands
have been fitted well by assuming a magnetic field profile
more complicated than a simple vacuum dipole profile

(e.g., twisted magnetosphere) and a plasma charge density
larger (e.g., a few orders of magnitude larger) than the
classical Goldreich-Julian value [62,71–77]. Such an
enhancement in the plasma density would increase the
resonance radius and affect the adiabaticity condition and
the photon flux estimation. In addition to the DM velocities
and velocity dispersions which can affect our photon flux
estimation, the galactic drift velocities of neutron stars are
also uncertain parameters whose velocity distribution does
not follow a simple Gaussian-like distribution and spans in a
wide range (typically Oð100–500Þ km=s with a significant
fraction (∼Oð10Þ%) of theneutron star populationhaving the
velocity exceeding 1000 km=s) [78]. Such variations in the
relative velocity between a neutron star and the axions can
affect the photon flux estimation too. A more detailed study
taking into account such astrophysical uncertainties and the
numerical analysis for our adiabatic resonance conversion
scenario along with the extension of our scenario to the one
including the nonadiabatic axion-photon conversion are left
for our future work.
Let us here also briefly comment on the comparison of our

scenario with the other relevant works. The conditions of the
complete conversion of axions into photons were first
studied in [17], which considered the relativistic axions
with the X-ray energy range, in contrast to the radio range in
our scenario, and hence could not realize the sufficient
adiabaticity due to the QED effect. Our CDM axion scenario
is also in contrast to the resonant conversion scenarios where
only the partial axion-photon conversion, hence with a
smaller conversion probability compared with the complete
conversion scenarios, occurs due to the insufficient adiaba-
ticity and/or coherence. Such a partial conversion scenario
would relax the bounds on the model parameters and would
be applicable for a larger sample of the neutron stars, but one
needs to require some way to compensate a smaller con-
version probability to detect the axion signals by the radio
telescopes such as a large dark matter density near the
neutron star (e.g., the dark matter density enhancement
factor of Oð1010Þ with respect to the local density in the
solar neighborhood [79]).3 How the model parameters are
affected by the astrophysical uncertainties would differ
depending on the scenarios too. For instance, for the partial
conversion scenarios, a smaller g would become viable if we
allow a bigger DM density enhancement because a bigger
dark matter density (to which the photon flux is proportional)
could compensate for a smaller conversion probability. On
the other hand, for the complete conversion scenario, in

3Reference [79] assumes the signal bandwidth broadening of
order the DM velocity squared, in contrast to ours and the other
literature which take account of a more dominant line width linear
in the velocity (e.g., from the Doppler broadening effect). This
can result in the overestimation of the signal flux by three to four
orders of magnitude and we quoted here the required dark matter
density enhancement factor bigger than their adopted value
taking account of this correction.
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0.2–400 μeV [50–52]. The current axion search experi-
mental upper bounds on the axion-photon coupling corre-
sponding to this radio telescope frequency range are
g < 6.6× 10−11 GeV−1, which comes from the helioscope
experiment and also from the energy loss rate enhancement
of the horizontal branch stars of global clusters through the
Primakoff effect [23,53]. The haloscope (microwave cav-
ity) experiments give even tighter bounds for some limited
axion mass ranges. For instance, g≲ 10−15 GeV−1 for the
axion mass of 2–3.5 μeV and g≲ 10−13GeV−1 for the
axion mass of 4.5–10 μeV [19,21,22,24,54]. The exclusive
parameter search for our study on the radio telescope probe
for axions is beyond the scope of this paper partly because
of the astrophysical uncertainties in the magnetosphere
modeling and a wide range of the possible parameters for
the neutron stars (e.g., the spin period can vary in a wide
range (Oð10−3–103Þ sec) and the magnetic field can reach
up to 1015 G) [55–63]). Dark matter properties such as the
dark matter velocity dispersion in the neighborhood of a
neutron star remain to be clarified too. The dark matter
density in the vicinity of a neutron star does not have to be
same as that in the solar neighborhood ρa ∼ 0.3GeV=cm3.
For instance, in the region where the neutron star
distribution peaks in our galaxy (∼ a few kpc from the
galactic center), the density can well be enhanced by more
than an order of magnitude (e.g., ρa ∼Oð10–100Þ×
0.3GeV=cm3) and could be even bigger ρa ∼Oð104Þ ×
0.3GeV=cm3 around the neutron star found near the
galactic center due to a dark matter spike [64–70].
For a trial parameter set, let us adopt the DM velocity and

the dispersion velocity of order v0 ∼ vdis ∼ 10−3and a factor
10 enhancement of the local DM density compared with the
value near the earth ρa ∼3GeV=cm3. Let us also assume a
neutron star of order a kpc away from us and take the DM
velocity in the resonance region of order the escape velocity
at the resonance radius. Then, for our toy magnetosphere
model with a simple dipole magnetic field profile [Eqs. (14)
and (15)], a parameter set (B 0 ¼ 1015 G, ma ¼ 50 μeV,
P¼ 10 s, g ¼ 5 × 10−11 GeV−1, r0 ¼ 10 km, M ¼
1.5Msun) satisfies the conditions for the adiabatic resonance
conditions with Sγ ∼ 0.51μJy. This can exceed the estimated
minimum required flux Smin ∼ 0.48μJy for the SKA1 and
Smin ∼ 0.016Jy for the SKA2 with 100 hour observation
time, wherewe assumed the optimized band width matching
the signal width ΔB ¼ Δν. This simple parameter set
examplewouldwork as an existence proof for themotivation
to seek a potential radio telescope probe of the adiabatic
resonant conversion of axions. Even though the further
parameter search with more detailed astrophysical model
setups is left for future work, we have a few comments
regarding the astrophysical uncertainties involved in our
estimation before concluding our work. The measurements
of the neutron star radiation in the different wavebands
have been fitted well by assuming a magnetic field profile
more complicated than a simple vacuum dipole profile

(e.g., twisted magnetosphere) and a plasma charge density
larger (e.g., a few orders of magnitude larger) than the
classical Goldreich-Julian value [62,71–77]. Such an
enhancement in the plasma density would increase the
resonance radius and affect the adiabaticity condition and
the photon flux estimation. In addition to the DM velocities
and velocity dispersions which can affect our photon flux
estimation, the galactic drift velocities of neutron stars are
also uncertain parameters whose velocity distribution does
not follow a simple Gaussian-like distribution and spans in a
wide range (typically Oð100–500Þ km=s with a significant
fraction (∼Oð10Þ%) of theneutron star populationhaving the
velocity exceeding 1000 km=s) [78]. Such variations in the
relative velocity between a neutron star and the axions can
affect the photon flux estimation too. A more detailed study
taking into account such astrophysical uncertainties and the
numerical analysis for our adiabatic resonance conversion
scenario along with the extension of our scenario to the one
including the nonadiabatic axion-photon conversion are left
for our future work.
Let us here also briefly comment on the comparison of our

scenario with the other relevant works. The conditions of the
complete conversion of axions into photons were first
studied in [17], which considered the relativistic axions
with the X-ray energy range, in contrast to the radio range in
our scenario, and hence could not realize the sufficient
adiabaticity due to the QED effect. Our CDM axion scenario
is also in contrast to the resonant conversion scenarios where
only the partial axion-photon conversion, hence with a
smaller conversion probability compared with the complete
conversion scenarios, occurs due to the insufficient adiaba-
ticity and/or coherence. Such a partial conversion scenario
would relax the bounds on the model parameters and would
be applicable for a larger sample of the neutron stars, but one
needs to require some way to compensate a smaller con-
version probability to detect the axion signals by the radio
telescopes such as a large dark matter density near the
neutron star (e.g., the dark matter density enhancement
factor of Oð1010Þ with respect to the local density in the
solar neighborhood [79]).3 How the model parameters are
affected by the astrophysical uncertainties would differ
depending on the scenarios too. For instance, for the partial
conversion scenarios, a smaller g would become viable if we
allow a bigger DM density enhancement because a bigger
dark matter density (to which the photon flux is proportional)
could compensate for a smaller conversion probability. On
the other hand, for the complete conversion scenario, in

3Reference [79] assumes the signal bandwidth broadening of
order the DM velocity squared, in contrast to ours and the other
literature which take account of a more dominant line width linear
in the velocity (e.g., from the Doppler broadening effect). This
can result in the overestimation of the signal flux by three to four
orders of magnitude and we quoted here the required dark matter
density enhancement factor bigger than their adopted value
taking account of this correction.
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0.2–400 μeV [50–52]. The current axion search experi-
mental upper bounds on the axion-photon coupling corre-
sponding to this radio telescope frequency range are
g < 6.6× 10−11 GeV−1, which comes from the helioscope
experiment and also from the energy loss rate enhancement
of the horizontal branch stars of global clusters through the
Primakoff effect [23,53]. The haloscope (microwave cav-
ity) experiments give even tighter bounds for some limited
axion mass ranges. For instance, g≲ 10−15 GeV−1 for the
axion mass of 2–3.5 μeV and g≲ 10−13GeV−1 for the
axion mass of 4.5–10 μeV [19,21,22,24,54]. The exclusive
parameter search for our study on the radio telescope probe
for axions is beyond the scope of this paper partly because
of the astrophysical uncertainties in the magnetosphere
modeling and a wide range of the possible parameters for
the neutron stars (e.g., the spin period can vary in a wide
range (Oð10−3–103Þ sec) and the magnetic field can reach
up to 1015 G) [55–63]). Dark matter properties such as the
dark matter velocity dispersion in the neighborhood of a
neutron star remain to be clarified too. The dark matter
density in the vicinity of a neutron star does not have to be
same as that in the solar neighborhood ρa ∼ 0.3GeV=cm3.
For instance, in the region where the neutron star
distribution peaks in our galaxy (∼ a few kpc from the
galactic center), the density can well be enhanced by more
than an order of magnitude (e.g., ρa ∼Oð10–100Þ×
0.3GeV=cm3) and could be even bigger ρa ∼Oð104Þ ×
0.3GeV=cm3 around the neutron star found near the
galactic center due to a dark matter spike [64–70].
For a trial parameter set, let us adopt the DM velocity and

the dispersion velocity of order v0 ∼ vdis ∼ 10−3and a factor
10 enhancement of the local DM density compared with the
value near the earth ρa ∼3GeV=cm3. Let us also assume a
neutron star of order a kpc away from us and take the DM
velocity in the resonance region of order the escape velocity
at the resonance radius. Then, for our toy magnetosphere
model with a simple dipole magnetic field profile [Eqs. (14)
and (15)], a parameter set (B 0 ¼ 1015 G, ma ¼ 50 μeV,
P¼ 10 s, g ¼ 5 × 10−11 GeV−1, r0 ¼ 10 km, M ¼
1.5Msun) satisfies the conditions for the adiabatic resonance
conditions with Sγ ∼ 0.51μJy. This can exceed the estimated
minimum required flux Smin ∼ 0.48μJy for the SKA1 and
Smin ∼ 0.016Jy for the SKA2 with 100 hour observation
time, wherewe assumed the optimized band width matching
the signal width ΔB ¼ Δν. This simple parameter set
examplewouldwork as an existence proof for themotivation
to seek a potential radio telescope probe of the adiabatic
resonant conversion of axions. Even though the further
parameter search with more detailed astrophysical model
setups is left for future work, we have a few comments
regarding the astrophysical uncertainties involved in our
estimation before concluding our work. The measurements
of the neutron star radiation in the different wavebands
have been fitted well by assuming a magnetic field profile
more complicated than a simple vacuum dipole profile

(e.g., twisted magnetosphere) and a plasma charge density
larger (e.g., a few orders of magnitude larger) than the
classical Goldreich-Julian value [62,71–77]. Such an
enhancement in the plasma density would increase the
resonance radius and affect the adiabaticity condition and
the photon flux estimation. In addition to the DM velocities
and velocity dispersions which can affect our photon flux
estimation, the galactic drift velocities of neutron stars are
also uncertain parameters whose velocity distribution does
not follow a simple Gaussian-like distribution and spans in a
wide range (typically Oð100–500Þ km=s with a significant
fraction (∼Oð10Þ%) of theneutron star populationhaving the
velocity exceeding 1000 km=s) [78]. Such variations in the
relative velocity between a neutron star and the axions can
affect the photon flux estimation too. A more detailed study
taking into account such astrophysical uncertainties and the
numerical analysis for our adiabatic resonance conversion
scenario along with the extension of our scenario to the one
including the nonadiabatic axion-photon conversion are left
for our future work.
Let us here also briefly comment on the comparison of our

scenario with the other relevant works. The conditions of the
complete conversion of axions into photons were first
studied in [17], which considered the relativistic axions
with the X-ray energy range, in contrast to the radio range in
our scenario, and hence could not realize the sufficient
adiabaticity due to the QED effect. Our CDM axion scenario
is also in contrast to the resonant conversion scenarios where
only the partial axion-photon conversion, hence with a
smaller conversion probability compared with the complete
conversion scenarios, occurs due to the insufficient adiaba-
ticity and/or coherence. Such a partial conversion scenario
would relax the bounds on the model parameters and would
be applicable for a larger sample of the neutron stars, but one
needs to require some way to compensate a smaller con-
version probability to detect the axion signals by the radio
telescopes such as a large dark matter density near the
neutron star (e.g., the dark matter density enhancement
factor of Oð1010Þ with respect to the local density in the
solar neighborhood [79]).3 How the model parameters are
affected by the astrophysical uncertainties would differ
depending on the scenarios too. For instance, for the partial
conversion scenarios, a smaller g would become viable if we
allow a bigger DM density enhancement because a bigger
dark matter density (to which the photon flux is proportional)
could compensate for a smaller conversion probability. On
the other hand, for the complete conversion scenario, in

3Reference [79] assumes the signal bandwidth broadening of
order the DM velocity squared, in contrast to ours and the other
literature which take account of a more dominant line width linear
in the velocity (e.g., from the Doppler broadening effect). This
can result in the overestimation of the signal flux by three to four
orders of magnitude and we quoted here the required dark matter
density enhancement factor bigger than their adopted value
taking account of this correction.
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0.2–400 μeV [50–52]. The current axion search experi-
mental upper bounds on the axion-photon coupling corre-
sponding to this radio telescope frequency range are
g < 6.6× 10−11 GeV−1, which comes from the helioscope
experiment and also from the energy loss rate enhancement
of the horizontal branch stars of global clusters through the
Primakoff effect [23,53]. The haloscope (microwave cav-
ity) experiments give even tighter bounds for some limited
axion mass ranges. For instance, g≲ 10−15 GeV−1 for the
axion mass of 2–3.5 μeV and g≲ 10−13GeV−1 for the
axion mass of 4.5–10 μeV [19,21,22,24,54]. The exclusive
parameter search for our study on the radio telescope probe
for axions is beyond the scope of this paper partly because
of the astrophysical uncertainties in the magnetosphere
modeling and a wide range of the possible parameters for
the neutron stars (e.g., the spin period can vary in a wide
range (Oð10−3–103Þ sec) and the magnetic field can reach
up to 1015 G) [55–63]). Dark matter properties such as the
dark matter velocity dispersion in the neighborhood of a
neutron star remain to be clarified too. The dark matter
density in the vicinity of a neutron star does not have to be
same as that in the solar neighborhood ρa ∼ 0.3GeV=cm3.
For instance, in the region where the neutron star
distribution peaks in our galaxy (∼ a few kpc from the
galactic center), the density can well be enhanced by more
than an order of magnitude (e.g., ρa ∼Oð10–100Þ×
0.3GeV=cm3) and could be even bigger ρa ∼Oð104Þ ×
0.3GeV=cm3 around the neutron star found near the
galactic center due to a dark matter spike [64–70].
For a trial parameter set, let us adopt the DM velocity and

the dispersion velocity of order v0 ∼ vdis ∼ 10−3and a factor
10 enhancement of the local DM density compared with the
value near the earth ρa ∼3GeV=cm3. Let us also assume a
neutron star of order a kpc away from us and take the DM
velocity in the resonance region of order the escape velocity
at the resonance radius. Then, for our toy magnetosphere
model with a simple dipole magnetic field profile [Eqs. (14)
and (15)], a parameter set (B 0 ¼ 1015 G, ma ¼ 50 μeV,
P¼ 10 s, g ¼ 5 × 10−11 GeV−1, r0 ¼ 10 km, M ¼
1.5Msun) satisfies the conditions for the adiabatic resonance
conditions with Sγ ∼ 0.51μJy. This can exceed the estimated
minimum required flux Smin ∼ 0.48μJy for the SKA1 and
Smin ∼ 0.016Jy for the SKA2 with 100 hour observation
time, wherewe assumed the optimized band width matching
the signal width ΔB ¼ Δν. This simple parameter set
examplewouldwork as an existence proof for themotivation
to seek a potential radio telescope probe of the adiabatic
resonant conversion of axions. Even though the further
parameter search with more detailed astrophysical model
setups is left for future work, we have a few comments
regarding the astrophysical uncertainties involved in our
estimation before concluding our work. The measurements
of the neutron star radiation in the different wavebands
have been fitted well by assuming a magnetic field profile
more complicated than a simple vacuum dipole profile

(e.g., twisted magnetosphere) and a plasma charge density
larger (e.g., a few orders of magnitude larger) than the
classical Goldreich-Julian value [62,71–77]. Such an
enhancement in the plasma density would increase the
resonance radius and affect the adiabaticity condition and
the photon flux estimation. In addition to the DM velocities
and velocity dispersions which can affect our photon flux
estimation, the galactic drift velocities of neutron stars are
also uncertain parameters whose velocity distribution does
not follow a simple Gaussian-like distribution and spans in a
wide range (typically Oð100–500Þ km=s with a significant
fraction (∼Oð10Þ%) of theneutron star populationhaving the
velocity exceeding 1000 km=s) [78]. Such variations in the
relative velocity between a neutron star and the axions can
affect the photon flux estimation too. A more detailed study
taking into account such astrophysical uncertainties and the
numerical analysis for our adiabatic resonance conversion
scenario along with the extension of our scenario to the one
including the nonadiabatic axion-photon conversion are left
for our future work.
Let us here also briefly comment on the comparison of our

scenario with the other relevant works. The conditions of the
complete conversion of axions into photons were first
studied in [17], which considered the relativistic axions
with the X-ray energy range, in contrast to the radio range in
our scenario, and hence could not realize the sufficient
adiabaticity due to the QED effect. Our CDM axion scenario
is also in contrast to the resonant conversion scenarios where
only the partial axion-photon conversion, hence with a
smaller conversion probability compared with the complete
conversion scenarios, occurs due to the insufficient adiaba-
ticity and/or coherence. Such a partial conversion scenario
would relax the bounds on the model parameters and would
be applicable for a larger sample of the neutron stars, but one
needs to require some way to compensate a smaller con-
version probability to detect the axion signals by the radio
telescopes such as a large dark matter density near the
neutron star (e.g., the dark matter density enhancement
factor of Oð1010Þ with respect to the local density in the
solar neighborhood [79]).3 How the model parameters are
affected by the astrophysical uncertainties would differ
depending on the scenarios too. For instance, for the partial
conversion scenarios, a smaller g would become viable if we
allow a bigger DM density enhancement because a bigger
dark matter density (to which the photon flux is proportional)
could compensate for a smaller conversion probability. On
the other hand, for the complete conversion scenario, in

3Reference [79] assumes the signal bandwidth broadening of
order the DM velocity squared, in contrast to ours and the other
literature which take account of a more dominant line width linear
in the velocity (e.g., from the Doppler broadening effect). This
can result in the overestimation of the signal flux by three to four
orders of magnitude and we quoted here the required dark matter
density enhancement factor bigger than their adopted value
taking account of this correction.
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0.2–400 μeV [50–52]. The current axion search experi-
mental upper bounds on the axion-photon coupling corre-
sponding to this radio telescope frequency range are
g < 6.6× 10−11 GeV−1, which comes from the helioscope
experiment and also from the energy loss rate enhancement
of the horizontal branch stars of global clusters through the
Primakoff effect [23,53]. The haloscope (microwave cav-
ity) experiments give even tighter bounds for some limited
axion mass ranges. For instance, g≲ 10−15 GeV−1 for the
axion mass of 2–3.5 μeV and g≲ 10−13GeV−1 for the
axion mass of 4.5–10 μeV [19,21,22,24,54]. The exclusive
parameter search for our study on the radio telescope probe
for axions is beyond the scope of this paper partly because
of the astrophysical uncertainties in the magnetosphere
modeling and a wide range of the possible parameters for
the neutron stars (e.g., the spin period can vary in a wide
range (Oð10−3–103Þ sec) and the magnetic field can reach
up to 1015 G) [55–63]). Dark matter properties such as the
dark matter velocity dispersion in the neighborhood of a
neutron star remain to be clarified too. The dark matter
density in the vicinity of a neutron star does not have to be
same as that in the solar neighborhood ρa ∼ 0.3GeV=cm3.
For instance, in the region where the neutron star
distribution peaks in our galaxy (∼ a few kpc from the
galactic center), the density can well be enhanced by more
than an order of magnitude (e.g., ρa ∼Oð10–100Þ×
0.3GeV=cm3) and could be even bigger ρa ∼Oð104Þ ×
0.3GeV=cm3 around the neutron star found near the
galactic center due to a dark matter spike [64–70].
For a trial parameter set, let us adopt the DM velocity and

the dispersion velocity of order v0 ∼ vdis ∼ 10−3and a factor
10 enhancement of the local DM density compared with the
value near the earth ρa ∼3GeV=cm3. Let us also assume a
neutron star of order a kpc away from us and take the DM
velocity in the resonance region of order the escape velocity
at the resonance radius. Then, for our toy magnetosphere
model with a simple dipole magnetic field profile [Eqs. (14)
and (15)], a parameter set (B 0 ¼ 1015 G, ma ¼ 50 μeV,
P¼ 10 s, g ¼ 5 × 10−11 GeV−1, r0 ¼ 10 km, M ¼
1.5Msun) satisfies the conditions for the adiabatic resonance
conditions with Sγ ∼ 0.51μJy. This can exceed the estimated
minimum required flux Smin ∼ 0.48μJy for the SKA1 and
Smin ∼ 0.016Jy for the SKA2 with 100 hour observation
time, wherewe assumed the optimized band width matching
the signal width ΔB ¼ Δν. This simple parameter set
examplewouldwork as an existence proof for themotivation
to seek a potential radio telescope probe of the adiabatic
resonant conversion of axions. Even though the further
parameter search with more detailed astrophysical model
setups is left for future work, we have a few comments
regarding the astrophysical uncertainties involved in our
estimation before concluding our work. The measurements
of the neutron star radiation in the different wavebands
have been fitted well by assuming a magnetic field profile
more complicated than a simple vacuum dipole profile

(e.g., twisted magnetosphere) and a plasma charge density
larger (e.g., a few orders of magnitude larger) than the
classical Goldreich-Julian value [62,71–77]. Such an
enhancement in the plasma density would increase the
resonance radius and affect the adiabaticity condition and
the photon flux estimation. In addition to the DM velocities
and velocity dispersions which can affect our photon flux
estimation, the galactic drift velocities of neutron stars are
also uncertain parameters whose velocity distribution does
not follow a simple Gaussian-like distribution and spans in a
wide range (typically Oð100–500Þ km=s with a significant
fraction (∼Oð10Þ%) of theneutron star populationhaving the
velocity exceeding 1000 km=s) [78]. Such variations in the
relative velocity between a neutron star and the axions can
affect the photon flux estimation too. A more detailed study
taking into account such astrophysical uncertainties and the
numerical analysis for our adiabatic resonance conversion
scenario along with the extension of our scenario to the one
including the nonadiabatic axion-photon conversion are left
for our future work.
Let us here also briefly comment on the comparison of our

scenario with the other relevant works. The conditions of the
complete conversion of axions into photons were first
studied in [17], which considered the relativistic axions
with the X-ray energy range, in contrast to the radio range in
our scenario, and hence could not realize the sufficient
adiabaticity due to the QED effect. Our CDM axion scenario
is also in contrast to the resonant conversion scenarios where
only the partial axion-photon conversion, hence with a
smaller conversion probability compared with the complete
conversion scenarios, occurs due to the insufficient adiaba-
ticity and/or coherence. Such a partial conversion scenario
would relax the bounds on the model parameters and would
be applicable for a larger sample of the neutron stars, but one
needs to require some way to compensate a smaller con-
version probability to detect the axion signals by the radio
telescopes such as a large dark matter density near the
neutron star (e.g., the dark matter density enhancement
factor of Oð1010Þ with respect to the local density in the
solar neighborhood [79]).3 How the model parameters are
affected by the astrophysical uncertainties would differ
depending on the scenarios too. For instance, for the partial
conversion scenarios, a smaller g would become viable if we
allow a bigger DM density enhancement because a bigger
dark matter density (to which the photon flux is proportional)
could compensate for a smaller conversion probability. On
the other hand, for the complete conversion scenario, in

3Reference [79] assumes the signal bandwidth broadening of
order the DM velocity squared, in contrast to ours and the other
literature which take account of a more dominant line width linear
in the velocity (e.g., from the Doppler broadening effect). This
can result in the overestimation of the signal flux by three to four
orders of magnitude and we quoted here the required dark matter
density enhancement factor bigger than their adopted value
taking account of this correction.
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Radio Signal

, d = 1kpc
Signal: For a trial parameter set, 

satisfies the constraints of the adiabatic resonance 
conditions and the existed axion search constraints 
produces the signal Sγ ∼0.51 μJy. 
Sensitivity: 

SKA-like experiment can probe the axion DM and the axion 
mass which corresponds to peak frequency.

More detailed study taking into account astrophysical 
uncertainties and more precise numerical analysis is still 
working in progress.

Radio Signal

for the SKA2 with 100 hour observation time
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1. Astrophysical uncertainties:the magnetic profile, DM 
density and distribution, the velocity dispersion, the plasma 
mass, background including optimized bandwidth 
2. There are more and more detailed and comprehensive 
studies after our first rough estimation on the radio signal: 

  Comments on the radio probe of axion dark DM 

   arXiv:1804.03145 by Anson Hook, Yonatan Kahn, Benjamin R. Safdi, Zhiquan Sun 
where they consider more details. They also consider  extremely high DM  

density around the neutron star, thus the signal is more stronger.
arXiv:1811.01020 by Benjamin R. Safdi, Zhiquan Sun, Alexander Y. Chen 
arXiv:1905.04686,Thomas, D.P.Edwards,Marco Chianese, Bradley J. Kavanagh,  

   Samaya M. Nissanke, Christoph Weniger, where they consider multi-messenger of   
    axion DM detection. Namely, using LISA to detect the DM density 

   around the neutron star, which can determine the radio strength detected by SKA.

3. Recently, GBT already have some data on the observation of neutron star, 
 and Safdi’s group is doing the analysis of the data to get some constraints. 

4. More precise study are needed …



James H. Buckley, P. S. Bhupal Dev, Francesc Ferrer, FPH, arXiv:2004.06486

II.FRB-Axion star correlation



The fact that the energy released by FRBs is close 
to                , which is the typical axion star mass, and 
that their frequency (several hundred MHz to several 
GHz) coincides with that expected from    eV axion 
particles, motivates us to further explore whether the 
axion-FRB connection can be made viable in a pulsar 
magnetosphere and tested with the future data.

Axion or axion-like particle motivated from strong CP 
problem or string theory is still one of the most attractive 
and promising DM candidate. 

A collection of axions can condense into a bound Bose-
Einstein condensate called an axion star.  The typical 
axion star mass is             

II.FRB-Axion star correlation
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In this work, we assume that dense axion stars with 
a mass around               can survive to the present, and 
have a chance to encounter a neutron star.  The 
radius of a dense axion star is 

Dilute axion star is balanced by kinetic pressure 
and self-gravity, with the following radius

Axion star-Neutron star encounter
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(several hundred MHz to several GHz) coincides with
that expected from µeV axion particles, motivates us to
further explore whether the axion-FRB connection can
be made viable in a neutron star environment and tested
with the future data.1

In this letter, we propose a new explanation for FRBs
based on the resonant axion-to-photon conversion that
takes place when a dense axion star passes through the
resonant region in the magnetosphere of a neutron star,
as shown in Fig. 1. We will mainly focus on non-repeating
FRBs in this work, since repeating FRBs may correspond
to a di↵erent source class [43]. So far, more than 60 non-
repeating FRBs have been observed [44, 45] mainly by
Parkes, ASKAP, and UTMOST radio telescopes. Our ex-
planation of the non-repeating FRB signals roughly from
800 MHz to 1.4 GHz involves dense stars made of axions
with mass of about 10 µeV. By the Primako↵ process,
the huge number of axions in the dense axion star can
be converted to radio signals within the strong magnetic
field through resonant e↵ect in the resonant conversion
region of the magnetosphere of a pulsar. In the magneto-
sphere, the photon obtains a position-dependent e↵ective
plasma mass. In the resonant region, where the photon
mass equals the axion mass, the conversion probability
is large enough to produce the radiation power of the
observed FRBs. Thus, the highest frequency of the emit-
ted radio signal is determined by the axion mass, while
cosmological redshifts and Doppler shifts could provide
the required bandwidth needed to reproduce observations
over a wide frequency range. Similarly, the total energy
released is determined by the axion star mass and the
conversion probability.

II. AXION STAR – PULSAR ENCOUNTER

The properties of an axion star depend on its mass
Ma, and on the axion parameters, namely, mass ma and
decay constant fa. Dilute axion stars, supported by self-
gravity, have a radius [46]

Rdilute
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⇠= 270
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ma
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where GN is Newton’s constant of gravitation. Hence,
the typical radius of a dilute axion star is about sev-
eral hundred kilometers for stars in the mass range
Ma ⇠ 10�14

� 10�12M�. The existence of a dense star
branch was first proposed in Ref. [47], where solutions
supported by self-interactions were described using non-
relativistic field theory. Nevertheless, it was pointed out
in Ref. [48] that such stars reach & O(1) field values
in the core. The axions are then relativistic and the

1
See Refs. [41, 42] for alternative proposals not involving neutron

stars.

analysis in Ref. [47] is inconsistent (see also Refs. [49–
51]). Since gravity is negligible inside such dense stars,
their profiles can instead be found as solutions of a Sine-
Gordon type equation. One is thus led to the natural
identification of stars in the dense branch with oscillons.
In contrast to the natural expectation that localized, fi-
nite energy configurations of the axion field decay within
⌧ ⇠ 1/ma ⇠ 6⇥10�11 (10 µeV/ma) s, oscillons can lastO
(100-1000) oscillations [52–56], before disappearing into
a burst of relativistic axions [23]. For a QCD axion in the
mass range of interest here, these timescales still fall short
of being of cosmological relevance. Nevertheless, flatter
potentials at large field values in well motivated ALP
models have been shown to feature much longer-lived os-
cillons, ⌧ >

�
108�9

�
/ma, and for plateau-like potentials

only lower bounds on their lifetime are known [57]. Sta-
ble dense profiles are also possible when fa & 0.1MPl [58].
On the other hand, axion stars could have been created
much after matter domination. Both the shape of the
potential and the initial field amplitude of the axion at
the start of the oscillations can trigger parametric am-
plification of axion fluctuations even if the PQ symmetry
is broken before inflation [57, 59]. Given that oscillons
are attractor solutions, it cannot be excluded that dense
axion configurations are being generated and are present
in astrophysical settings such as pulsars [60]. We will as-
sume their existence in the following discussion. In this
work, we assume that dense axion stars with a a mass
around 10�13M� can survive to the present, and have a
chance to encounter a neutron star. If heavier stars are
stable, these would give a stronger signal.
For dense axion stars, the radius can be approximated

as [47]

Rdense
a ⇠ 0.47
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(with ga�� being the axion-photon coupling), roughly of
order meter or even smaller, which makes it easy to avoid
tidal disruption.
It is worth noticing that tidal e↵ects become important

when the distance of the axion star to the center of the
neutron star approaches the so called Roche limit:

rt = Ra

✓
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, (2)

where MNS is the neutron star mass (typically in the
range of 1.4M�–3M�). A gravitationally bound object
approaching a star closer than this radius will be dis-
rupted by tidal e↵ects [35, 41]. For a 100 km dilute axion
star, the Roche limit is about 106 km, so it will be de-
stroyed long before it gets to the magnetosphere and the
resonant conversion region of the neutron star (which is
only about a thousand km from the neutron star). Tidal
disruption may quickly rip apart the dilute axion star,
producing a stream of axion debris that would then be
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(several hundred MHz to several GHz) coincides with
that expected from µeV axion particles, motivates us to
further explore whether the axion-FRB connection can
be made viable in a neutron star environment and tested
with the future data.1

In this letter, we propose a new explanation for FRBs
based on the resonant axion-to-photon conversion that
takes place when a dense axion star passes through the
resonant region in the magnetosphere of a neutron star,
as shown in Fig. 1. We will mainly focus on non-repeating
FRBs in this work, since repeating FRBs may correspond
to a di↵erent source class [43]. So far, more than 60 non-
repeating FRBs have been observed [44, 45] mainly by
Parkes, ASKAP, and UTMOST radio telescopes. Our ex-
planation of the non-repeating FRB signals roughly from
800 MHz to 1.4 GHz involves dense stars made of axions
with mass of about 10 µeV. By the Primako↵ process,
the huge number of axions in the dense axion star can
be converted to radio signals within the strong magnetic
field through resonant e↵ect in the resonant conversion
region of the magnetosphere of a pulsar. In the magneto-
sphere, the photon obtains a position-dependent e↵ective
plasma mass. In the resonant region, where the photon
mass equals the axion mass, the conversion probability
is large enough to produce the radiation power of the
observed FRBs. Thus, the highest frequency of the emit-
ted radio signal is determined by the axion mass, while
cosmological redshifts and Doppler shifts could provide
the required bandwidth needed to reproduce observations
over a wide frequency range. Similarly, the total energy
released is determined by the axion star mass and the
conversion probability.
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analysis in Ref. [47] is inconsistent (see also Refs. [49–
51]). Since gravity is negligible inside such dense stars,
their profiles can instead be found as solutions of a Sine-
Gordon type equation. One is thus led to the natural
identification of stars in the dense branch with oscillons.
In contrast to the natural expectation that localized, fi-
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ble dense profiles are also possible when fa & 0.1MPl [58].
On the other hand, axion stars could have been created
much after matter domination. Both the shape of the
potential and the initial field amplitude of the axion at
the start of the oscillations can trigger parametric am-
plification of axion fluctuations even if the PQ symmetry
is broken before inflation [57, 59]. Given that oscillons
are attractor solutions, it cannot be excluded that dense
axion configurations are being generated and are present
in astrophysical settings such as pulsars [60]. We will as-
sume their existence in the following discussion. In this
work, we assume that dense axion stars with a a mass
around 10�13M� can survive to the present, and have a
chance to encounter a neutron star. If heavier stars are
stable, these would give a stronger signal.
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range of 1.4M�–3M�). A gravitationally bound object
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A gravitationally bound object approaching a star 
closer than Roche limit will be disrupted by tidal effects. 
The Roche limit is

Tidal effects
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further explore whether the axion-FRB connection can
be made viable in a neutron star environment and tested
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takes place when a dense axion star passes through the
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ted radio signal is determined by the axion mass, while
cosmological redshifts and Doppler shifts could provide
the required bandwidth needed to reproduce observations
over a wide frequency range. Similarly, the total energy
released is determined by the axion star mass and the
conversion probability.

II. AXION STAR – PULSAR ENCOUNTER

The properties of an axion star depend on its mass
Ma, and on the axion parameters, namely, mass ma and
decay constant fa. Dilute axion stars, supported by self-
gravity, have a radius [46]

Rdilute
a ⇠

1

GNMam2
a

⇠= 270

✓
10 µeV

ma

◆2 ✓10�12M�
Ma

◆
km,

where GN is Newton’s constant of gravitation. Hence,
the typical radius of a dilute axion star is about sev-
eral hundred kilometers for stars in the mass range
Ma ⇠ 10�14

� 10�12M�. The existence of a dense star
branch was first proposed in Ref. [47], where solutions
supported by self-interactions were described using non-
relativistic field theory. Nevertheless, it was pointed out
in Ref. [48] that such stars reach & O(1) field values
in the core. The axions are then relativistic and the

1
See Refs. [41, 42] for alternative proposals not involving neutron

stars.

analysis in Ref. [47] is inconsistent (see also Refs. [49–
51]). Since gravity is negligible inside such dense stars,
their profiles can instead be found as solutions of a Sine-
Gordon type equation. One is thus led to the natural
identification of stars in the dense branch with oscillons.
In contrast to the natural expectation that localized, fi-
nite energy configurations of the axion field decay within
⌧ ⇠ 1/ma ⇠ 6⇥10�11 (10 µeV/ma) s, oscillons can lastO
(100-1000) oscillations [52–56], before disappearing into
a burst of relativistic axions [23]. For a QCD axion in the
mass range of interest here, these timescales still fall short
of being of cosmological relevance. Nevertheless, flatter
potentials at large field values in well motivated ALP
models have been shown to feature much longer-lived os-
cillons, ⌧ >

�
108�9

�
/ma, and for plateau-like potentials

only lower bounds on their lifetime are known [57]. Sta-
ble dense profiles are also possible when fa & 0.1MPl [58].
On the other hand, axion stars could have been created
much after matter domination. Both the shape of the
potential and the initial field amplitude of the axion at
the start of the oscillations can trigger parametric am-
plification of axion fluctuations even if the PQ symmetry
is broken before inflation [57, 59]. Given that oscillons
are attractor solutions, it cannot be excluded that dense
axion configurations are being generated and are present
in astrophysical settings such as pulsars [60]. We will as-
sume their existence in the following discussion. In this
work, we assume that dense axion stars with a a mass
around 10�13M� can survive to the present, and have a
chance to encounter a neutron star. If heavier stars are
stable, these would give a stronger signal.
For dense axion stars, the radius can be approximated

as [47]

Rdense
a ⇠ 0.47

q
ga�� ⇥ 1013 GeV

⇥

r
10 µeV

ma

✓
Ma

10�13M�

◆0.3

m, (1)

(with ga�� being the axion-photon coupling), roughly of
order meter or even smaller, which makes it easy to avoid
tidal disruption.
It is worth noticing that tidal e↵ects become important

when the distance of the axion star to the center of the
neutron star approaches the so called Roche limit:

rt = Ra

✓
2MNS

Ma

◆1/3

, (2)

where MNS is the neutron star mass (typically in the
range of 1.4M�–3M�). A gravitationally bound object
approaching a star closer than this radius will be dis-
rupted by tidal e↵ects [35, 41]. For a 100 km dilute axion
star, the Roche limit is about 106 km, so it will be de-
stroyed long before it gets to the magnetosphere and the
resonant conversion region of the neutron star (which is
only about a thousand km from the neutron star). Tidal
disruption may quickly rip apart the dilute axion star,
producing a stream of axion debris that would then be

 Tidal disruption may quickly rip apart the dilute axion 
star, producing a stream of axion debris, long before a dilute 
axion star enters the magnetosphere of neutron star. For100 
km dilute axion, the Roche limit is about       km. 106
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For a dense axion star, the radius is smaller 
 than 1m and the Roche limit is below 10 km.  
Thus, a dense axion star can reach the resonant     

conversion region without being tidally ripped.

3

FIG. 1. Schematic diagram of the proposed FRB signal from dense axion stars. When a dense axion star passes through the
resonant conversion region in the magnetosphere of a neutron star (where the e↵ective photon mass equals the axion mass),
powerful transient radio signals can be produced in the strong external magnetic field through the Primako↵ process.

swallowed by the neutron star. It is conceivable that this
subsequent interaction of the tidal debris with the neu-
tron star leads to a multiplicity of radio signals, similar
to repeating FRBs (mostly observed by CHIME), and
this possibility deserves further investigation.

For a dense axion star, however, the radius is smaller
than a meter and the Roche limit is below 10 km. Thus, a
dense axion star can reach the resonant conversion region
without being tidally ripped. Tidal forces will certainly
stretch the axion star in the radial direction and compress
it in the transverse direction. Since the resonant conver-
sion region is located over a hundred Schwarzschild radii
from the neutron star, we can use Newtonian gravity to
estimate the tidal deformation ratio:

�Ra

Ra
=

9MNS

8⇡⇢ASr3
(3)

where ⇢AS is the axion star density and r is its dis-
tance from the neutron star. For typical values, the
tidal deformation e↵ect is negligible for a dense axion
star. For example, when a 10�13M� dense axion star
approaches a 1.5M� neutron star at a distance of 100
km, �Ra/Ra ⇠ 10�3.

The axion mass should lie around the observed FRB
frequency, roughly from several µeV to several tens of
µeV. Non-repeating FRBs can be produced when an ax-
ion star enters the resonant conversion region of the neu-
tron star magnetosphere, and overlaps with this region
for about several milliseconds on its inspiral fall onto the
neutron star. The trajectory is schematically shown in
Fig. 1. By radiating the radio signal, the axion star loses

energy and shrinks to smaller radii. As we argue below,
between 0.1% to 100% of the axion star energy can be
released in the form of FRBs lasting several milliseconds.

III. FRBS FROM RESONANT AXION TO
PHOTON CONVERSION

When a dense axion star enters the magnetosphere,
it can produce radio signals from axion conversion into
photons. We begin our discussion with the axion-photon
interaction term

L = �
ga��
4

aFµ⌫ F̃µ⌫ = ga��a ~E · ~B , (4)

where a represents the axion field, Fµ⌫ is the elec-
tromagnetic field strength, and F̃µ⌫ its dual. Several
observations constrain the coupling ga�� to be below
ga��  10�13 GeV�1 for axion masses in the range be-
tween about 4 µeV and 16 µeV [61, 62]. This interaction
allows the conversion of an axion to a photon in an exter-
nal magnetic field and vice versa. Neutron star magne-
tospheres, featuring the strongest magnetic fields known
in the Universe, are one of the best candidates to dis-
play this process. Due to the extremely small coupling
ga�� , however, the conversion probability is expected to
be very small even in the magnetosphere of neutron star.
On the other hand, the conversion rate can be signifi-
cantly enhanced in the resonant conversion region of the
magnetosphere, where the plasma mass equals the axion
mass, as shown in Fig. 1. Indeed, the photon acquires a



nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for

the adiabatic resonant conversion of the CDM axion into
photons.

III. THE ADIABATIC RESONANT CONVERSION
OF AXIONS INTO PHOTONS

The resonance can occur when the maximum mixing
angle is realized for m2

γðrÞ ≈m2
a. The photon mass or the

plasma mass depends on the plasma density. The realistic
modeling of the magnetosphere of a neutron star is beyond
the scope of this paper, and we simply assume a simple
dipole magnetic field with a magnitude at the neutron star
surface B 0 and the charged plasma density obeying the
Goldreich-Julian density,

B ðrÞ ¼ B 0

!
r
r0

"−3
; ð14Þ

and

m2
γðrÞ ¼ 4πα

neðrÞ
me

;

neðrÞ ¼ nGJe ðrÞ ¼ 7 × 10−2
1s
P
B ðrÞ
1 G

1

cm3
; ð15Þ

where r0 is the neutron star radius. The resonance radius is
defined at the level crossing point m2

γðrresÞ ¼ m2
a given by

!
rres
r0

"−3
≈ 10−3

!
ma

μeV

"
2
!
1014 G
B 0

"!
P

10 sec

"
: ð16Þ

At the resonance, jm2
γ −m2

aj ≪ gB ω andm2
1;2 ≈m2

a $ gB ω.
From the mixing angle given in Eq. (10),

sin 2θ̃ ¼
ð2gB ω=m2

γÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4g2B 2ω2=m4

γÞ þ ð1 − ðma=mγÞ2Þ2
q

≡ c1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ ð1 − fðrÞÞ2

p ; ð17Þ

where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,

δr ∼ δfjdf=drj−1res ∼ 2c1jdf=drj−1res; ð18Þ

is sufficiently bigger than the oscillation length scale at the
resonance,

losc ¼
2π

jk1 − k2jres
; ð19Þ

δr > losc hence requires

jd ln f=drj−1res > 650½m'
!
ma

μeV

"
3
!
vres
10−1

"!
1=1010 GeV

g

"
2

×
!
1012 G
B ðrresÞ

"
2
!
μeV
ω

"
2

: ð20Þ

The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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Here, we choose the simplest electron density distribution and magnetic field 
configuration to clearly see the physics process.  

Thus, the photon mass is position r dependent, and within some region the photon  
mass is close to the axion mass.

4

mass due to the plasma e↵ects in the magnetosphere (see
e.g. [63] for a textbook discussion):

m�(r) = !p =

s
e2ne

me
=

r
ne

7.3⇥ 108 cm�3
µeV , (5)

where ne(r) is the local electron density at a distance r
from the center of the neutron star. For simplicity, we
have used the Goldreich-Julian distribution [64]:

ne(r) = 7⇥ 10�2 1 s

P

B(r)

1 G
cm�3, (6)

where P is the rotation period of the neutron star (from
milliseconds to several tens of seconds). As for the mag-
netic field B(r), we use the dipole approximation as the
leading order approximation:

B(r) = B0

⇣rNS

r

⌘3
(7)

with B0 being the magnetic field strength at the surface
of the neutron star (r = rNS), which can reach 1015 G for
a magnetar [65]. The typical scale for the magnetosphere
or the Alfven radius is of order 100 rNS ⇠ 1000 km.

In the resonant conversion region, the photon e↵ec-
tively has almost the same mass as the axion due to
plasma e↵ects:

!2 = k2a +m2
a ⇡ m2

�(rc), (8)

where ! is the axion-photon oscillation frequency. The
mass degeneracy leads to maximal mixing and greatly
enhances the conversion probability. The critical radius
rc for the resonant conversion region is obtained by en-
forcing the maximal mixing condition Eq. (8):

✓
rNS

rc

◆3

⇠

✓
ma

µeV

◆2 1010 G

B0

P

1 s
. (9)

At this distance, an infalling axion star will be moving
with typical speed vc =

p
2GNMNS/rc ⇠ 0.2 if rc ⇠

10 rNS.
When the dense axion star approaches the distance

rc, resonant axion to photon conversion can occur. The
conversion probability can reach ⇠ 0.1, if the conver-
sion proceeds adiabatically. However, for most neutron
stars the conversion develops in the non-adiabatic reso-
nant regime [19], and we work under this assumption.
The conversion rate is still much larger than in the non-
resonant case, and it can be obtained from the well-
known Landau-Zener probability:

Pa!� = 1� e�2⇡� . (10)

The non-adiabatic limit corresponds to small �, and we
have Pa!� ⇡ 2⇡� with

� =
(ga��!B0)

2 /2k̄��d!2
p/dr

��

�����
r=rc

. (11)

Here, k̄ ⌘

q
!2 � (m2

a + !2
p)/2 is the axion momentum

in the diagonalized basis of the mixing equations. Tak-
ing the dipole configuration for the magnetic field and
the Goldreich-Julian electron density distribution in the
magnetosphere of the neutron star, we can derive

d!2
p

dr

�����
r=rc

=
3!2

p

r

�����
r=rc

. (12)

We note that for typical parameters, close to the neu-
tron star surface r < rc, the e↵ective photon mass is
larger than the axion mass. In this case, the emission
of a photon is kinematically suppressed, impacting the
viability of the mechanisms proposed in Refs. [33, 36].
As a dense axion star moves through the resonant re-

gion, the conversion power is Ẇ = Pa!�dMa/dt with
dMa/dt ⇠ ⇡R2

a⇢Avc and ⇢A = Ma/(4⇡R3
a/3). Thus, we

obtain the power:

Ẇ ⇠

✓
Ma

10�13M�

◆�
107 ⇥ Pa!�

� �
1044 GeV · s�1

�
.

(13)
For the benchmark values B0 = 1014 G, ma = 10 µeV,
ga�� = 10�13 GeV�1, conversion in a typical 1.4M� pul-
sar rotating with P = 0.1 s occurs with Pa!� ⇡ 2⇥10�5

in the resonant region. Hence, to explain the typical out-
put associated to FRBs, Ẇ ⇠ 1044 GeV · s�1, it seems
natural to use a 10�13M� dense axion star.
The trajectory of the dense axion star is schematically

shown in Fig. 1. Once the dense axion star enters the res-
onant region, it moves in the resonant region with grad-
ually decreasing radius until it leaves the resonant region
or it evaporates. The star moves about 10 km (several
milliseconds) in the resonant region to produce enough
energy to account for the FRBs.
The density flux of the radio signal can be obtained as:

S =
Ẇ

4⇡d2�B
, (14)

where d is the source distance from the Earth and �B
is the bandwidth of the signal. To compare with current
data [44, 45], we rewrite this as:

EFRB

J
=

Fobs

Jy ·ms

�B

Hz

✓
d

m

◆2

⇥ 10�29(1 + z), (15)

where EFRB is the energy released in a FRB (in Joules), d
is the distance from the source to the radio telescope (in
meters), and z is the redshift. For non-repeating FRBs,
the released energy ranges from 1030 to 1033 J. The dis-
tance d varies from several hundred Mpc to several Gpc.
Since the spectral information of the FRBs is largely un-
known, the bandwidth �B is chosen as the bandwidth
of the radio telescope in current experiments [44, 45], i.e.
the range of frequencies the telescope can measure. The
fluence Fobs is the density flux S integrated over time.
For the benchmark values ma = 10 µeV, Ma =

10�13M�, ga�� = 10�13 GeV�1 we can naturally explain
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mass due to the plasma e↵ects in the magnetosphere (see
e.g. [63] for a textbook discussion):
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7.3⇥ 108 cm�3
µeV , (5)

where ne(r) is the local electron density at a distance r
from the center of the neutron star. For simplicity, we
have used the Goldreich-Julian distribution [64]:

ne(r) = 7⇥ 10�2 1 s

P

B(r)

1 G
cm�3, (6)

where P is the rotation period of the neutron star (from
milliseconds to several tens of seconds). As for the mag-
netic field B(r), we use the dipole approximation as the
leading order approximation:

B(r) = B0

⇣rNS

r

⌘3
(7)

with B0 being the magnetic field strength at the surface
of the neutron star (r = rNS), which can reach 1015 G for
a magnetar [65]. The typical scale for the magnetosphere
or the Alfven radius is of order 100 rNS ⇠ 1000 km.

In the resonant conversion region, the photon e↵ec-
tively has almost the same mass as the axion due to
plasma e↵ects:

!2 = k2a +m2
a ⇡ m2

�(rc), (8)

where ! is the axion-photon oscillation frequency. The
mass degeneracy leads to maximal mixing and greatly
enhances the conversion probability. The critical radius
rc for the resonant conversion region is obtained by en-
forcing the maximal mixing condition Eq. (8):
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At this distance, an infalling axion star will be moving
with typical speed vc =

p
2GNMNS/rc ⇠ 0.2 if rc ⇠

10 rNS.
When the dense axion star approaches the distance

rc, resonant axion to photon conversion can occur. The
conversion probability can reach ⇠ 0.1, if the conver-
sion proceeds adiabatically. However, for most neutron
stars the conversion develops in the non-adiabatic reso-
nant regime [19], and we work under this assumption.
The conversion rate is still much larger than in the non-
resonant case, and it can be obtained from the well-
known Landau-Zener probability:
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The non-adiabatic limit corresponds to small �, and we
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in the diagonalized basis of the mixing equations. Tak-
ing the dipole configuration for the magnetic field and
the Goldreich-Julian electron density distribution in the
magnetosphere of the neutron star, we can derive
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We note that for typical parameters, close to the neu-
tron star surface r < rc, the e↵ective photon mass is
larger than the axion mass. In this case, the emission
of a photon is kinematically suppressed, impacting the
viability of the mechanisms proposed in Refs. [33, 36].
As a dense axion star moves through the resonant re-

gion, the conversion power is Ẇ = Pa!�dMa/dt with
dMa/dt ⇠ ⇡R2

a⇢Avc and ⇢A = Ma/(4⇡R3
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For the benchmark values B0 = 1014 G, ma = 10 µeV,
ga�� = 10�13 GeV�1, conversion in a typical 1.4M� pul-
sar rotating with P = 0.1 s occurs with Pa!� ⇡ 2⇥10�5

in the resonant region. Hence, to explain the typical out-
put associated to FRBs, Ẇ ⇠ 1044 GeV · s�1, it seems
natural to use a 10�13M� dense axion star.
The trajectory of the dense axion star is schematically

shown in Fig. 1. Once the dense axion star enters the res-
onant region, it moves in the resonant region with grad-
ually decreasing radius until it leaves the resonant region
or it evaporates. The star moves about 10 km (several
milliseconds) in the resonant region to produce enough
energy to account for the FRBs.
The density flux of the radio signal can be obtained as:
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where d is the source distance from the Earth and �B
is the bandwidth of the signal. To compare with current
data [44, 45], we rewrite this as:
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where EFRB is the energy released in a FRB (in Joules), d
is the distance from the source to the radio telescope (in
meters), and z is the redshift. For non-repeating FRBs,
the released energy ranges from 1030 to 1033 J. The dis-
tance d varies from several hundred Mpc to several Gpc.
Since the spectral information of the FRBs is largely un-
known, the bandwidth �B is chosen as the bandwidth
of the radio telescope in current experiments [44, 45], i.e.
the range of frequencies the telescope can measure. The
fluence Fobs is the density flux S integrated over time.
For the benchmark values ma = 10 µeV, Ma =

10�13M�, ga�� = 10�13 GeV�1 we can naturally explain

Massive Photon: In the 
magnetosphere of the 
neutron star, photon 
obtains the effective mass 
in the magnetized plasma.  
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mass due to the plasma e↵ects in the magnetosphere (see
e.g. [63] for a textbook discussion):
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where ne(r) is the local electron density at a distance r
from the center of the neutron star. For simplicity, we
have used the Goldreich-Julian distribution [64]:

ne(r) = 7⇥ 10�2 1 s
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where P is the rotation period of the neutron star (from
milliseconds to several tens of seconds). As for the mag-
netic field B(r), we use the dipole approximation as the
leading order approximation:

B(r) = B0
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with B0 being the magnetic field strength at the surface
of the neutron star (r = rNS), which can reach 1015 G for
a magnetar [65]. The typical scale for the magnetosphere
or the Alfven radius is of order 100 rNS ⇠ 1000 km.

In the resonant conversion region, the photon e↵ec-
tively has almost the same mass as the axion due to
plasma e↵ects:

!2 = k2a +m2
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where ! is the axion-photon oscillation frequency. The
mass degeneracy leads to maximal mixing and greatly
enhances the conversion probability. The critical radius
rc for the resonant conversion region is obtained by en-
forcing the maximal mixing condition Eq. (8):
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At this distance, an infalling axion star will be moving
with typical speed vc =

p
2GNMNS/rc ⇠ 0.2 if rc ⇠

10 rNS.
When the dense axion star approaches the distance

rc, resonant axion to photon conversion can occur. The
conversion probability can reach ⇠ 0.1, if the conver-
sion proceeds adiabatically. However, for most neutron
stars the conversion develops in the non-adiabatic reso-
nant regime [19], and we work under this assumption.
The conversion rate is still much larger than in the non-
resonant case, and it can be obtained from the well-
known Landau-Zener probability:
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We note that for typical parameters, close to the neu-
tron star surface r < rc, the e↵ective photon mass is
larger than the axion mass. In this case, the emission
of a photon is kinematically suppressed, impacting the
viability of the mechanisms proposed in Refs. [33, 36].
As a dense axion star moves through the resonant re-

gion, the conversion power is Ẇ = Pa!�dMa/dt with
dMa/dt ⇠ ⇡R2

a⇢Avc and ⇢A = Ma/(4⇡R3
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For the benchmark values B0 = 1014 G, ma = 10 µeV,
ga�� = 10�13 GeV�1, conversion in a typical 1.4M� pul-
sar rotating with P = 0.1 s occurs with Pa!� ⇡ 2⇥10�5

in the resonant region. Hence, to explain the typical out-
put associated to FRBs, Ẇ ⇠ 1044 GeV · s�1, it seems
natural to use a 10�13M� dense axion star.
The trajectory of the dense axion star is schematically

shown in Fig. 1. Once the dense axion star enters the res-
onant region, it moves in the resonant region with grad-
ually decreasing radius until it leaves the resonant region
or it evaporates. The star moves about 10 km (several
milliseconds) in the resonant region to produce enough
energy to account for the FRBs.
The density flux of the radio signal can be obtained as:

S =
Ẇ
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, (14)

where d is the source distance from the Earth and �B
is the bandwidth of the signal. To compare with current
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where EFRB is the energy released in a FRB (in Joules), d
is the distance from the source to the radio telescope (in
meters), and z is the redshift. For non-repeating FRBs,
the released energy ranges from 1030 to 1033 J. The dis-
tance d varies from several hundred Mpc to several Gpc.
Since the spectral information of the FRBs is largely un-
known, the bandwidth �B is chosen as the bandwidth
of the radio telescope in current experiments [44, 45], i.e.
the range of frequencies the telescope can measure. The
fluence Fobs is the density flux S integrated over time.
For the benchmark values ma = 10 µeV, Ma =

10�13M�, ga�� = 10�13 GeV�1 we can naturally explain
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milliseconds to several tens of seconds). As for the mag-
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with B0 being the magnetic field strength at the surface
of the neutron star (r = rNS), which can reach 1015 G for
a magnetar [65]. The typical scale for the magnetosphere
or the Alfven radius is of order 100 rNS ⇠ 1000 km.

In the resonant conversion region, the photon e↵ec-
tively has almost the same mass as the axion due to
plasma e↵ects:
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where ! is the axion-photon oscillation frequency. The
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We note that for typical parameters, close to the neu-
tron star surface r < rc, the e↵ective photon mass is
larger than the axion mass. In this case, the emission
of a photon is kinematically suppressed, impacting the
viability of the mechanisms proposed in Refs. [33, 36].
As a dense axion star moves through the resonant re-

gion, the conversion power is Ẇ = Pa!�dMa/dt with
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For the benchmark values B0 = 1014 G, ma = 10 µeV,
ga�� = 10�13 GeV�1, conversion in a typical 1.4M� pul-
sar rotating with P = 0.1 s occurs with Pa!� ⇡ 2⇥10�5

in the resonant region. Hence, to explain the typical out-
put associated to FRBs, Ẇ ⇠ 1044 GeV · s�1, it seems
natural to use a 10�13M� dense axion star.
The trajectory of the dense axion star is schematically

shown in Fig. 1. Once the dense axion star enters the res-
onant region, it moves in the resonant region with grad-
ually decreasing radius until it leaves the resonant region
or it evaporates. The star moves about 10 km (several
milliseconds) in the resonant region to produce enough
energy to account for the FRBs.
The density flux of the radio signal can be obtained as:
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where EFRB is the energy released in a FRB (in Joules), d
is the distance from the source to the radio telescope (in
meters), and z is the redshift. For non-repeating FRBs,
the released energy ranges from 1030 to 1033 J. The dis-
tance d varies from several hundred Mpc to several Gpc.
Since the spectral information of the FRBs is largely un-
known, the bandwidth �B is chosen as the bandwidth
of the radio telescope in current experiments [44, 45], i.e.
the range of frequencies the telescope can measure. The
fluence Fobs is the density flux S integrated over time.
For the benchmark values ma = 10 µeV, Ma =
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e.g. [63] for a textbook discussion):
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from the center of the neutron star. For simplicity, we
have used the Goldreich-Julian distribution [64]:
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where P is the rotation period of the neutron star (from
milliseconds to several tens of seconds). As for the mag-
netic field B(r), we use the dipole approximation as the
leading order approximation:

B(r) = B0
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with B0 being the magnetic field strength at the surface
of the neutron star (r = rNS), which can reach 1015 G for
a magnetar [65]. The typical scale for the magnetosphere
or the Alfven radius is of order 100 rNS ⇠ 1000 km.

In the resonant conversion region, the photon e↵ec-
tively has almost the same mass as the axion due to
plasma e↵ects:

!2 = k2a +m2
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�(rc), (8)

where ! is the axion-photon oscillation frequency. The
mass degeneracy leads to maximal mixing and greatly
enhances the conversion probability. The critical radius
rc for the resonant conversion region is obtained by en-
forcing the maximal mixing condition Eq. (8):
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At this distance, an infalling axion star will be moving
with typical speed vc =
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When the dense axion star approaches the distance

rc, resonant axion to photon conversion can occur. The
conversion probability can reach ⇠ 0.1, if the conver-
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stars the conversion develops in the non-adiabatic reso-
nant regime [19], and we work under this assumption.
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have Pa!� ⇡ 2⇡� with

� =
(ga��!B0)

2 /2k̄��d!2
p/dr

��

�����
r=rc

. (11)

Here, k̄ ⌘

q
!2 � (m2

a + !2
p)/2 is the axion momentum

in the diagonalized basis of the mixing equations. Tak-
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magnetosphere of the neutron star, we can derive
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We note that for typical parameters, close to the neu-
tron star surface r < rc, the e↵ective photon mass is
larger than the axion mass. In this case, the emission
of a photon is kinematically suppressed, impacting the
viability of the mechanisms proposed in Refs. [33, 36].
As a dense axion star moves through the resonant re-

gion, the conversion power is Ẇ = Pa!�dMa/dt with
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Ẇ ⇠

✓
Ma

10�13M�

◆�
107 ⇥ Pa!�

� �
1044 GeV · s�1

�
.

(13)
For the benchmark values B0 = 1014 G, ma = 10 µeV,
ga�� = 10�13 GeV�1, conversion in a typical 1.4M� pul-
sar rotating with P = 0.1 s occurs with Pa!� ⇡ 2⇥10�5

in the resonant region. Hence, to explain the typical out-
put associated to FRBs, Ẇ ⇠ 1044 GeV · s�1, it seems
natural to use a 10�13M� dense axion star.
The trajectory of the dense axion star is schematically

shown in Fig. 1. Once the dense axion star enters the res-
onant region, it moves in the resonant region with grad-
ually decreasing radius until it leaves the resonant region
or it evaporates. The star moves about 10 km (several
milliseconds) in the resonant region to produce enough
energy to account for the FRBs.
The density flux of the radio signal can be obtained as:

S =
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where d is the source distance from the Earth and �B
is the bandwidth of the signal. To compare with current
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where EFRB is the energy released in a FRB (in Joules), d
is the distance from the source to the radio telescope (in
meters), and z is the redshift. For non-repeating FRBs,
the released energy ranges from 1030 to 1033 J. The dis-
tance d varies from several hundred Mpc to several Gpc.
Since the spectral information of the FRBs is largely un-
known, the bandwidth �B is chosen as the bandwidth
of the radio telescope in current experiments [44, 45], i.e.
the range of frequencies the telescope can measure. The
fluence Fobs is the density flux S integrated over time.
For the benchmark values ma = 10 µeV, Ma =
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e.g. [63] for a textbook discussion):
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where ne(r) is the local electron density at a distance r
from the center of the neutron star. For simplicity, we
have used the Goldreich-Julian distribution [64]:

ne(r) = 7⇥ 10�2 1 s
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where P is the rotation period of the neutron star (from
milliseconds to several tens of seconds). As for the mag-
netic field B(r), we use the dipole approximation as the
leading order approximation:

B(r) = B0

⇣rNS
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with B0 being the magnetic field strength at the surface
of the neutron star (r = rNS), which can reach 1015 G for
a magnetar [65]. The typical scale for the magnetosphere
or the Alfven radius is of order 100 rNS ⇠ 1000 km.

In the resonant conversion region, the photon e↵ec-
tively has almost the same mass as the axion due to
plasma e↵ects:

!2 = k2a +m2
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�(rc), (8)

where ! is the axion-photon oscillation frequency. The
mass degeneracy leads to maximal mixing and greatly
enhances the conversion probability. The critical radius
rc for the resonant conversion region is obtained by en-
forcing the maximal mixing condition Eq. (8):
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At this distance, an infalling axion star will be moving
with typical speed vc =
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10 rNS.
When the dense axion star approaches the distance

rc, resonant axion to photon conversion can occur. The
conversion probability can reach ⇠ 0.1, if the conver-
sion proceeds adiabatically. However, for most neutron
stars the conversion develops in the non-adiabatic reso-
nant regime [19], and we work under this assumption.
The conversion rate is still much larger than in the non-
resonant case, and it can be obtained from the well-
known Landau-Zener probability:
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have Pa!� ⇡ 2⇡� with

� =
(ga��!B0)

2 /2k̄��d!2
p/dr

��

�����
r=rc

. (11)

Here, k̄ ⌘

q
!2 � (m2

a + !2
p)/2 is the axion momentum

in the diagonalized basis of the mixing equations. Tak-
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magnetosphere of the neutron star, we can derive
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We note that for typical parameters, close to the neu-
tron star surface r < rc, the e↵ective photon mass is
larger than the axion mass. In this case, the emission
of a photon is kinematically suppressed, impacting the
viability of the mechanisms proposed in Refs. [33, 36].
As a dense axion star moves through the resonant re-

gion, the conversion power is Ẇ = Pa!�dMa/dt with
dMa/dt ⇠ ⇡R2

a⇢Avc and ⇢A = Ma/(4⇡R3
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For the benchmark values B0 = 1014 G, ma = 10 µeV,
ga�� = 10�13 GeV�1, conversion in a typical 1.4M� pul-
sar rotating with P = 0.1 s occurs with Pa!� ⇡ 2⇥10�5

in the resonant region. Hence, to explain the typical out-
put associated to FRBs, Ẇ ⇠ 1044 GeV · s�1, it seems
natural to use a 10�13M� dense axion star.
The trajectory of the dense axion star is schematically

shown in Fig. 1. Once the dense axion star enters the res-
onant region, it moves in the resonant region with grad-
ually decreasing radius until it leaves the resonant region
or it evaporates. The star moves about 10 km (several
milliseconds) in the resonant region to produce enough
energy to account for the FRBs.
The density flux of the radio signal can be obtained as:
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where d is the source distance from the Earth and �B
is the bandwidth of the signal. To compare with current
data [44, 45], we rewrite this as:
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where EFRB is the energy released in a FRB (in Joules), d
is the distance from the source to the radio telescope (in
meters), and z is the redshift. For non-repeating FRBs,
the released energy ranges from 1030 to 1033 J. The dis-
tance d varies from several hundred Mpc to several Gpc.
Since the spectral information of the FRBs is largely un-
known, the bandwidth �B is chosen as the bandwidth
of the radio telescope in current experiments [44, 45], i.e.
the range of frequencies the telescope can measure. The
fluence Fobs is the density flux S integrated over time.
For the benchmark values ma = 10 µeV, Ma =

10�13M�, ga�� = 10�13 GeV�1 we can naturally explain
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mass due to the plasma e↵ects in the magnetosphere (see
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where ne(r) is the local electron density at a distance r
from the center of the neutron star. For simplicity, we
have used the Goldreich-Julian distribution [64]:

ne(r) = 7⇥ 10�2 1 s
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where P is the rotation period of the neutron star (from
milliseconds to several tens of seconds). As for the mag-
netic field B(r), we use the dipole approximation as the
leading order approximation:

B(r) = B0

⇣rNS
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with B0 being the magnetic field strength at the surface
of the neutron star (r = rNS), which can reach 1015 G for
a magnetar [65]. The typical scale for the magnetosphere
or the Alfven radius is of order 100 rNS ⇠ 1000 km.

In the resonant conversion region, the photon e↵ec-
tively has almost the same mass as the axion due to
plasma e↵ects:

!2 = k2a +m2
a ⇡ m2

�(rc), (8)

where ! is the axion-photon oscillation frequency. The
mass degeneracy leads to maximal mixing and greatly
enhances the conversion probability. The critical radius
rc for the resonant conversion region is obtained by en-
forcing the maximal mixing condition Eq. (8):
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At this distance, an infalling axion star will be moving
with typical speed vc =

p
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When the dense axion star approaches the distance

rc, resonant axion to photon conversion can occur. The
conversion probability can reach ⇠ 0.1, if the conver-
sion proceeds adiabatically. However, for most neutron
stars the conversion develops in the non-adiabatic reso-
nant regime [19], and we work under this assumption.
The conversion rate is still much larger than in the non-
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We note that for typical parameters, close to the neu-
tron star surface r < rc, the e↵ective photon mass is
larger than the axion mass. In this case, the emission
of a photon is kinematically suppressed, impacting the
viability of the mechanisms proposed in Refs. [33, 36].
As a dense axion star moves through the resonant re-
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For the benchmark values B0 = 1014 G, ma = 10 µeV,
ga�� = 10�13 GeV�1, conversion in a typical 1.4M� pul-
sar rotating with P = 0.1 s occurs with Pa!� ⇡ 2⇥10�5

in the resonant region. Hence, to explain the typical out-
put associated to FRBs, Ẇ ⇠ 1044 GeV · s�1, it seems
natural to use a 10�13M� dense axion star.
The trajectory of the dense axion star is schematically

shown in Fig. 1. Once the dense axion star enters the res-
onant region, it moves in the resonant region with grad-
ually decreasing radius until it leaves the resonant region
or it evaporates. The star moves about 10 km (several
milliseconds) in the resonant region to produce enough
energy to account for the FRBs.
The density flux of the radio signal can be obtained as:
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where EFRB is the energy released in a FRB (in Joules), d
is the distance from the source to the radio telescope (in
meters), and z is the redshift. For non-repeating FRBs,
the released energy ranges from 1030 to 1033 J. The dis-
tance d varies from several hundred Mpc to several Gpc.
Since the spectral information of the FRBs is largely un-
known, the bandwidth �B is chosen as the bandwidth
of the radio telescope in current experiments [44, 45], i.e.
the range of frequencies the telescope can measure. The
fluence Fobs is the density flux S integrated over time.
For the benchmark values ma = 10 µeV, Ma =
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from the center of the neutron star. For simplicity, we
have used the Goldreich-Julian distribution [64]:
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where P is the rotation period of the neutron star (from
milliseconds to several tens of seconds). As for the mag-
netic field B(r), we use the dipole approximation as the
leading order approximation:

B(r) = B0
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with B0 being the magnetic field strength at the surface
of the neutron star (r = rNS), which can reach 1015 G for
a magnetar [65]. The typical scale for the magnetosphere
or the Alfven radius is of order 100 rNS ⇠ 1000 km.

In the resonant conversion region, the photon e↵ec-
tively has almost the same mass as the axion due to
plasma e↵ects:

!2 = k2a +m2
a ⇡ m2
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where ! is the axion-photon oscillation frequency. The
mass degeneracy leads to maximal mixing and greatly
enhances the conversion probability. The critical radius
rc for the resonant conversion region is obtained by en-
forcing the maximal mixing condition Eq. (8):
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At this distance, an infalling axion star will be moving
with typical speed vc =
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When the dense axion star approaches the distance

rc, resonant axion to photon conversion can occur. The
conversion probability can reach ⇠ 0.1, if the conver-
sion proceeds adiabatically. However, for most neutron
stars the conversion develops in the non-adiabatic reso-
nant regime [19], and we work under this assumption.
The conversion rate is still much larger than in the non-
resonant case, and it can be obtained from the well-
known Landau-Zener probability:
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ing the dipole configuration for the magnetic field and
the Goldreich-Julian electron density distribution in the
magnetosphere of the neutron star, we can derive
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We note that for typical parameters, close to the neu-
tron star surface r < rc, the e↵ective photon mass is
larger than the axion mass. In this case, the emission
of a photon is kinematically suppressed, impacting the
viability of the mechanisms proposed in Refs. [33, 36].
As a dense axion star moves through the resonant re-

gion, the conversion power is Ẇ = Pa!�dMa/dt with
dMa/dt ⇠ ⇡R2

a⇢Avc and ⇢A = Ma/(4⇡R3
a/3). Thus, we

obtain the power:
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For the benchmark values B0 = 1014 G, ma = 10 µeV,
ga�� = 10�13 GeV�1, conversion in a typical 1.4M� pul-
sar rotating with P = 0.1 s occurs with Pa!� ⇡ 2⇥10�5

in the resonant region. Hence, to explain the typical out-
put associated to FRBs, Ẇ ⇠ 1044 GeV · s�1, it seems
natural to use a 10�13M� dense axion star.
The trajectory of the dense axion star is schematically

shown in Fig. 1. Once the dense axion star enters the res-
onant region, it moves in the resonant region with grad-
ually decreasing radius until it leaves the resonant region
or it evaporates. The star moves about 10 km (several
milliseconds) in the resonant region to produce enough
energy to account for the FRBs.
The density flux of the radio signal can be obtained as:

S =
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, (14)

where d is the source distance from the Earth and �B
is the bandwidth of the signal. To compare with current
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where EFRB is the energy released in a FRB (in Joules), d
is the distance from the source to the radio telescope (in
meters), and z is the redshift. For non-repeating FRBs,
the released energy ranges from 1030 to 1033 J. The dis-
tance d varies from several hundred Mpc to several Gpc.
Since the spectral information of the FRBs is largely un-
known, the bandwidth �B is chosen as the bandwidth
of the radio telescope in current experiments [44, 45], i.e.
the range of frequencies the telescope can measure. The
fluence Fobs is the density flux S integrated over time.
For the benchmark values ma = 10 µeV, Ma =

10�13M�, ga�� = 10�13 GeV�1 we can naturally explain
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with B0 being the magnetic field strength at the surface
of the neutron star (r = rNS), which can reach 1015 G for
a magnetar [65]. The typical scale for the magnetosphere
or the Alfven radius is of order 100 rNS ⇠ 1000 km.
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where ! is the axion-photon oscillation frequency. The
mass degeneracy leads to maximal mixing and greatly
enhances the conversion probability. The critical radius
rc for the resonant conversion region is obtained by en-
forcing the maximal mixing condition Eq. (8):
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We note that for typical parameters, close to the neu-
tron star surface r < rc, the e↵ective photon mass is
larger than the axion mass. In this case, the emission
of a photon is kinematically suppressed, impacting the
viability of the mechanisms proposed in Refs. [33, 36].
As a dense axion star moves through the resonant re-
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in the resonant region. Hence, to explain the typical out-
put associated to FRBs, Ẇ ⇠ 1044 GeV · s�1, it seems
natural to use a 10�13M� dense axion star.
The trajectory of the dense axion star is schematically

shown in Fig. 1. Once the dense axion star enters the res-
onant region, it moves in the resonant region with grad-
ually decreasing radius until it leaves the resonant region
or it evaporates. The star moves about 10 km (several
milliseconds) in the resonant region to produce enough
energy to account for the FRBs.
The density flux of the radio signal can be obtained as:
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where EFRB is the energy released in a FRB (in Joules), d
is the distance from the source to the radio telescope (in
meters), and z is the redshift. For non-repeating FRBs,
the released energy ranges from 1030 to 1033 J. The dis-
tance d varies from several hundred Mpc to several Gpc.
Since the spectral information of the FRBs is largely un-
known, the bandwidth �B is chosen as the bandwidth
of the radio telescope in current experiments [44, 45], i.e.
the range of frequencies the telescope can measure. The
fluence Fobs is the density flux S integrated over time.
For the benchmark values ma = 10 µeV, Ma =
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with B0 being the magnetic field strength at the surface
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We note that for typical parameters, close to the neu-
tron star surface r < rc, the e↵ective photon mass is
larger than the axion mass. In this case, the emission
of a photon is kinematically suppressed, impacting the
viability of the mechanisms proposed in Refs. [33, 36].
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in the resonant region. Hence, to explain the typical out-
put associated to FRBs, Ẇ ⇠ 1044 GeV · s�1, it seems
natural to use a 10�13M� dense axion star.
The trajectory of the dense axion star is schematically

shown in Fig. 1. Once the dense axion star enters the res-
onant region, it moves in the resonant region with grad-
ually decreasing radius until it leaves the resonant region
or it evaporates. The star moves about 10 km (several
milliseconds) in the resonant region to produce enough
energy to account for the FRBs.
The density flux of the radio signal can be obtained as:
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where EFRB is the energy released in a FRB (in Joules), d
is the distance from the source to the radio telescope (in
meters), and z is the redshift. For non-repeating FRBs,
the released energy ranges from 1030 to 1033 J. The dis-
tance d varies from several hundred Mpc to several Gpc.
Since the spectral information of the FRBs is largely un-
known, the bandwidth �B is chosen as the bandwidth
of the radio telescope in current experiments [44, 45], i.e.
the range of frequencies the telescope can measure. The
fluence Fobs is the density flux S integrated over time.
For the benchmark values ma = 10 µeV, Ma =
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the most sensitive instruments to the resulting spectral
energy distribution are still radio telescopes.

IV. FUTURE DETECTION AND EVENT
RATES

The smallest flux density that can be detected by a
radio telescope can be written as:

Smin ⇡ 0.09 Jy

✓
1 MHz

�B

◆1/2 ✓1 ms

tobs

◆1/2 ✓103m2/K

Ae↵/Tsys

◆
,

where tobs is the observation time. For the SKA Phase
1 [66], the e↵ective area to system temperature ratio
Ae↵/Tsys = 2.7 ⇥ 103m2/K. SKA can then detect a ra-
dio signal if S > Smin, within the frequency range from
0.45 to 13 GHz. For example, for �B = 100 MeV,
tobs = 100 ms, Smin = 3 ⇥ 10�4 Jy. The sensitivity is
expected to increase by more than an order of magni-
tude in Phase 2 of SKA, which will enhance its ability to
detect even weaker FRBs by several orders of magnitude.

The event rate in our galaxy can be estimated as

N

year
= �v0nASnNSfNSVgalaxy (17)

with � = ⇡b2 = ⇡r2cv
2
c/v

2
0(1 � 2GNMNS/rc)�1 is the

scattering cross section for the axion star with a virial
velocity v0 approaching the neutron star at an impact
parameter b. There are about 109 neutron stars in our
galaxy. The number of axion stars is given by nAS =
AS⇢DM/MA ⇡ AS ⇥ 1011 pc�3, with the typical galac-
tic DM density ⇢DM = 0.3 GeV · cm�3, while AS is the
fraction of the total DM density in axion stars. Finally,
fNS represents the ratio of neutron stars with magnetic
fields larger than 1013 G on their surface. We thus have
N/year = AS10�2fNS in our galaxy. For the whole uni-
verse, the event rate per day is 1013ASfNS/365 ⇠ 1000,
if we take AS = 10�2 and fNS = 10�5. Hence, we expect
about one thousand events per day. This scenario satis-
fies the condition that the events should be su�ciently
rare to ensure that the Galactic plane does not dominate
the spatial distribution of observed events [67]. In future,
the SKA can detect more and more FRB events and pro-
vide us with more detailed and accurate information to
test our proposed axion-star explanation.

V. CONCLUSION AND OUTLOOK

We have proposed a new explanation for the origin
of FRBs, based on the axion to photon conversion that
ensues when a dense axion star moves through the res-
onant region in the magnetosphere of a pulsar. If there

are more than one type of axions with di↵erent masses,
there would also have been other FRBs with very di↵er-
ent frequency range. At this time, we can only speculate
whether feedback processes on the plasma surrounding
the conversion region might give rise to broader band
emission, explaining a larger fraction of the observations.
The observed FRB energy output is naturally obtained
for axion stars with masses around 10�13 M� if the axion-
photon conversion proceeds through the resonant, non-
adiabatic regime. Most of the observed frequencies for
non-repeating FRBs can be accommodated with a 10 µeV
axion mass.
In this paper, we have not attempted to study the de-

tailed dynamics for the capture of axion stars and decay
of the orbits. We also leave a detailed study of the ra-
dio signals that can be generated when the debris of a
dilute axion star enters into the magnetosphere of a neu-
tron star for future work. In fact, tidally disrupted dilute
axion stars may be responsible for the repeating FRBs.
One possible mechanism is that di↵erent parts of the ax-
ion star debris fall in and cross the resonant conversion
region at di↵erent times behaving as repeating FRBs. In
addition, di↵erent sections of the axion debris could have
di↵erent eccentricities, giving rise to di↵erent periods for
crossing the resonant region. Our study can be extended
to collisions of axion stars with other magnetized astro-
physical sources.
In the future, the unprecedented sensitivity of SKA

and other forthcoming radio telescopes may enable the
spectral properties of FRBs to be unraveled. The many
observed events in the 0.6 to 2.2 GHz range correspond
to the same intrinsic peak frequency at the emission time
(⌫0=2.42 GHz for ma = 10 µeV), which could provide
further support for our dense axion star resonant con-
version scenario. Since in addition to some surviving
axion stars, a di↵use axion component is likely to still
account for a large fraction of the DM density, the labora-
tory measurements from axion haloscope and weak radio
signals of axion DM by SKA can cover same frequency
range. In parallel with these e↵orts, SKA is expected to
observe many more FRBs, and might allow to pin down
the correlation between FRBs, axions in galactic halos,
and axions detected in a terrestrial laboratory.
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where ne(r) is the local electron density at a distance r
from the center of the neutron star. For simplicity, we
have used the Goldreich-Julian distribution [64]:
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where P is the rotation period of the neutron star (from
milliseconds to several tens of seconds). As for the mag-
netic field B(r), we use the dipole approximation as the
leading order approximation:

B(r) = B0
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with B0 being the magnetic field strength at the surface
of the neutron star (r = rNS), which can reach 1015 G for
a magnetar [65]. The typical scale for the magnetosphere
or the Alfven radius is of order 100 rNS ⇠ 1000 km.

In the resonant conversion region, the photon e↵ec-
tively has almost the same mass as the axion due to
plasma e↵ects:

!2 = k2a +m2
a ⇡ m2

�(rc), (8)

where ! is the axion-photon oscillation frequency. The
mass degeneracy leads to maximal mixing and greatly
enhances the conversion probability. The critical radius
rc for the resonant conversion region is obtained by en-
forcing the maximal mixing condition Eq. (8):
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At this distance, an infalling axion star will be moving
with typical speed vc =

p
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10 rNS.
When the dense axion star approaches the distance

rc, resonant axion to photon conversion can occur. The
conversion probability can reach ⇠ 0.1, if the conver-
sion proceeds adiabatically. However, for most neutron
stars the conversion develops in the non-adiabatic reso-
nant regime [19], and we work under this assumption.
The conversion rate is still much larger than in the non-
resonant case, and it can be obtained from the well-
known Landau-Zener probability:
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The non-adiabatic limit corresponds to small �, and we
have Pa!� ⇡ 2⇡� with
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in the diagonalized basis of the mixing equations. Tak-
ing the dipole configuration for the magnetic field and
the Goldreich-Julian electron density distribution in the
magnetosphere of the neutron star, we can derive
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We note that for typical parameters, close to the neu-
tron star surface r < rc, the e↵ective photon mass is
larger than the axion mass. In this case, the emission
of a photon is kinematically suppressed, impacting the
viability of the mechanisms proposed in Refs. [33, 36].
As a dense axion star moves through the resonant re-

gion, the conversion power is Ẇ = Pa!�dMa/dt with
dMa/dt ⇠ ⇡R2
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For the benchmark values B0 = 1014 G, ma = 10 µeV,
ga�� = 10�13 GeV�1, conversion in a typical 1.4M� pul-
sar rotating with P = 0.1 s occurs with Pa!� ⇡ 2⇥10�5

in the resonant region. Hence, to explain the typical out-
put associated to FRBs, Ẇ ⇠ 1044 GeV · s�1, it seems
natural to use a 10�13M� dense axion star.
The trajectory of the dense axion star is schematically

shown in Fig. 1. Once the dense axion star enters the res-
onant region, it moves in the resonant region with grad-
ually decreasing radius until it leaves the resonant region
or it evaporates. The star moves about 10 km (several
milliseconds) in the resonant region to produce enough
energy to account for the FRBs.
The density flux of the radio signal can be obtained as:

S =
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where d is the source distance from the Earth and �B
is the bandwidth of the signal. To compare with current
data [44, 45], we rewrite this as:
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where EFRB is the energy released in a FRB (in Joules), d
is the distance from the source to the radio telescope (in
meters), and z is the redshift. For non-repeating FRBs,
the released energy ranges from 1030 to 1033 J. The dis-
tance d varies from several hundred Mpc to several Gpc.
Since the spectral information of the FRBs is largely un-
known, the bandwidth �B is chosen as the bandwidth
of the radio telescope in current experiments [44, 45], i.e.
the range of frequencies the telescope can measure. The
fluence Fobs is the density flux S integrated over time.
For the benchmark values ma = 10 µeV, Ma =

10�13M�, ga�� = 10�13 GeV�1 we can naturally explain FRBs.
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FIG. 2. Upper limit on the fluence as a function of redshift
z. The solid orange line depicts the upper limit for Ma =
10�13M� with bandwidth �B ⇠ 340 MHz. The dashed
orange line represents the upper limit for Ma = 10�12M�
and the same bandwidth �B ⇠ 340 MHz. The magenta
line corresponds to the upper limit for Ma = 10�13M� and
�B ⇠ 31 MHz. The red circles, black triangles, green di-
amonds and orange stars show the 27 non-repeating FRBs
observed by Parkes, 28 non-repeating events from ASKAP, 1
non-repeating event from Arecibo and 9 non-repeating events
from UTMOST, respectively [45].

most of the observed O(0.1–100) Jy FRBs as shown in
Fig. 2. The orange line in Fig. 2 depicts the upper limit
for Ma = 10�13M� with bandwidth �B ⇠ 340 MHz,
and the events below this line can be accounted for.
The dashed orange line represents the upper limit for
Ma = 10�12M� and the same bandwidth, while we used
Ma = 10�13M� and �B ⇠ 31 MHz for the magenta
line. The red circles, black triangles, green diamonds
and orange stars represent the 27 non-repeating FRBs
observed by Parkes (central frequency 1.352 GHz, �B ⇠

338.381 MHz), 28 non-repeating events from ASKAP
(central frequency 1.297 GHz, �B ⇠ 336 MHz), 1 non-
repeating event from Arecibo (central frequency 1.375
GHz, �B ⇠ 322.6 MHz) and 9 non-repeating events
from UTMOST (central frequency 835 MHz, �B ⇠

31.25 MHz) [45], respectively. Most events lie below the
solid orange curve, except a few events which can only be
explained by a heavier axion star, as shown by the dashed
orange curve. For a smaller bandwidth �B ⇠ 31 MHz,
even Ma = 10�13M� can explain all the events by this
scenario, as shown by the magenta curve.2

An FRB emitted with a frequency ⌫0 = ma/2⇡ =
2.42 GHz(ma/10 µeV) in the axion rest frame will be ob-
served at a lower frequency by the time it reaches a radio
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FIG. 3. Allowed FRB peak frequencies measured at terres-
trial radio telescopes after taking into account the cosmologi-
cal and gravitational redshifts, as shown by the x and y axes,
respectively. The color coding represents the range of ob-
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Using the appropriate cosmological and gravitational
redshifts, the observed frequency ranges from 0.6 to 2.2
GHz for a 10 µeV axion, as shown in Fig. 3. The vari-
ation of signal strengths and duration depends on the
exact field geometry in the conversion region. The du-
ration of the signal also depends both on the motion of
axion star through the resonant conversion region and
on the redshift. On the other hand, for fixed axion mass,
a larger pulsar rotational period P means a smaller rc,
and hence larger Bc which leads to a larger conversion
probability. Also a stronger magnetic field on the surface
of the neutron star gives more intense signals.
We stress that this paper is aimed at explaining the

broad features of FRBs, but there are a number of com-
plicated astrophysical e↵ects that are likely important in
describing the detailed emission mechanisms for radiation
from these events. Details of the geometry of the magne-
tosphere (e.g., the position of gaps and the neutral sheet)
have a significant impact on the observed signals. More-
over, there are likely to be significant feedback e↵ects in
the conversion region. As the axion star moves through
the field and plasma comprising the magnetosphere, it
may exert radiation pressure on the surrounding plasma,
exceeding the relatively small Thomson pressure due to
the complicated plasma e↵ects. We might expect the
FRBs to be accompanied by broad-band signals from syn-
chrotron radiation, curvature radiation and even inverse
Compton radiation from accelerated particles. However,
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1. We stress that this paper is aimed at explaining the broad 
features of FRBs, but there are a number of complicated 
astrophysical effects that are likely important in describing 
the detailed emission mechanisms for radiation from these 
events.   Details of the geometry of the magnetosphere 
(e.g., the position of gaps and the neutral sheet) have a 
significant impact on the observed signals.   Moreover, there 
are likely to be significant feedback effects in the conversion 
region.  As the axion star moves through the field and 
plasma comprising the magnetosphere, it may exert 
radiation pressure on the surrounding plasma, exceeding the 
relatively small Thomson pressure due to the complicated 
plasma effects.  
2.Work on the explanation of the repeating FRBs will 
appear on arXiv soon. 

  Comments 



Summary
We have proposed a new approach to explore axion cold  
DM by SKA-like radio telescope in the resonant 
conversion region of pulsar magnetosphere. 

We have proposed a new explanation for the origin            
of FRBs when a dense axion star moves through the 
resonant region in pulsar magnetosphere.   

SKA can observe many more FRBs and precise radio 
signals, and allow to pin down the correlation between 
FRBs, axions cold DM and axion stars. 
SKA becomes a powerful new approach. 

Comments and collaborations are welcome!
Thanks for your attention!



  Comments on the radio probe of axion DM 
   arXiv:1804.03145 by Anson Hook, Yonatan Kahn, Benjamin R. Safdi, Zhiquan Sun 

where they consider more details.  
Besides the normal DM density, they also consider the extremely high DM density around  

the neutron star, thus the signal is more stronger.
arXiv:1811.01020 by Benjamin R. Safdi, Zhiquan Sun, Alexander Y. Chen 



Multi-Messenger Signal of QCD Axion DM 

This work is a  combination 
of two classes of well-studied  

works: 
1. radio signal search of the 

axion DM by SKA-like 
experiments 

3. gravitational wave 
detection of DM density 

by LISA-like 
experiments. 

These two different works 
are combined as multi-

messenger signals through 
the extremely high DM 
density surrounded the 

intermediate massive black 
hole and neutron star binary. 

arXiv:1905.04686,Thomas, D.P.Edwards,Marco Chianese, Bradley J. Kavanagh,  
   Samaya M. Nissanke, Christoph Weniger




