INTRODUCTION

Hongbo Zhu
On behalf of the coordination team
10 June 2020

SUMMARY OF THE MDI WORKSHOP

https://indico.ihep.ac.cn/event/11801/

CEPC MDI Workshop

from Thursday, 28 May 2020 at **08:00** to Friday, 29 May 2020 at **18:00** (Asia/Shanghai) at **IHEP (C305)**

- 1.5-day workshop with over 50 participants
- Invited talks combined with working group talks
- J. Gao's <u>summary talk</u>

INVITED TALKS

Summary of the IAS mini-Workshop on MDI 40'

•

Speaker: Dr. Toshiaki TAUCHI (High Energy Accelerator Research Organization (KEK))

Material: Slides Slides with references

MDI Issues during Commissioning and Beyond 40'

I would like to discuss some of the starting up issues that the MDI design team needs to be prepared for and also how I expect the machine to evolve to the design parameters.

Speaker: Dr. Micheal Sullivan (SLAC)

Material: Slides

FCC-ee MDI 30'

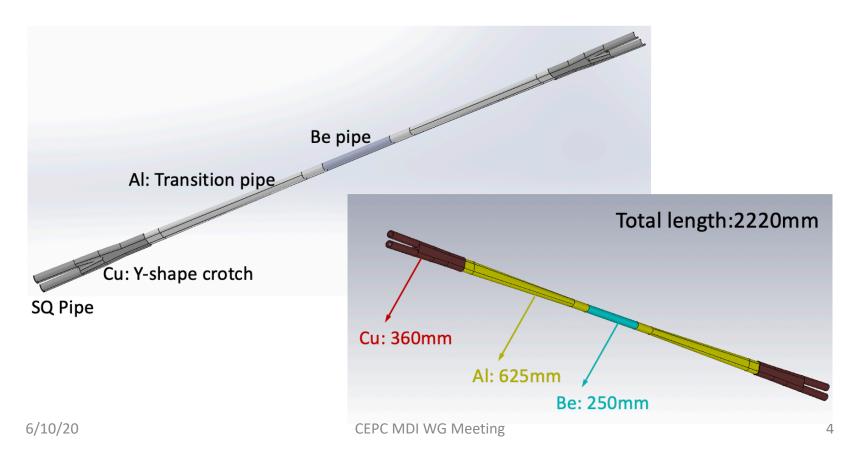
Speaker: Dr. Michael KORATZINOS (CERN and Massachusetts Institute of Technology)

Material: Slides 🗐

Overview of FCAL 30'

Speaker: Dr. Maryna Borysova (DESY & Kiev Institute for Nuclear Research (KINR))

Material: Slides 📆


Lessons learned with the SLD Vertex Detector, relevant to a future Higgs Factory 30'

Speaker: Prof. Chris Damerell (Rutherford Appleton Laboratory)

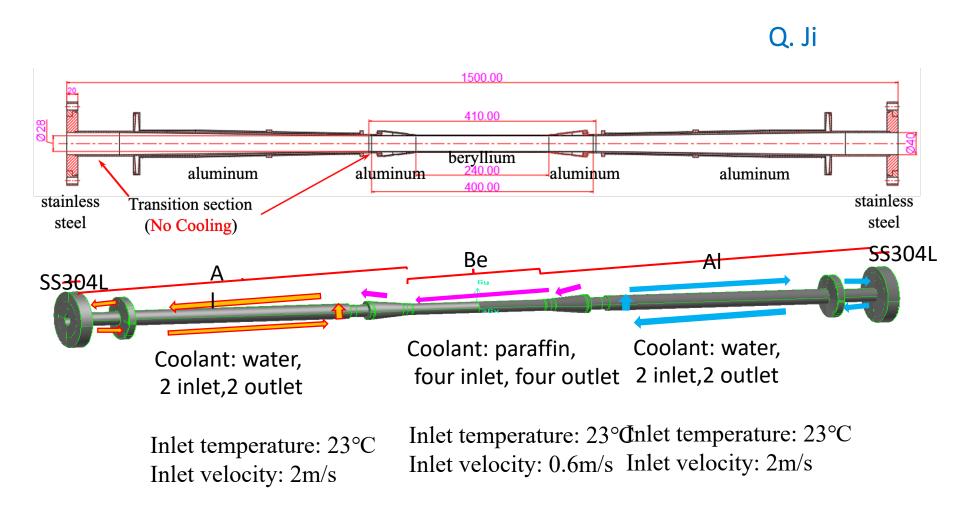
Material: Slides 🗐

BEAMPIPE

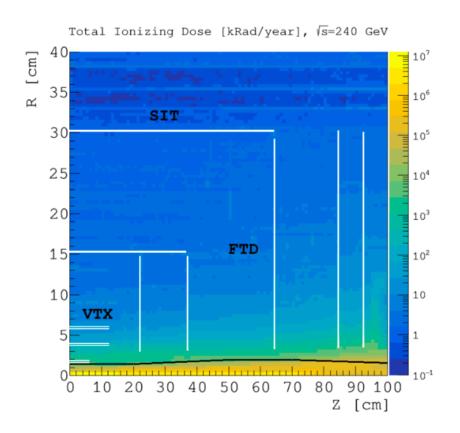
- Beampipe design non-trivial (cooling, mechanical structure, coating material budget), direct impacts on physics performance
- ACTION: to re-visit the central beampipe radius

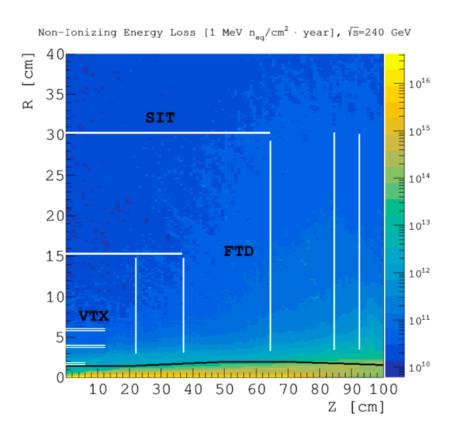
HIGHER ORDER MODE (HOM) HEAT LOAD

Y. Liu


Summary on HOM heating Power for IR (CDR beam parameters)

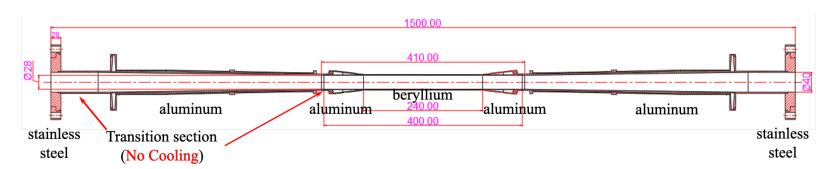
IR Model	Н		w		Z	
Model 0 (28mm-28mm)	P _{trap} : 42w	P _{pro} : 26.8w	P _{trap} : 170.4w	P _{pro} : 108.6w	P _{trap} : 595.2w	P _{pro} :379.4w
	P _{total} : 68.8w		P _{total} : 279w		P _{total} : 974.6w	
Model 1 (28mm-20mm)	P_{trap} :12.3w	P _{pro} :10.2w	P _{trap} :49.8w	P _{pro} :41.6w	P _{trap} :174.2w	P _{pro} :145.5w
	P _{total} : 22.5w		P _{total} : 91.4w		P _{total} : 319.7w	
Model 2 (28mm-20mm)	P _{trap} :15w	P _{pro} :7.1w	P _{trap} :60.7w	P _{pro} :28.9w	P _{trap} :212.3w	P _{pro} :101.2w
	P _{total} : 22.1w		P _{total} : 89.6w		P _{total} : 313.5w	
Model 3 (28mm-20mm)	P _{trap} :14.2w	P _{pro} :6.2w	P _{trap} :57.5w	P _{pro} :25w	P _{trap} :201.1w	P _{pro} :87.3w
	P _{total} : 20.4w		P _{total} : 82.5 w		P _{total} : 288.4w	
Model 4 (20mm-20mm)	P_{trap} :14.5w	P _{pro} :5.2w	P _{trap} :58.9w	P _{pro} :21.0w	P _{trap} :205.9w	P _{pro} :73.4w
	P _{total} : 19.7w		P _{total} : 79.9w		P _{total} : 279.3w	
Model 5 (28mm-11mm)	P _{trap} :2.2kw	P _{pro} :-	P _{trap} :9.1kw	P _{pro} :-	P _{trap} : 31.9kw	P _{pro} :-
	P _{total} :2.2kw		P _{total} :9.1kw		P _{total} :31.9kw	


Even higher HOM heat load for the high luminosity design


LATEST DESIGN

Please note we have never had a consistent beam pipe design between accelerator and detector.

 Impacts of HOM heat load (+ from other sources) on beampipe design that will affect other components, e.g. Vertex and LumiCal



• Risky to push the beampipe/1st vertex detector layer too close to the interaction point, radiation damage

How to Converge on Beampipe Radius

 Quantify the impacts of smaller beampipe radius on HOM heat load, radiation backgrounds and tracking/vertexing performance → caveat: studies based on the CDR machine parameters, conclusion might have to change with the involving machine design

Beampipe shape (central + forward) to be (re-)defined

SHORT TERM DELIVERABLES -- TO BE DISCUSSED

- A consistent design of the interaction region based on the CDR machine parameters in about two months
 - Head loads from HOM, synchrotron radiation, particle loss
 - Beampipe (central + forward) with cooing structures and interface to Vertex and LumiCal
 - Background levels (hit density, TID, NIEL) in sub-detectors (Vertex, Tracker, Calorimeter and LumiCal) + basic mitigation measures (collimators, masks, shielding, Au coating)
 - Superconducting magnets (compensating solenoid and quadrupoles) with optimized aperture size and protection
 - Detector solenoid and Yoke design
 - Supporting structure and install scheme

•

LONGER TERM PLAN — TO BE DISCUSSED

- Iterations of interaction region design to cope with/benefit from the higher luminosity machine design
 - To achieve consolidated designs before carrying out serious prototyping

 Requested to list critical topics, required/available manpower, funding – to be collected and further discussed