Impacts of Inner radius of beampipe

Zhijun Liang and Gang Li

MDI study group meeting

Motivation

- CEPC is a precision machine of Higgs and EW & QCD & flavor physics, • sensitive to new physics
- VXD performance essential for lots of physics objects/goals: jets, tau, ...
- **Performance of VXD depends on several aspects:**
 - \checkmark Radius of the inner most layer and material in front of it
 - ✓ Single point resolution
 - ✓ Machine/mini jet backgrounds
 - \checkmark Power/cooling/support/cables \rightarrow materials
 - And sophisticated algorithm \checkmark

Baseline parameters of the CEPC VXD in CDR

	R(mm)	Z(mm)	single-point
			resolution(µn
Layer 1	16	62.5	2.8
Layer 2	18	62.5	6
Layer 3	37	125.0	4
Layer 4	39	125.0	4
Layer 5	58	125.0	4
Layer 6	60	125.0	4

Too ideal in simulation Rather Challenging: cables, support, cooling, ...

b- and c-tagging performances

VXD optimization with full simulation and Flavor tagging

✓ Three key issues of vertex detector investigated

- > Radius of inner layer
- > Material budget
- > Pixel resolution(s)
- \checkmark 3 scenarios
- ✓ The relative statistical uncertainties simply parameterized in the study
- \checkmark VXD \rightarrow flavor tagging-> statistical uncertainties of measurements

	Scenario A (Aggressive)	Scenario B (Baseline)	Scenario C (Conservative)
Material per layer/ X_0	0.075	0.15	0.3
Spatial resolution/µm	1.4 - 3	2.8 - 6	5 - 10.7
R _{in} /mm	8	16	23

Z. Wu et al 2018 JINST 13 T09002

C-tagging performances

- > The Smallest Beampipe: only 0.5 mm, radius: 6.5-7.0 mm
- 1st layer at 8.0 mm
- 2nd moved accordingly
- > 3rd layer and disks unchanged

udget	 H→cc is only ~ 2.7% 		
JS	Its statistical uncertainty depends more on detector performance		
mm	 In particularly sensitive to the inner radius 		
I			
	$rac{\delta_\mu}{\mu} \propto rac{\sqrt{S+B}}{S} \propto rac{1}{\sqrt{\epsilon \cdot p}}$		
<u> </u>			
r			

Flavour tagging with smaller beam pipe

- Vertex disks unchanged

Vertex barrel layer	Radius for the default model [mm]	Radius for the new model [mm]
Layer 1	17.5	12.5
Layer 2	18.5	13.5
Layer 3	37	35
Layer 4	38	36
Layer 5	57	57
Layer 6	58	58

Same study

Alternative FCC-ee interaction region with smaller beam pipe radius • Innermost barrel layer moved from 17.5 mm to 12.5 mm, outer radius unchanged

Smaller beam pipe: barrel

10

10

 10^{-3}

1.8 F

10-

10-2

10

1.8 E

1.6

1.4

1.2

det

CDR/new

det

CDR/new

Beauty contamination CDR det model Smaller beampipe&vtx LF contamination CDR det model Smaller beampipe&vtx Beauty contamination LF contamination √s = 365 GeV 0.5 0.9 0.7 0.8 0.6 Charm eff.

- $e^+e^- \rightarrow q\bar{q}$ events with $\theta(q) = 80^\circ$
- "Truth" tracking

 \rightarrow Sizeable improvement for charm at both energies and beauty at 91.2 GeV

Similar conclusion

Smaller beam pipe: forward

10

1.8 [

1.6

1.2

0.5

0.6

0.7

det

CDR/new

- $e^+e^- \rightarrow q\bar{q}$ events with $\theta(q) = 20^\circ$
- "Truth" tracking
- \rightarrow Larger impact compared to the barrel region

End cap more significant

Summary

- Inner radius of beampipe and some other aspects of VXD studied with full simulation
- Sizable effect on c-tagging, therefore on $H \rightarrow cc$ study
- Generally speaking, a smaller beampipe is favored by $H \rightarrow cc$, if technical problems could be solved
- More careful study needed
 - Realistic beampipe/detector design: more materials
 - Backgrounds: smarter tracking algorithms
 - \checkmark Well understood tracking and vertexing software