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This paper reviews classical and adaptive methods of track and vertex reconstruction in particle
physics experiments. Adaptive methods have been developed to meet the experimental challenges at
high-energy colliders, in particular, the CERN Large Hadron Collider. They can be characterized by
the obliteration of the traditional boundaries between pattern recognition and statistical estimation,
by the competition between different hypotheses about what constitutes a track or a vertex, and by a
high level of flexibility and robustness achieved with a minimum of assumptions about the data. The
theoretical background of some of the adaptive methods is described, and it is shown that there is a
close connection between the two main branches of adaptive methods: neural networks and
deformable templates, on the one hand, and robust stochastic filters with annealing, on the other hand.
As both classical and adaptive methods of track and vertex reconstruction presuppose precise
knowledge of the positions of the sensitive detector elements, the paper includes an overview of
detector alignment methods and a survey of the alignment strategies employed by past and current
experiments.
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I. INTRODUCTION

Significant developments have taken place during the
past decades in the fields of high-energy physics accel-
erators, detectors, and computing technologies. The de-
sire to understand in more detail the basic behavior of
the fundamental constituents of nature and the interac-
tions between these constituents has led to experimental
studies carried out at ever increasing energies. In gen-
eral, the number of particles created by the interaction
of two particles rises with the collision energy. As a con-
sequence, event patterns have become much more com-
plex in the course of time. In addition, data rates have
increased in order to enable the search for rare interest-
ing collision events immersed in a huge background of
events exhibiting well-known physics. Whereas most
events in the experiments during the 1950s were studied
manually on a scanning table, the data rate at the Large
Hadron Collider �LHC� at CERN, Geneva, Switzerland,
has to be reduced online by more than five orders of
magnitude before the information from an event is
written on mass storage for further analysis. Track-
ing detectors have changed from bubble chambers to
gaseous and solid-state electronic detectors. Computers
have changed from large mainframes to server farms
with processor speeds several orders of magnitude
higher than those available some decades ago. The task
of analyzing data from high-energy physics experiments
has therefore, over the years, been performed in a con-
tinuously changing environment, and analysis methods
have evolved accordingly to adapt to these changes.

This paper aims to review methods employed in cru-
cial parts of the data-analysis chain in a high-energy
physics experiment: the task of determining the basic
kinematic parameters of charged particles at their point
of production and the task of estimating the location
of these production points. These tasks are frequently
called track reconstruction and vertex reconstruction.
Track and vertex reconstruction are done both online,
especially in the high-level trigger, and offline. Online
applications frequently use simplified methods for the
sake of speed. The following discussion will concentrate
on methods employed in the offline analysis, where the
ultimate precision is the major goal and speed is rarely a
decisive factor.

Track and vertex reconstructions can attain, however,
their ultimate precision only if the positions and orien-
tations of the sensitive detector elements are known to
high accuracy. The review therefore includes detector

alignment methods that are used for the precise deter-
mination of the alignment constants �positions and ori-
entations� of the sensitive detector elements. In the ex-
periments at the LHC the number of detector elements
to be aligned runs into several thousands and in one case
even exceeds 10 000. Furthermore, the required preci-
sion is considerably higher than the intrinsic resolution
of the detector elements which in itself is already
very small, on the order of 10 �m. Detector alignment is
thus a highly nontrivial task that can ultimately only be
solved using information from charged particles that
cross several sensitive elements along their trajectory
through the detector. Alignment is therefore intimately
connected to the track reconstruction challenge.

The topics of track and vertex reconstruction have,
over the years, been reviewed several times with focus
ranging from bubble-chamber data-analysis methods
�Jobes and Shaylor, 1972� through approaches applied in
early electronic experiments �Eichinger and Regler,
1981; Grote, 1987� up to methods used in currently run-
ning experiments �Regler et al., 1996; Frühwirth et al.,
2000; Mankel, 2004�. In this review, however, we put less
emphasis on traditional approaches but rather focus on
more recently developed adaptive methods tailored to
the needs of experiments of the LHC era. We also make
an attempt to describe the theoretical background of
some of these adaptive methods and show how different
classes of algorithms are intimately connected to each
other. The underlying theory of how charged particles
interact with matter, as well as the basic detection prin-
ciples and basic detector types, is excellently described
in textbooks �e.g., Leo �1994�, Bock and Vasilescu
�1998�, and Amsler et al. �2008�� and will not be covered
here.

In contrast to a traditional approach, a method can be
regarded as adaptive if it incorporates competition be-
tween several hypotheses such that the outcome of the
competition depends on the current observations. In ad-
dition, the possibilities of making soft decisions and of
combining hypotheses according to their posterior
weights are typical features of an adaptive method.
Some of the adaptive methods have a strong Bayesian
flavor, reflected, for example, in the presence of poste-
rior probabilities or weights attached to the different hy-
potheses. The numerical values of the weights in general
change after the inclusion of additional information
from the data. Methods can also exhibit different de-
grees of adaptivity, depending on the level of prior as-
sumptions inherent to the actual approach. The hall-
mark of a good adaptive method is that it achieves
maximum flexibility and robustness with as few assump-
tions about the data as possible.

The review begins in Sec. II with a description of clas-
sical methods of track and vertex reconstruction, fol-
lowed in Sec. III by an overview of adaptive methods
applied to the same tasks. Detector alignment is ad-
dressed in Sec. IV, and the conclusions are given in Sec.
V. An outlook to future research containing our opin-
ions about the most important unsolved problems in the
topics described in this article is given in Sec. VI.
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II. CLASSICAL METHODS OF TRACK AND VERTEX
RECONSTRUCTION

In any analysis of the data of a high-energy physics
experiment, it is of crucial importance to estimate as
accurately as possible the kinetic parameters of particles
produced in a collision event, for example, the position,
direction, and momentum of the particles at their pro-
duction points. For this purpose, a set of detecting de-
vices providing high-precision position measurements is
positioned close to the beam collision area. Charged par-
ticles created in the collisions ionize the material of de-
tecting devices on their way out of the collision area,
providing several position measurements along the tra-
jectory of each particle. The detector elements should
disturb the trajectory of the particles as little as possible.
Hence, the amount of material present in such tracking
detectors should be kept at a minimum.

The task of track reconstruction is traditionally di-
vided into two different subtasks: track finding and track
fitting. Track finding is a pattern recognition or classifi-
cation problem and aims at dividing the set of measure-
ments in a tracking detector into subsets, each subset
containing measurements believed to originate from the
same particle. These subsets are called track candidates.
An additional subset contains measurements believed
not to come from any of the interesting tracks but, for
instance, from noise in the electronics or from low-
energy particles spiraling inside the tracking detector.
Track finding should be conservative and keep a track
candidate in case of doubt rather than discarding it, as a
track candidate discarded at this stage is impossible to
recover at any later stage. An example of a hard track
finding problem is shown in Fig. 1. It is the task of the
track finding to reconstruct the correct classification of
the hits, shown in the bottom panel, to their respective
tracks, shown in the top panel.

The track fit takes the set of measurements in a track
candidate as a starting point. The goal is to estimate
as accurately as possible a set of parameters describing
the state of the particle somewhere in the tracking de-
tector, often at a reference surface close to the particle
beam. With few exceptions �see, e.g., James �1983� and
Chernov et al. �1993��, the estimation is based on least-
squares methods. The track fit should be as computa-
tionally fast as possible, it should be robust against mis-
takes made during the track finding procedure, and it
should be numerically stable.

The track fit is also used to decide whether the
track candidate hypothesis is valid. Such a test can be
based on the value of the �2 statistic, i.e., the sum of the
squared standardized differences between the measured
positions in the track candidate and the estimated posi-
tions of the track at the points of intersection of the
detector devices. If the value of such a statistic is too
high, the set of measurements is not statistically compat-
ible with the hypothesis of having been created by a
single particle. The reason for this incompatibility could
be a single or a few measurements in a track candidate
misclassified by the track finding, or a track candidate

being completely wrong in the sense that it is a random
collection of measurements originating from several
other particles—a so-called ghost track. The track fit
should, in this testing phase, be able to remove wrong or
outlying measurements in the track candidates and sup-
press the ghost tracks completely.

The step following track reconstruction is vertex re-
construction. A vertex is a point where particles are pro-
duced either by a collision of a beam particle with an-
other beam particle or a target particle, the decay of a
particle, or by an interaction of a particle with the ma-
terial of the detector. Vertex reconstruction offers the
following benefits.

• Using the vertex constraint, the momentum esti-
mates of the particles involved can be improved.

• A neutral or very short-lived particle can be recon-
structed by finding its decay products and fitting
them to a common vertex.
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FIG. 1. A hard track finding problem. Top: 100 tracks in a
cylindrical tracking detector with 13 layers. The tracks and the
position measurements �hits� are shown in the projection trans-
verse to the magnetic field. In this projection the track model is
a circle. Bottom: Only the hits are shown.
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• The decay length of a short-lived particle can be de-
termined by computing the distance between its esti-
mated production vertex and its estimated decay
vertex.

Similar to track reconstruction, the task of vertex re-
construction can be divided into vertex finding and ver-
tex fitting. The starting point of vertex finding is the set
of all valid tracks provided by the track reconstruction,
represented by a list of track parameter vectors. The
vertex finding algorithms classifies the tracks into vertex
candidates, which are fed into the vertex fit. The output
of the vertex fit is a list of vertices, each entry containing
the estimated vertex position as well as a set of updated
track parameter vectors of the particles associated to
that particular production point. Again the �2 or a re-
lated statistic can be used to test the vertex hypothesis.

A. Track finding

In experimental conditions such as those found in the
LHC experiments, many of the measurements are either
noise or belonging to particles with energy too low to be
interesting from a physics point of view. Therefore,
many hypotheses have to be explored in order to find
the set of interesting track candidates, and track finding
can in general be a cumbersome and time-consuming
procedure. Computational speed is an important issue,
and the choice of algorithms may be dictated by this
fact. Track finding often uses the knowledge of how a
charged particle moves inside the bulk of the detector,
the so-called track model, but can resort to a simpli-
fied version if time consumption is critical. The use of
simplified track models is particularly important for trig-
gering applications, where track finding is part of the
strategy applied in the online selection procedure of
interesting events. Such applications are not considered
in this paper, which will concentrate on methods used
for offline analysis of data, i.e., analysis of data available
on mass storage.

Methods of track finding can in general be classified as
global or local. Global methods treat all measurements
simultaneously, whereas local methods go through the
list of measurements sequentially. Examples of global
approaches presented below are conformal mapping,
Hough transform, and Legendre transform, whereas the
track road and track following methods are regarded as
local.

1. Conformal mapping

The conformal mapping method �Hansroul et al.,
1988� for track finding is based on the fact that circles
going through the origin of a two-dimensional x-y coor-
dinate system map onto straight lines in a u-v coordinate
system by the transformation

u =
x

x2 + y2 , v =
y

x2 + y2 , �1�

where the circles are defined by the circle equation
�x−a�2+ �y−b�2=r2=a2+b2. The straight lines in the u-v
plane are then given by

v =
1

2b
− u

a

b
. �2�

For large values of r or, equivalently, high-momentum
tracks, the straight lines are passing close to the origin,
and track candidates can be obtained by transforming
the measurements in the u-v plane to azimuthal coordi-
nates and collecting the angular part of the measure-
ments in a histogram. Track candidates are found by
searching for peaks in this histogram.

2. Hough and Legendre transforms

In the case of straight lines not necessarily passing
close to the origin, i.e., for tracks in a larger range of
momenta, a more general approach is needed in order
to locate the lines. The Hough transform �Hough, 1959�
is well suited for such a task. The idea is based on a
simple transformation of the equation of a straight line
in an x-y plane, y=cx+d, to another straight line in a c-d
plane, d=−xc+y. The points along the line in the c-d
plane correspond to all possible lines going through the
point �x ,y� in the x-y plane. Points lying along a straight
line in the x-y plane therefore tend to create lines in
the c-d plane crossing at the point which specifies the
actual parameters of that line in the x-y plane. In prac-
tice, the c-d space is often discretized, allowing a set of
bins to be incremented for each of the measurements in
the x-y space. As for the conformal mapping method,
the position of peaks in the histogram provides informa-
tion about the parameters of the lines in the x-y space.
In contrast to the one-dimensional parameter space of
the conformal mapping method, the parameter space is
in this case two dimensional. The Hough transform rap-
idly loses efficiency for finding tracks if one attempts to
move to a parameter space with a dimension higher than
2.

For track finding in drift tubes, the drift circles pro-
vided by the knowledge of the drift distances of each of
the measurements can be transformed to sine curves in
the azimuthal coordinate system by applying a Legendre
transform �Alexopoulos et al., 2008�. Peaks at the inter-
sections of several sine curves in this coordinate system
give not only the set of drift tubes hit by the same par-
ticle but also the solution to the left-right ambiguity
problem inherent to this kind of detector system. An
illustration is shown in Fig. 2.

3. Track road

An example of a local approach to track finding is the
so-called track road method. It is initiated with a set of
measurements that could have been created by the same
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charged particle. The track model, i.e., the shape of the
trajectory, can be used to interpolate between the mea-
surements and create a road around the trajectory. Mea-
surements inside the boundaries of the road constitute
the track candidate. The number of measurements and
the quality of the subsequent track fit are used to evalu-
ate the correctness of the track hypothesis.

4. Track following

A related approach is track following, which starts
from a track seed. Most of the times, the seed is a short
track segment built from a few measurements. In addi-
tion it can be constrained to point to the interaction
region. Seeds can be constructed in the inner region
of the tracking detector close to the interaction region,
where the measurements frequently are of very high
precision, or in the outer region, where the track density
is lower. From the seed, the track is extrapolated to the
next detector layer containing a measurement. The mea-
surement closest to the predicted track is included in
the track candidate. This procedure is iterated until too
many detector layers with missing measurements are en-

countered or until the end of the detector system is
reached.

B. Track fitting

The track fit aims at estimating a set or vector of pa-
rameters representing the kinematic state of a charged
particle from the information contained in the various
position measurements in the track candidate. Since
these positions are stochastic quantities with uncertain-
ties attached to them, the estimation amounts to some
kind of statistical procedure. In addition to estimated
values of the track parameters, the track fit also provides
a measure of the uncertainty of these values in terms of
the covariance matrix of the track parameter vector.
Most estimation methods can be decomposed into a set
of basic building blocks, and the methods differ in the
logic of how these blocks are combined.

1. Track parametrization

If tied to a surface, five parameters are sufficient to
uniquely describe the state of a charged particle. The
actual choice of track parameters depends on, e.g., the
geometry of the tracking detector. In a detector consist-
ing of cylindrical detector layers, the reference surface is
often cylindrical and makes the radius times the azi-
muthal angle �R�� the natural choice of one of the po-
sition parameters. In a detector consisting of planar de-
tector layers, however, Cartesian position coordinates
are more frequently used �Frühwirth et al., 2000�.

2. Track model

The track model describes how the track parameter or
state vector at a given surface k depends on the state
vector on a different surface i,

qk = fk�i�qi� , �3�

where fk�i is the track propagator from surface i to sur-
face k and q is the state vector. An illustration is shown
in Fig. 3. For simple surfaces, the track model is analyti-
cal in a vanishing magnetic field �straight line� or in a
homogeneous field �helix�. If the field is inhomogeneous,

FIG. 2. �Color online� An illustration of track finding with
the Legendre transform. Top: Drift chamber with a multi-
track event with noise level of 50%. Bottom: The correspond-
ing Legendre transform. The circles in Legendre space graphs
denote the points with the highest height, corresponding
to the reconstructed tracks shown in the top graph. From
Alexopoulos et al., 2008.

����
����

� �

qi qk = fk|i(qi)

surface i surface k

FIG. 3. An illustration of the track model and propagation
concepts. The function fk�i is the track propagator from surface
i to surface k. Its mathematical form depends on the track
model, i.e., the solution of the equation of motion in the actual
magnetic field.
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one has to resort to numerical schemes such as the
Runge-Kutta integration of the equation of motion.

3. Error propagation

During the track parameter estimation procedure,
propagation of the track parameter covariance matrix
along with the track parameters themselves is often re-
quested. The standard procedure for this so-called linear
error propagation is a similarity transformation between
layers i and k,

Ck = Fk�iCiFk�i
T , �4�

where C is the covariance matrix and Fk�i is the Jacobian
matrix of the propagation from layer i to k,

Fk�i =
�qk

�qi
. �5�

For analytical track models the Jacobian is also analyti-
cal �Strandlie and Wittek, 2006�. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
propagation of the track parameters �Bugge and
Myrheim, 1981�.

4. Material effects

The most important effects on the trajectory of
charged particles caused by material present in the de-
tector volume are ionization energy loss and multiple
Coulomb scattering �Amsler et al., 2008�. For light par-
ticles such as electrons, radiation energy loss by brems-
strahlung also plays an important role. The fluctuations
of ionization energy loss are usually quite small, and
such energy loss is therefore normally treated
during track fitting as a deterministic correction to the
state vector �Frühwirth et al., 2000�. Bremsstrahlung en-
ergy loss, on the other hand, suffers from large fluctua-
tions �Bethe and Heitler, 1934� and affects therefore
both the state vector and its covariance matrix. Multiple
Coulomb scattering is an elastic process, which in a thin
scatterer disturbs only the direction of a passing charged
particle; in a sufficiently thick scatterer, the position in a
plane transversal to the incident direction is also
changed �Amsler et al., 2008�. Since the mean value of
the scattering angle and an eventual offset is zero, only
the covariance matrix is updated in order to incorporate
the effects of multiple scattering into the track fitting
procedure.

5. Measurement model

The measurement model hk describes the functional
dependence of the measured quantities in layer k, mk,
on the state vector at the same layer,

mk = hk�qk� . �6�

The vector of measurements mk usually consists of the
measured positions but can also contain other quanti-
ties, e.g., measurements of direction or even momentum.

During the estimation procedure the Jacobian Hk of this
transformation is often needed,

Hk =
�mk

�qk
. �7�

In many cases the Jacobian contains only rotations and
projections and can thus be computed analytically.

a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk�i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness �Rousseeuw and Leroy, 1987�.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k,

mk = dk�q0� + �k, �8�

where dk is a composition of the measurement model
function mk=hk�qk� and the track propagator functions

dk = hk � fk�k−1 � ¯ � f2�1 � f1�0. �9�

The term �k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk. A linear estimator requires a linearized
track model, and for this the Jacobian Dk of dk is
needed,

Dk = HkFk�k−1 ¯ F2�1F1�0, �10�

where H is the Jacobian of h and F is the Jacobian of f.
The observations mk, the functions dk, the Jacobians

Dk, and the noise �k can each be arranged in a single
vector or matrix,

m = �m1

]

mn
�, d = �d1

]

dn
�, D = �D1

]

Dn
�, � = ��1

]

�n
� ,

�11�

where n is the total number of measurement layers. The
model now becomes

m = d�q0� + � , �12�

and the linearized version is

m = Dq0 + c + � , �13�

where c is a constant vector. The global least-squares
estimate of q0 is given by
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q̃0 = �DTGD�−1DTG�m − c� , �14�

where V=G−1 is the nondiagonal covariance matrix of
�.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer �Laurikainen et al., 1972; Eichinger
and Regler, 1981�. The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned �Billoir et al.,
1985�.

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely �Billoir, 1984; Früh-
wirth, 1987�, with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps �see Fig. 4�. The prediction step propa-
gates the estimated track parameter qk−1�k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk�k−1 = fk�k−1�qk−1�k−1� , �15�

as well as the associated covariance matrix,

Ck�k−1 = Fk�k−1Ck−1�k−1Fk�k−1
T + Qk, �16�

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk�k = qk�k−1 + Kk�mk − hk�qk�k−1�� , �17�

where the gain matrix Kk is given by

Kk = Ck�k−1Hk
T�Vk + HkCk�k−1Hk

T�−1, �18�

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck�k = �I − KkHk�Ck�k−1. �19�

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices �weight or informa-
tion matrices� rather than on the covariance matrices
themselves �Frühwirth, 1987�. This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk�n = qk�k + Ak�qk+1�n − qk+1�k� , �20�

where the smoother gain matrix is given by

Ak = Ck�kFk+1�k
T �Ck+1�k�−1. �21�

The smoothed covariance matrix is

Ck�n = Ck�k − Ak�Ck+1�k − Ck+1�n�Ak
T. �22�

The smoother can also be realized by combining two
filters running in opposite directions �Frühwirth, 1987�.

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the �2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration �Frühwirth, 1987�. A cut on the �2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. �2000�. It is based on a re-
descending M-estimator using Tukey’s bisquare function
�Hampel et al., 1986�.

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks

z

x

z = zk−1 z = zk

surface k − 1 surface k

filtered state
qk−1|k−1

scattering matter

predicted state qk|k−1

filtered state qk|k

measurement mk

FIG. 4. Prediction and filter step of the Kalman filter. The
propagation proceeds in the z direction, while the x coordinate
is measured. Adapted from Regler et al., 1996.
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are compatible. The problem is now to find all maximal
fully connected node sets in the graph. An algorithm
that solves this problem is given by Das �1973�.

Searching for a maximal set of compatible tracks may
give several solutions of the same size. In addition, it
may be desirable to take into account the track quality.
This is accomplished by assigning a quality index to each
track, which can be based on various quantities such as
the �2 statistic, the track length, the distance of the track
from the interaction region, the direction of the track,
etc. The best maximal compatible node set is now the
one that maximizes the sum of all quality indices. Find-
ing the best node set has been solved by a recurrent
neural network �Hopfield network; see Sec. III.A�. The
network and an application to one of the forward cham-
bers of the DELPHI experiment are described by Früh-
wirth �1993�. Another algorithm, developed for the glo-
bal solution of tracking ambiguities in DELPHI, is
described by Wicke �1998�.

c. Hybrid methods

The Kalman filter can be used for track finding and
track fitting concurrently �Billoir, 1989; Billoir and Qian,
1990�. The resulting progressive track finding algorithm
can be regarded as an optimal track following proce-
dure. The algorithm illustrated in Fig. 5. It starts out
with finding seeds in a couple of adjacent layers, then
follows each seed through the detector, and picks up
compatible hits as it goes along. If not enough compat-
ible hits are found, the candidate is dropped. In practice,
some of the seeds can be discarded right away because
their momentum is too small or because they do not
point to the interaction point.

In the original formulation of this strategy, the �2 of
the residual of the measurement mk with respect to the
predicted state,

�k,+
2 = rk�k−1

T Rk�k−1
−1 rk�k−1, �23�

with

rk�k−1 = mk − hk�qk�k−1� �24�

and the covariance matrix of the residual given by

Rk�k−1 = Vk + HkCk�k−1H
T �25�

is used to evaluate the statistical compatibility of the
measurement with the prediction. If there are several
compatible measurements, the one with the lowest value
of the �2 statistic is included in the track candidate and
used for the update step of the Kalman filter.

If there are many nearby tracks or a high density of
noisy measurements, the measurement closest to the
predicted track might not necessarily belong to the track
under consideration. In order to cope with such a situa-
tion, the procedure outlined above can be generalized to
a so-called combinatorial Kalman filter �CKF� �Mankel,
1997�. It marks the transition from classical to adaptive
methods insofar as several hypotheses about the track
are entertained simultaneously until in the end one of
them is declared as the winner.

Like the progressive track finding, the CKF starts
from a seed, usually a short track segment at the inner
or the outer end of a tracking detector. If there are sev-
eral compatible measurements in the first layer after the
seed, several Kalman-filter branches are generated, each
of them containing a unique compatible measurement
at the end of the branch. In order to handle potential
detector inefficiencies, a branch with a missing measure-
ment is also created. All branches are propagated to
the next detector layer containing at least one compat-
ible measurement, and new branches are created for
each combination of predicted states compatible with
a measurement. This procedure leads to a combinatorial
tree of Kalman filters running in parallel. Branches
are removed if the total quality of the branch—in terms
of the total �2 of the track candidate up to the layer
under consideration—falls below a defined value or
if too many consecutive layers without compatible mea-
surements are traversed. In the end, the surviving
branch with the highest quality—usually in terms of a
combination of the total �2 and the total number of
measurements—is kept. An example is shown in Fig. 6.

A similar track finding method has been formulated in
the language of cellular automata �Glazov et al., 1993;
Kisel, Konotopskaya, and Kovalenko, 1997; Kisel, 2006�.
The cellular automaton approach can, on the one hand,
be regarded as local as it builds up branches using infor-
mation from measurements in nearby layers. On the
other hand, the procedure is not initiated from a seed.
All measurements are processed in parallel, making the
approach a hybrid between a local and a global method.

1 2 3 4 5 6

1

2

3

4

5

Layer

La
ye

r

FIG. 5. Example of progressive track recognition with three
tracks. Seeds are formed in layers 1–3 by finding all possible
combinations of hits. Each of the seeds is extrapolated to the
outer layers �thin circles�. Seeds that do not reach the next
layer or are not compatible with an observation in some layer
are discarded. The thick circles represent the three seeds that
are successfully propagated to the outermost layer.
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C. Vertex finding

Vertex finding is the task of classifying the recon-
structed tracks in an event into vertex candidates such
that all tracks associated with a candidate originate at
that vertex. There are several types of vertices, and dif-
ferent strategies may be required to find them.

• If the particles are produced by the collision of two
beam particles �in a collider experiment� or a beam
particle and a target particle �in a fixed-target experi-
ment�, the vertex is a primary vertex.

• If the particles are produced by the decay of an un-
stable particle, the vertex is a secondary decay ver-
tex. An example is the decay KS

0 →�+�−.

• If the particles are produced by the interaction of a
particle with the material of the detector, the vertex
is a secondary interaction vertex. An example is
bremsstrahlung, the radiation of a photon by an elec-
tron in the electric field of a nucleus.

The primary vertex in an event is usually easy to find,
especially if prior information about its location is avail-
able, such as the beam profile or the target position. A
notable exception is the invisible primary vertex of a

ϒ�4S�→B0B̄0 decay at a B factory. On the other hand,
secondary decay vertices of short-lived particles may be
hard to find, as some of the decay products may also be
compatible with the primary vertex. An example is
shown in Fig. 7. In this example one of the primary
tracks passes very close to the secondary vertex �top
panel�. This could lead to a wrong assignment of this
track. The bottom panel shows that some of the second-
ary tracks, when extrapolated back into beam tube, pass
very close to the primary vertex. This could result in a
wrong assignment of these tracks. In order to achieve
optimal separation of primary and secondary vertices,
the spatial resolution of the innermost layers and the
minimization of the material are of the utmost impor-
tance.

1. Cluster finding

Clustering methods are based on a distance matrix or
a similarity matrix of the objects to be classified. A clus-

ter is then a group with small distances �large similari-
ties� inside the group and large distances �small similari-
ties� to objects outside the group. The distance measure
reflects only the geometry of the tracks. Hierarchical
clustering builds a tree of clusterings. Agglomerative
methods start at the leaves of the tree, i.e., the single
objects, while divisive methods start at the root, the to-
tality of all objects.

In the simplest case, the clustering can be reduced to a
one-dimensional problem. An example is primary vertex
finding in the pixel �PIX� detector of the CMS experi-
ment at the LHC �Cucciarelli, 2005�. The input of the
algorithm consists of triplets of pixel hits that are com-
patible with a track hypothesis. From each triplet the
longitudinal impact point zIP and its error are computed.
Clusters are found by two methods. With the histogram-
ming method, the impact points are filled into a histo-
gram. Empty bins are discarded, and the nonempty bins
are scanned along z. A cluster is defined as a contiguous

from seed

Reject

Accept

A B C D E
T2

T1

T3

FIG. 6. �Color online� Illustration of the combinatorial Kal-
man filter for an ambiguous situation caused by three nearby
tracks in a superlayer of the HERA-B outer tracker. The
propagation proceeds upstream from the right to the left. It is
assumed that the propagation started with a seed of hits from
track T1. From Mankel, 1997.

−0.02 0 0.02 0.04 0.06 0.08 0.1 0.12
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

L1

L2

L3

BT

x [m]

y
[m

]

Primary vertex
Secondary Vertex
Primary Tracks
Secondary Tracks

−0.02 0 0.02 0.04 0.06 0.08 0.1 0.12
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

L1

L2

L3

BT

x [m]

y
[m

]

Primary vertex
Secondary Vertex
All Tracks

FIG. 7. A hard vertex finding problem. Top: The primary
vertex with ten tracks and a secondary vertex with four tracks
at a distance of 1 cm from the primary vertex. Bottom: All
tracks extrapolated into the beam tube. BT, beam tube; L1,
layer 1, etc.
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set of consecutive bins separated by a distance smaller
than a threshold �z. After a cleaning procedure, the z
positions of the clusters are recomputed as a weighted
zIP average of the remaining tracks, the weights being
the inverse squared errors of the longitudinal impact
points. The primary vertex is identified as the cluster
with the largest sum of squared transverse momenta.

The second method described by Cucciarelli �2005� is
a hierarchical clustering of the divisive kind. The tracks
are ordered by increasing zIP, and the ordered list is
scanned. A cluster is terminated when the gap between
two consecutive tracks exceeds a threshold, and a new
cluster is started. For each initial cluster, an iterative
procedure is applied to discard incompatible tracks. The
discarded tracks are recovered to form a new cluster,
and the same procedure is applied again until there are
less than two remaining tracks.

In the general case, clustering proceeds in space. Vari-
ous clustering methods of both the hierarchical and non-
hierarchical types have been evaluated in the context of
vertex finding �Waltenberger, 2004�. In hierarchical ag-
glomerative clustering each track starts out as a single
cluster. Clusters are merged iteratively on the basis of a
distance measure. The shortest distance in space be-
tween two tracks is peculiar insofar as it does not satisfy
the triangle inequality: if tracks a and b are close and
tracks b and c are close, it does not follow that tracks a
and c are close as well. The distance between two clus-
ters of tracks should therefore be defined as the maxi-
mum of the individual pairwise distances, known as
complete linkage in the clustering literature. Divisive
clustering starts out with a single cluster containing all
tracks. Further division of this cluster can be based on
repeated vertex estimation with identification of outli-
ers. Some examples of the approach are described in
Sec. II.D.3.

2. Topological vertex finding

A very general topological vertex finder �ZVTOP�
was proposed by Jackson �1997�. It is related to the Ra-
don transform, which is a continuous version of the
Hough transform used for track finding �see Sec. II.A�.
The search for vertices is based on a function V�v� which
quantifies the probability of a vertex at location v. For
each track a Gaussian probability tube fi�v� is con-
structed by

fi�v� = exp�−
1
2

�v − r�TVi
−1�v − r�	 , �26�

where r is the point of closest approach of track i to
point v and Vi is the covariance matrix of the track at r.

The vertex function V�v� is defined taking into ac-
count that in the neighborhood of a vertex the value of
fi�v� must be significant for at least two tracks,

V�v� = 

i=0

n

fi�v� − 

i=0

n

f i
2�v��


i=0

n

fi�v� . �27�

Due to the second term on the right-hand side, V�v�
�0 in regions where fi�v� is significant for only one
track. The form of V�v� can be modified to fold in
known physics information about probable vertex loca-
tions. For instance, V�v� can be augmented by a further
function f0�v� describing the location and spread of the
interaction point. In addition, V�v� may be modified by a
factor dependent on the angular location of the point v.

Vertex finding amounts to finding local maxima of
the function V�v�. The search starts at the calculated
maxima of the products fi�v�fj�v� for all track pairs. For
each of these points the nearest maximum of V�v� is
found. These maxima are clustered together to form
candidate vertex regions.

3. Minimum spanning tree

A recent extension to the ZVTOP algorithm uses the
graph-theoretical concept of the minimum spanning tree
�MST� �Kruskal, 1956�. The ZVMST vertex finder �Hil-
lert, 2008� has two stages. In the first, a small number of
likely vertex positions are chosen on the basis of func-
tion �27�. In the second, tracks are assigned to these pre-
liminary vertices.

The first stage of ZVMST starts by forming all pos-
sible two-track combinations and discarding bad ones by
means of a �2 cut. The retained combinations are used
to set up a weighted graph, where each node represents
a track, each edge represents a successful vertex fit, and
the weight is equal to the inverse of the vertex function
at this vertex. The graph is passed to an MST algorithm,
which prunes the graph to a tree such that the total sum
of the weights is minimized. The vertices corresponding
to surviving edges are then merged to candidate vertices
on the basis of their proximity in space. In the second
stage of ZVMST tracks are associated to the candidate
vertices based on both the values of the probability
tubes �see Eq. �26�� and the values of the vertex func-
tions �see Eq. �27�� at the candidate positions.

4. Feed-forward neural networks

Feed-forward neural networks, also called multilayer
perceptrons, are classifiers that learn their decision rules
on a training set of data with known classification. If the
data at hand do not conform to the properties of the
training sample, the network cannot cope with this situ-
ation. Such networks therefore cannot be considered as
adaptive.

Primary vertex finding with a feed-forward neural net-
work was proposed by Lindsey and Denby �1991�. The
input to the network was provided by the drift times
of tracks in a planar drift chamber parallel to the collid-
ing proton-antiproton beams. The chamber was divided
into overlapping 18-wire subsections. The 18 wires cor-
respond to the 18 input units of the network. The hidden
layer of the network had 128 neurons and the output
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layer had 62 units, corresponding to 62 1-cm bins along
the beam line �see Fig. 8�. The network was trained
by back-propagation on 12 000 patterns, a mixture of
events with single tracks, single tracks with noise hits,
double tracks, and empty events. The performance was
reported to be nearly as good as the conventional offline
fitting algorithm.

A more advanced network was proposed for vertex
finding in the ZEUS central tracking detector �Dror and
Etzion, 2000�. The network is based on stepwise changes
in the representation of the data. It moves from the in-
put points to local line segments, then to local arcs, and
finally to global arcs. The z coordinate of the vertex is
computed by a second three-layer network running in
parallel. The resolution of the vertex coordinate z was
reported to be better by almost a factor of 2 compared
to the conventional histogramming method.

D. Vertex fitting

1. Least-squares methods for vertex fitting

Classical methods of vertex fitting are similar in many
respects to track fitting methods. The parameters to be
estimated are the common vertex v of a set of n tracks
and the momentum vectors pi of the participating tracks.
The “measurements” are the estimated track param-
eters q̃i along with their covariance matrices Vi=Gi

−1,
i=1, . . . ,n, at some reference surface �Fig. 9�.

The model for a global least-squares estimator can be
written down in the following form:

�q̃1

]

q̃n
� = �h1�v,p1�

]

hn�v,pn�
� + ��1

]

�n
� , �28�

where qi=hi�v ,pi� is the deterministic track model of
track i and �i is the estimation error of track i. If there is
multiple scattering between the positions of the vertex
and of the track parameters, its effect has to be included

in �i as well. As the track estimates are stochastically
independent, the joint covariance matrix of all �i is block
diagonal.

Least-squares estimation of this model requires mini-
mization of the following objective function:

F�v,p1, . . . ,pn� = 

i=1

n

ei
TGiei, ei = q̃i − qi. �29�

Minimization of the objective function can proceed in
several ways. A detailed exposition of nonlinear least-
squares estimation can be found, for example, in Bates
and Watts �1988�. The most popular estimation method
is the Gauss-Newton method. Starting from approxi-
mate parameter values v̆ and p̆i for all i, the track model
can be approximated by an affine function

qi � ci + Aiv + Bi pi, �30�

with

Ai =
 �hi�v,pi�
�v



v̆,p̆i

, Bi =
 �hi�v,pi�
�pi



v̆,p̆i

,

�31�
ci = hi�v̆,p̆i� − Ai v̆ − Bi p̆i.

Using this approximation, Eq. �28� can be rewritten as a
linear model,

M �32�

Because of the special structure of the model matrix M
the minimization of objective function �29� results in a
closed-form solution �Billoir et al., 1985�,

ṽn = Cn

i=1

n

Ai
TGi

B�q̃i − ci� ,

�33�

FIG. 8. The neural network architecture used to determine the
vertex of tracks in 18-wire z-chamber subsections. All input
units and the bias unit are connected to all hidden units. All
hidden units and the bias unit are connected to all output units.
Only a few of the connections are shown. The bias unit has an
output activation fixed to 1.0. From Lindsey and Denby, 1991.
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var�ṽn� = Cn = �

i=1

n

Ai
TGi

BAi�−1

,

with

Gi
B = Gi − GiBiWiBi

TGi,
�34�

Wi = �Bi
TGiBi�−1.

The subscript n indicates that the vertex estimate ṽn is
based on all of the n tracks.

In general, the procedure has to be iterated. The
model equation �Eq. �28�� is expanded at the new esti-
mate, and the estimate is recomputed until convergence
is obtained. The formulas required for the implementa-
tion of two important cases, fixed-target configuration
and solenoidal configuration, are given by Harr �1995�.

Once ṽn is known, the estimated track momenta and
the full covariance matrix can be computed,

p̃i
n = WiBi

TGi�q̃i − ci − Aiṽn� ,

var�p̃i
n� = Di

n = Wi + WiBi
TGiAiCnAi

TGiBiWi, �35�

cov�p̃i
n,ṽn� = Ei

n = − WiBi
TGiAiCn, i = 1, . . . ,n .

The superscript n indicates that the estimated track mo-
mentum of track i uses information from all n tracks via
the vertex estimate ṽn.

The estimates can also be computed progressively, re-
sulting in an extended Kalman filter �Billoir et al., 1985;
Frühwirth, 1987; Catlin, 1989�. Assume that the vertex
ṽi−1 has been estimated using tracks 1 to i−1. Track i is
added via the following update equations:

ṽi = Ci�Ci−1
−1 ṽi−1 + Ai

TGi
B�q̃i − ci�� ,

p̃i = WiBi
TGi�q̃i − ci − Aiṽi� ,

Ci = �Ci−1
−1 + Ai

TGiAi�−1, �36�

Di = Wi + WiBi
TGiAiCiAi

TGiBiWi,

Ei = − WiBi
TGiAiCi.

Apart from small numerical effects, the final result does
not depend on the order in which the tracks are added.
The latter is therefore arbitrary.

The smoother associated to this filter is tantamount to
recomputing the track momenta using the last vertex
estimate ṽn, i.e., Eqs. �35�. For implementations of
the full Kalman-filter formalism in the LHC experi-
ments ATLAS and CMS, see Waltenberger �2004� and
Wildauer �2006�.

Using the estimated vertex position and track mo-
menta, the estimated track parameters can be updated
to

q̃i
n = h�ṽn,p̃i

n� ,
�37�

var�q̃i
n� = BiWiBi

T + Vi
BGiAiCnAi

TGiVi
B,

with

Vi
B = Vi − BiWiBi

T. �38�

The updated track parameters are no longer indepen-
dent.

The �2 statistic of the final estimate is given by

�2 = 

i=1

n

ri
TGiri, �39�

with the residuals ri= q̃i− q̃i
n. It can be used to test the

vertex hypothesis, i.e., the correctness of model �28�. If
the test fails, however, there is no information about
which track�s� may have caused the failure.

The estimated track parameters q̃i are frequently
given at the innermost detector surface or at the beam
tube. If the q̃i are propagated to the vicinity of the pre-
sumed vertex, the vertex estimation can be speeded up
by applying some approximations, especially if the mag-
netic field is sufficiently homogeneous.

The “perigee” parametrization for helical tracks was
introduced by Billoir and Qian �1992� with a cor-
rection by Billoir and Qian �1994�. The track is pa-
rametrized around the point of closest approach �the
perigee point vP� of the helix to the z axis. The variation
of the transverse errors along the track is neglected in
the vicinity of the perigee, and track direction and cur-
vature at the vertex are assumed to be constant. The
approximate objective function of the vertex fit can then
be written entirely in terms of the perigee points,

F�v� = 

i=1

n

�vi
P − v�TTi�vi

P − v� , �40�

where Ti is a weight matrix of rank 2. The vertex esti-
mate is then

ṽ = �

i=1

n

Ti�−1�

i=1

n

Tivi
P� . �41�

The Jacobians required to compute the Ti are given by
Billoir and Qian �1992, 1994�. For an implementation
in ATLAS, see Wildauer �2006� and Piacquadio et al.
�2008�.

A further simplification was proposed by Karimäki
�1997�. The track is approximated by a straight line in
the vicinity of the vertex. The estimated track param-
eters are transformed to a coordinate system the x axis
of which is parallel to the track. The vertex is then esti-
mated by minimizing the sum of the weighted transverse
distances of the tracks to the vertex. The resulting ob-
jective function has the same form as in Eq. �40�, again
with weight matrices of rank 2. The estimate is exact for
straight tracks. The method has been implemented in
CMS �Waltenberger, 2004�.
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2. Robust vertex fitting

In experimental reality vertex candidates as produced
by the vertex finder are often contaminated by outliers.
Outliers can be broadly classified into two categories. In
the first category are mismeasured tracks, i.e., tracks for
which the deviation of the estimated track parameters
from the true track parameters is larger than indicated
by the covariance matrix of the track. There may be
several reasons for that, including extraneous observa-
tions resulting from a mistake in the track finding, a
wrong estimate of the material the track has crossed, or
a wrong estimate of the covariance matrix of an obser-
vation. In the second category are extraneous tracks not
belonging to the vertex at all, e.g., a primary track at-
tached by mistake to a secondary vertex, or a back-
ground track attached to either a primary or a secondary
vertex.

As in the case of track reconstruction, there are two
different ways of dealing with outliers. Either outliers
are identified and removed or the influence of outliers is
reduced by using robust estimators. Outliers can be
identified by inspecting their �2 increment with respect
to the vertex estimated from the other tracks,

�i
2 = ri

TGiri + �q̃i − ci − Aiṽn�T

· Gi
BAi�Cn

i �−1Ai
TGi

B�q̃i − ci − Aiṽn� , �42�

with Cn
i =Cn−Ai

TGi
BAi the covariance matrix of the ver-

tex fitted from all tracks except track i. If there are no
outliers, �i

2 is �2 distributed with m=dim�q̃�−dim�ṽ� de-
grees of freedom. As outliers should give significantly
larger values of �i

2, the latter can be used to test for the
presence of outliers. If there are several outliers, the
fitted vertex is always biased even if one of the outliers is
removed. In this case it is better to reduce the influence
of outliers already in the estimate itself by constructing a
robust estimator.

One of the earliest proposals for a robust vertex fit
�Frühwirth et al., 1996� is an M-estimator with Huber’s �
function �Huber, 1981�. It can be implemented as an it-
erated reweighted least-squares estimator. The initial
vertex estimate is a plain least-squares estimate. Then,
for each track, the residuals are rotated to the eigensys-
tem of the covariance matrix of the track, and weight
factors are computed according to

wi = �1, �ri� � c�i

c�i/�ri� , �ri� 	 c�i,
� �43�

where ri is one of the residuals in the rotated frame, �i is
the standard deviation in the rotated frame, and c is the
robustness constant, usually chosen between 1 and 3.
The weight factors are applied and the estimate is re-
computed. The entire procedure is iterated until conver-
gence.

A similar kind of reweighted least-squares estimator
was proposed by Agakichiev et al. �1997�. The weights

are computed according to Tukey’s bisquare function
�Hampel et al., 1986�,

wi = ��1 −
ri

2/�i
2

c2 �2

for �ri� � c�i

0 otherwise,
� �44�

where ri
2 is the squared residual of track i with respect to

the vertex, �i
2 is its variance, and c is again the robust-

ness constant. The estimator is now equivalent to a re-
descending M-estimator �Hampel et al., 1986� and there-
fore less sensitive to outliers than Huber’s M-estimator.
The same weights were proposed by Golutvin et al.
�2000� for robust track fitting.

Another obvious candidate for robust vertex estima-
tion is the least trimmed squares �LTS� estimator �Rous-
seeuw and Leroy, 1987; D’Hondt et al., 2004; Chabanat
et al., 2005�. With the LTS estimator, the objective func-
tion of Eq. �29� is replaced by

F�v,p1, . . . ,pn� = 

i=1

�hn�
ei

TGiei, ei = q̃i − qi, �45�

where h is the user-defined fraction of tracks to be in-
cluded in the estimate. Finding the subset of tracks that
minimizes F is a combinatorial problem, which makes
the LTS estimator much more difficult �and slower� to
compute than the least-squares estimator. In addition,
the fraction h is fixed and has to be specified in advance.
As a consequence, tracks are thrown away even if there
are no outliers, and the precision of the estimate suffers.
Both problems can be overcome by the introduction of
the adaptive vertex estimator �see Sec. III.F�.

3. Vertex finding by iterated fitting

The test on outliers based on the �2 increment �i
2

�see Eq. �42�� can be expanded to a full-blown vertex
finder by recursively identifying and removing outliers
�Speer et al., 2006c�. The algorithm has been called
“trimmed Kalman filter” but should not be confused
with the LTS estimator �see Sec. II.D.2�.

First, all input tracks are fitted to a common vertex
using a standard least-squares estimator �see Sec.
II.D.1�. The �2 increment is computed for all tracks, the
track with the largest increment is removed from the
vertex, and the vertex is refitted. This procedure is re-
peated until the �2 increment of all tracks is below a
given threshold. Once a track has been rejected, it is not
included again in the vertex.

When a vertex has been established, the entire proce-
dure is repeated on the set of the remaining tracks. The
iteration stops when no vertex with at least two tracks
can be successfully fitted.

If there are no outliers and if all tracks are correct-
ly estimated at the track fitting stage, the �2 increment
is distributed according to a �2 distribution with m
=dim�q̃�−dim�ṽ� degrees of freedom. If the threshold
mentioned above is set to the 1−
 quantile of the �2

distribution with m degrees of freedom, then under the
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null hypothesis of no outliers the probability of rejecting
a randomly chosen track is equal to 
 and the probabil-
ity of rejecting the track with the largest �2 increment is
approximately equal to 1− �1−
�n if the number of
tracks n is large enough so that the correlations between
the �2 increments can be neglected.

If there are outliers, the �2 increments are no longer
�2 distributed, and the probability of rejecting a ran-
domly chosen good track may be well above 
. The re-
spective probabilities of falsely rejecting good tracks and
correctly identifying outliers can no longer be calculated
analytically and have to be determined by simulation
studies.

The iterative identification of outliers is therefore a
lengthy and somewhat unreliable procedure, especially
if there are several outliers, resulting in a severe bias on
the estimated vertex position. These problems can be
overcome by employing not a least-squares estimator
but an adaptive estimator in each stage of the iteration
�see Sec. III.F�.

III. ADAPTIVE METHODS

The first attempt to equip track reconstruction
methods with adaptive behavior was the application of
the Hopfield network to track finding �Denby, 1988;
Peterson, 1989�. As it turned out to be difficult to embed
the correct physical track model into the Hopfield net-
work, the next step was the elastic arms or deformable
template algorithm �Ohlsson et al., 1992� and a related
method called elastic tracking �Gyulassy and Harlander,
1991�. At this point the traditional boundaries between
pattern recognition �track finding� and parameter esti-
mation �track fitting� started to dissolve. Both methods,
however, required numerical minimization of a compli-
cated energy function. The realization that an alterna-
tive way of minimization was provided by the EM algo-
rithm �Dempster et al., 1977� then paved the way to
adaptive least-squares estimators in general and to an
adaptive version of the Kalman filter in particular �Früh-
wirth and Strandlie, 1999�. Even the concept of anneal-
ing, native to the world of neural networks and combi-
natorial optimization, could be transplanted in a natural
way into the world of stochastic filters. As vertex recon-
struction is similar to track reconstruction in many re-
spects, adaptive methods developed for track finding
and fitting could be applied to vertex finding and fitting
almost one to one.

Adaptive methods for track and vertex reconstruction
tend to have a certain set of features in common. The
most salient ones are the following.

• After being initialized at some position, the track or
vertex moves during an iterative procedure due to
some defined dynamical scheme. The dynamical
scheme often uses the information from the data sev-
eral times during the iterations. This can also be re-
garded as a sequential exploration of several hypoth-
eses about the correct values of the set of parameters
describing the track or vertex.

• The observations—detector hits in the case of track
fitting, reconstructed tracks in the case of vertex
fitting—can also have a weight attached to them, po-
tentially depending on the positions of other obser-
vations, thereby opening up the possibility of soft as-
signment of the observations to the track or vertex.
In the case of track fitting, sets of mutually exclusive
observations, e.g., several hits in the same detector
layer, can compete for inclusion in the track in the
sense that hits close to the track tend to downweight
the influence of hits that are further away in the
same detector layer.

• The dynamics of the track or vertex can often be
regarded as an iterative strategy for locating the
minimum of an energy hypersurface in the space of
the track or vertex parameters. This energy surface
often has several local minima. In order to increase
the probability of reaching the global minimum,
some of the methods introduce the concept of tem-
perature and annealing. Typically, an algorithm is ini-
tiated at a high temperature, and the temperature
parameter is decreased �“cooled”� during the itera-
tions. The effect is that the energy surface is
smoothed out at high temperatures, whereas the
original structure of the energy landscape shows up
in the late stages of the iterations when the tempera-
ture is low.

• A nonlinear filter can explore a set of track or vertex
hypotheses in parallel rather than in sequence. The
final result is calculated by collapsing the surviving
hypotheses into a single Gaussian distribution. The
concepts of weights, soft assignment, and competi-
tion are therefore also relevant for nonlinear filters.

A. Hopfield neural networks

Artificial neural networks �Hertz et al.,1991� consti-
tute a computational paradigm which is by now well es-
tablished. Such networks are used in a range of different
application areas, for instance, within pattern classifica-
tion and combinatorial optimization problems. The first
application in high-energy physics dates back to 1989.
Earlier reviews of the applications of neural networks in
high-energy physics can be found in Kisel et al. �1993�
and Denby �1999�.

For the solution of combinatorial optimization prob-
lems Hopfield networks �Hopfield, 1982� have emerged
as particularly powerful tools. The standard dynamics of
a Hopfield network

Si = sgn�

j

TijSj� , �46�

where Tij is the connection weight between neuron i and
neuron j and the sign function sgn�x� is taken to be

sgn�x� = �1, x � 0

− 1, x � 0,
� �47�

leads to a local minimum of the energy function
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E = −
1
2


i



j
TijSiSj �48�

with respect to the configuration of the set of binary-
valued neurons �Si�. The general solution to the problem
is tantamount to finding the global minimum of the en-
ergy function.

A benchmark problem in combinatorial optimization
is the traveling salesman problem, which asks for the
shortest path through N cities positioned at a set of
known coordinates. From Hopfield and Tank �1985� the
traveling salesman problem was formulated as a minimi-
zation problem of an energy function of a Hopfield net-
work. Since the local minimum found by the standard
network dynamics can provide solutions quite far from
the desired global optimum, it was suggested to use a
smooth update function, the hyperbolic tangent, in-
spired by mean-field theory from statistical mechanics.
The mean-field theory update equations were rigorously
derived by means of a saddle-point approximation by
Peterson and Anderson �1987�. The main idea behind
this approximation is that the behavior of the partition
function Z,

Z = 

S

e−E�S�/T, �49�

where S= �S1 ,S2 , . . . ,SN� is a configuration of the N neu-
rons in the network is dominated by the low-energy con-
figurations of E�S�. These configurations are searched
for by first replacing the sum over different configura-
tions S= ±1 by integrals over continuous variables U and
V, giving

Z = c�
i
�

−





dVi�
−i


i


dUie
−E��V,U,T�, �50�

where c is a normalization constant and the effective
energy E� is given by

E��V,U,T� =
E�V�

T
+ 


i
�UiVi − ln�cosh Ui�� . �51�

The saddle points of Z are found by requiring that the
partial derivatives of E� with respect to both mean-field
variables Ui and Vi are zero, giving the update equations

Vi = tanh�

j

TijVj/T� . �52�

The energy landscape of E� is smoother than that of the
original energy E particularly at high temperatures T.
The strategy of finding low-energy configurations is thus
to initiate the search at a high temperature and iterate
Eq. �52� until convergence. The temperature is lowered,
and a new minimum configuration of the mean-field
variables is found, starting out from the configuration
obtained by the previous iteration. The whole procedure
is repeated at successively lower temperatures, ap-
proaching the zero-temperature limit in the end. In this
limit, the mean-field equations reduce to the standard
dynamics of the Hopfield network. Since the mean-field

equations are solved at a sequence of decreasing tem-
peratures, the procedure is called mean-field annealing.

It was realized independently by Denby �1988� and
Peterson �1989� that the problem of finding track candi-
dates in a high-energy physics particle detector could be
formulated as the problem of minimizing an energy
function of the Hopfield type. In this model, called the
Denby-Peterson network, the neurons correspond to
links between measurements in adjacent detector layers,
and the weights quantify the probability of two adjoin-
ing links belonging to the same track. If two such adjoin-
ing links point in approximately the same direction, the
energy is decreased and if two links start from or end up
in the same measurement, the energy is increased. An
overall constraint, limiting the total number of active
neurons to the overall number of measurements, is also
included in the energy function. The network is run to
convergence with mean-field annealing. Figure 10 shows
an example of a Denby-Peterson network in various
stages of its evolution. At the end some shortcomings,
such as missing or illegal neurons and incorrect choices,
can be observed. Of course the Hopfield dynamics is just
one way of minimizing the energy function. Alternatives

FIG. 10. Track finding with a model neural network. Total
network energy and iteration number are given. Measured
space points are represented by crosses and neurons by seg-
ments joining points with a circle at the neuron head indicating
direction. Only neurons with output values greater than 0.1 are
drawn. In practice, most neurons are found to have values near
either 0 or 1. At convergence �final frame, bottom right�, the
reconstruction is not perfect. An example of missing or illegal
neurons can be found in the circle marked a; incorrect choices
of neurons can be observed in the circles marked b and c.
From Denby, 1988.
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to mean-field annealing have been explored but found
to be inferior �Diehl et al., 1997�.

The first experimental implementation of a Hopfield
network was done in the ALEPH experiment �Stimpfl-
Abele and Garrido, 1991� and found to give results com-
patible with those produced by the standard track finder
used in the experiment. A simplified version of a
Hopfield network has also been tested on real data from
the ARES spectrometer �Baginyan et al., 1994�. More
recently, the method has been tried on simulated data
from the ALICE experiment �Badalà et al., 2003, 2004�.
Used in combination with the standard Kalman-filter
based track finding procedure, it was shown to increase
the track finding efficiency as compared to a stand-alone
application of the Kalman filter.

B. Elastic nets and deformable templates

An alternative solution to the traveling salesman
problem is the application of the elastic net method
�Durbin and Willshaw, 1987�. In this method, the initial
path is a smooth curve, which in general does not pass
through any of the cities. By an iterative procedure, the
path is gradually deformed through the influence of two
different forces, whose relative strengths are governed
by two constants 
 and �. If the coordinates of city i are
given by xi and the coordinates of a typical point j along
the path are given by yj, the change �yj in an iteration is

�yj = 


i

wij�xi − yj� + �K�yj+1 − 2yj + yj−1� , �53�

where K is a constant. One of the forces attracts the
path toward the cities, whereas the other one tries to
minimize the total length of the path. The coefficient wij
is the strength of the connection between city i and point
j. It is normalized,

wij = ���xi − yj�,K��

k

���xi − yk�,K� . �54�

If ��d ,K� is taken to be Gaussian,

��d,K� = e−d2/2K2
, �55�

an energy function E can be defined as

E = − 
K

i

ln�

j

���xi − yj�,K�� + �

j

�yj+1 − yj�2

�56�

such that the update of the position yj can be regarded
as a gradient descent of the energy function in the coor-
dinate space of yj,

�yj = − K
�E

�yj
. �57�

The value of K is lowered during the iterations, causing
the path to eventually pass through all of the cities. On
problems with a quite large number of cities, the elastic
net method is superior to the Hopfield network ap-
proach �Durbin and Willshaw, 1987�.

The elastic net method has been successfully applied
to track fitting in a drift-tube detector in the NEMO
experiment �Kisel et al., 1997�. For this application, three
different forces are acting during the iterations. One
draws the track to the edge of the drift circle defining
the possible positions of the measurement in the tube,
the other smoothes out the track, and the third attracts
the two lines constituting the envelope of the track to-
ward each other. An example is shown in Fig. 11.

An application of the elastic net to vertex finding is
described by Kisel, Konotopskaya, and Kovalenko
�1997�. As the vertex can be anywhere in a large target
�diameter �10 cm� there is no good initial approxima-
tion to the vertex position. The vertex is therefore de-
fined as the center of the area with maximum track den-
sity. The vertex finder is based on an elastic ring and
uses two types of forces: attraction of the ring to all
tracks, shifting toward the area with high track density,
and attraction to the nearest tracks, localizing the vertex
region. More recently, the elastic net method has also
been applied to ring finding in a ring imaging Čerenkov
detector in the CBM experiment �Gorbunov and Kisel,
2005, 2006�.

An important generalization of the elastic net method
has been developed by Yuille �1990�, formulating the
traveling salesman problem as an assignment problem,
with an energy function containing binary assignment
variables Vij. These variables are equal to 1 if city i is
assigned to point j and 0 otherwise. In order to assign a
city to only one point, the constraint 
jVij=1 is intro-
duced. The energy function E reads

E��Vij�,�yj�� = 

ij

Vij�xi − yj�2 + �

j

�yj − yj+1�2, �58�

where � is a positive constant. Finding a minimum of E
with respect to all possible and allowed values of �Vij�
and �yj� is prohibitively difficult. A more feasible ap-
proach is to consider the average behavior of the assign-
ment problem by assuming a Boltzmann distribution for
the states of the system

P��Vij�,�yj�� = e−E��Vij�,�yj��/T � Z , �59�

where the partition function Z is given by

Z = 

�Vij�,�yj�

e−E��Vij�,�yj��/T. �60�

Summing over all allowed configurations of �Vij�, the
partition function becomes

Z = 

�yj�

e−Eeff��yj��/T, �61�

with the effective energy

Eeff��yj�� = − T

i

ln�

j

e−�xi − yj�
2/T� + �


k
�yk − yk+1�2.

�62�

This is the same as the energy function of the elastic net
method �Durbin and Willshaw, 1987�. As the sought
minimum configuration of the system dominates the be-
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havior of the partition function in the low-temperature
limit, a feasible strategy is to initiate the search at a large
temperature and find the minimum of the effective en-
ergy. The temperature is lowered, and a new minimum is
found, starting out at the values of �yj� found by the
previous minimization. The procedure is repeated at
successively lower temperatures, taking the zero-
temperature limit in the end. This procedure is equiva-
lent to the elastic net method iterated at successively
lower values of the constant K �Durbin and Willshaw,
1987�. With the introduction of a parameter interpreted
as temperature, such a procedure can be regarded as an
annealing procedure. Being nonrandom—in contrast to
the stochastic strategy called simulated annealing �Kirk-
patrick et al., 1983�—it is an example of a deterministic
annealing procedure.

The Hopfield network algorithm �Hopfield and Tank,
1985� can also be derived using Eq. �58� by considering
the average behavior of �yj� instead �Yuille, 1990�. Such
a strategy gives a new energy only dependent on �Vij�,
which is similar to the energy function of Hopfield and

Tank �1985�. This establishes the close connection be-
tween the elastic net method and the neural network
approach.

The track reconstruction task �Ohlsson et al. �1992��
has been formulated as an assignment problem in a way
similar to the approach described by Yuille �1990�. In
this so-called elastic arms approach, measurements i are
assigned to template tracks or arms a by the binary de-
cision units �Sia� under the constraint that each measure-
ment is assigned to at most one arm a. The energy func-
tion reads

E��Sia�,�qa�� = 

ia

SiaMia + �

i
�


a
Sia − 1�2

, �63�

where Mia is the squared distance from measurement i
to the track parametrized by the track parameter vector
qa. The second term imposes a penalty if a measurement
is not assigned to any track. Following exactly the same
strategy as described for the traveling salesman problem
above, the states of the system are assumed to obey a
Boltzmann distribution, and an effective energy Eeff is

FIG. 11. Initial and final configurations of the elastic net for a NEMO-2 event. Some initial configurations are eliminated by
grouping hits into clusters. From Kisel et al., 1997.
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obtained by summing over all possible configurations of
the assignment variables,

Eeff��qa�� = − T

i

ln�e−�/T + 

a

e−Mia/T� . �64�

As before, the system is initiated at a large temperature
with a certain set of values of the parameters of the
arms. Successive minimizations are performed at a se-
quence of decreasing temperatures, stopping at a tem-
perature close to zero. The minimization strategy at a
given temperature is equivalent to the gradient descent
procedure of Durbin and Willshaw �1987�. Visually, this
procedure amounts to a set of arms or template tracks
being attracted to the measurements created by the
charged particles during the annealing. At low tempera-
tures, the arms settle in the vicinity of these measure-
ments, and measurements too far from the arm have no
effect on the final estimate of the track parameters due
to the cutoff parameter �.

The algorithm has been extended to deal with left-
right ambiguities in drift-tube detectors �Blankenbecler,
1994�, and improved minimization schemes using the
Hessian matrices have been introduced �Ohlsson, 1993�.
The first test in an LHC scenario was done by Lindström
�1995�. Applied to track reconstruction in the transition
radiation tracker �TRT� subsystem of the ATLAS detec-
tor �Aad et al., 2008�, the arms were initiated by the
output of a Hough transform track finding procedure.
The elastic arms algorithm �EAA� was then run in order
to resolve the left-right ambiguities and settle on the
final estimates of the track parameters.

A similar approach, called the elastic tracking algo-
rithm �ETA�, was developed by Gyulassy and Harlander
�1991�. The basic idea is to interpret the classical Radon
transform as an interaction energy between the mea-
surements in a tracking detector and a template track.
The minimum of the interaction energy with respect to
the parameters of the template track defines the solution
to the problem. Similar to the elastic arm algorithm, an
iterative annealing procedure is followed in order to
avoid local minima of the energy function. A compari-
son between the Denby-Peterson network and the elas-
tic tracking algorithm is shown in Fig. 12.

The interaction energy RV as presented by Gyulassy
and Harlander �1991� can in principle handle continuous
charge distributions, i.e., situations where the charged
particle potentially has ionized several neighboring basic
detector units. Usually, the information from such neigh-
boring units is compressed into an effective measure-
ment before track reconstruction starts, implicitly dis-
cretizing the data. For discretized data the interaction
energy is defined in terms of a sum over measurements i
and tracks a,

RV�q,I� = − 

ia

V�Mia,I� , �65�

where V is an interaction potential and I is the iteration
number. From Gyulassy and Harlander �1991� a Lorent-
zian potential of the following form was suggested:

V�Mia,I� =
w2�I�

Mia + w2�I�
, �66�

where w2 is chosen quite large in the beginning of the
iterations in order to smooth out the energy surface;
asymptotically it should reach a value compatible with
the standard deviation of the measurement error. The
algorithm has been tested out in a time projection
chamber-like scenario with nearby and overlapping
tracks �Gyulassy and Harlander, 1992�. Working on non-
clustered data with realistic charge fluctuations, subpad
multiple track resolutions were obtained.

A potential disadvantage with the deformable tem-
plates approach is the high computational complexity.
An attempt to speed up the elastic arms algorithm was
made by formulating it as a single-track algorithm
�Frühwirth and Strandlie, 1999�. At the same time, it was
generalized in order to cope with an arbitrary number of
competing measurements in the same detector layer. It
was shown that despite the simplification to the single-
track formulation, further computational load neverthe-
less had to be introduced in order to achieve optimal
performance as advanced approaches such as quasi-
Newton methods are needed in the final iteration for
locating the global minimum of the energy function with
satisfactory accuracy. Another disadvantage is the need
of a parametric model of the track, which limits the ap-
plication to experimental scenarios with vanishing or ho-
mogeneous magnetic fields, and negligible material ef-
fects such as energy loss and multiple scattering.

FIG. 12. A hard problem of tracking 15 lines on the top left
given the measured points on top right including 100% noise.
The confusion of the neural net algorithm �Denby, 1988; Peter-
son, 1989� on the bottom left is apparent. The long-range cor-
relations are, however, easily identified with the elastic track-
ing method on the bottom right. From Gyulassy and
Harlander, 1991.
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Track reconstruction and vertex reconstruction have
many features in common. It is therefore not surprising
that the deformable template method has been extended
to the problem of vertex finding �Stepanov and Khanov,
1997�. Simultaneous track and vertex finding with de-
formable templates was proposed by Haas �2000�.

In the most general case, vertex finding starts with K
tracks and N vertex templates. Each template is a col-
lection of the following elements: the vertex position vn,
the K binary decision units Vnk, the momentum vectors
pnk at vertex n of all tracks, and the estimated track
parameters q̃k, where 1�k�K. The energy function
reads

E��Vnk�,�vn�,�pnk�,�q̃k��

= 

n=1

N



k=1

K

VnkMnk + �

k=1

K �

n=1

N

Vnk − 1�2

, �67�

where Mnk is a measure of distance between vertex tem-
plate n and track k. The second term in Eq. �67� imposes
a penalty when a track is not matched to exactly one
vertex. The distance Mnk is chosen as the �2 statistic,

Mnk = rnk
T Gkrnk, �68�

where rnk= q̃k−hk�vn ,pnk� is the residual of track k with
respect to vertex template n �see Eq. �28�� and Gk is the
inverse covariance matrix of track k. If there is prior
information that track k cannot be associated with ver-
tex n, the corresponding decision unit Vnk can be frozen
to 0.

Stepanov and Khanov �1997� minimized the energy
function iteratively by alternating two steps. In the first
one the energy function was minimized with respect to
the continuous variables �vn� and �pnk� using gradient
descent. In the second step, the weights were updated
according to

Vnk =
e−Mnk/T

e−�/T + 

i=1

N

e−Mik/T

, �69�

with a temperature parameter T. In the example pre-
sented by Stepanov and Khanov �1997�, the starting tem-
perature was chosen to be about 1 and slightly decreased
during the iterations. The penalty term � was chosen to
be large ��50� and slightly decreased as well in the
course of the minimization.

C. Gaussian-sum filter

As seen in Sec. III.B, elastic tracking approaches can
be used to resolve ambiguities and downweight noise.
For instance, in the elastic arm approach the parameter
� plays the role as a cutoff parameter since measure-
ments with a squared distance to the arm larger than �
have virtually no effect on the final estimates of the
track parameters.

A first attempt to achieve a similar downweighting
effect within a filtering approach took as a starting point

a two-component Gaussian-mixture description of the
measurement error, the narrow component representing
true measurements and a wider component representing
outliers �Guttman and Peña, 1985; Lin and Guttman,
1993; Frühwirth, 1995�. The update of the track param-
eters and the covariance matrix is obtained in a Baye-
sian spirit as the mean and covariance matrix of the pos-
terior distribution, resulting in a weighted sum of the
output of two Kalman filters. This collapsed state vector
is then propagated to the next detector layer containing
a measurement.

The procedure was later, following Kitagawa �1989,
1994�, generalized to a full Gaussian-sum filter �GSF�
�Frühwirth, 1997�. In the full GSF, both measurement
noise and stochastic material effects such as multiple
scattering and energy loss by bremsstrahlung are mod-
eled as Gaussian mixtures. The posterior distribution is
not collapsed after every update, and the GSF takes the
form of a set of Kalman filters running in parallel. Each
time a Gaussian-mixture probability density function
with M components is encountered during the recon-
struction procedure, the posterior distribution is still a
Gaussian mixture but containing M times as many com-
ponents as the prior distribution.

Let x denote the track state at a material layer or a
measurement layer and let its prior distribution be a
mixture of K multivariate Gaussians. The mixture den-
sity is completely specified by its weights, mean vectors,
and covariance matrices,

f�x� = 

k=1

K

�k��x ;xk,Ck�, 

k=1

K

�k = 1. �70�

If the state is at a material layer and the process noise
�e.g., multiple scattering or bremsstrahlung� is modeled
by a Gaussian mixture with M components,

g�x� = 

m=1

M

wm��x ;�m,Qm�, 

m=1

M

wm = 1, �71�

the posterior density of the state vector is given by a
mixture of all pairwise convolutions,

p�x� = 

k=1

K



m=1

M

�kwm��x ;xk + �m,Ck + Qm� . �72�

If the state is at a measurement layer and the measure-
ment error is modeled by a Gaussian mixture with M
components,

h�m� = 

m=1

M

�m��m ;Hx + cm,Vm�, 

m=1

M

�m = 1, �73�

the posterior density of the state vector is computed us-
ing Bayes’ theorem,

p�x� = 

k=1

K



m=1

M

pkm��x ;xkm,Ckm� , �74�

with
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xkm = xk + CkmHTVm
−1�m − cm − Hxk� ,

Ckm = �Ck
−1 + HTVm

−1H�−1, �75�

pkm � �k�m��m ;Hxk + cm,Vm + HCkHT� .

The constant of proportionality is determined by the
constraint



k=1

K



m=1

M

pkm = 1.

This procedure leads to an exponentially increasing
number of components in the posterior distributions,
and for practical purposes the maximum number of
components has to be limited. Depending on the appli-
cation, this can be achieved by keeping the N compo-
nents with largest posterior weights or by merging
components being close in parameter space, closeness
defined by an appropriate similarity metric.

A GSF has been developed for the resolution of drift
time ambiguities by modeling the measurements as a
two-component mixture with different means, corre-
sponding to the two potential positions of the measure-
ment but equal standard deviations �Frühwirth and
Strandlie, 1999�. A potential drawback of this approach
is the sensitivity to wrong or noisy measurements par-
ticularly in the early phases of the filter where the track
parameters are poorly defined. Good initialization of the
track parameters is therefore essential. The method has
been made more robust by introducing the concept of a
missing hit �Frühwirth and Strandlie, 2006�, which im-
plies that an additional component is created whenever
a detector unit with a measurement is reached. This ad-
ditional component is transported directly through the
detector unit and corresponds to a measurement missing

due to detector inefficiencies or being wrong, for ex-
ample, because of track finding inefficiencies.

A totally different application of the GSF is the treat-
ment of bremsstrahlung energy loss of electrons, which
follows a highly non-Gaussian distribution. The Bethe-
Heitler model �Bethe and Heitler, 1934� of this distribu-
tion has been approximated in terms of Gaussian mix-
tures for a range of radiation thicknesses �Frühwirth,
2003�. A proof-of-principle study was reported by Früh-
wirth and Frühwirth-Schnatter �1998�, and the first ex-
perimental application was made and tested out on
simulated data in the CMS experiment �Adam et al.,
2005�. A comparison of the GSF with the standard Kal-
man filter �KF� using electron tracks from the full CMS
simulation, is shown in Fig. 13. The figure shows the
distribution of the normalized difference between esti-
mated and true momentum, both without and with a
vertex constraint. The distribution of the GSF estimates
has a significantly narrower core than the KF distribu-
tion, although the tails are slightly longer. The GSF was
also implemented in the ATLAS experiment at the LHC
and was shown, at least for simulated data, to improve
the momentum resolution as compared to the standard
Kalman-filter based algorithm �Aad et al., 2008�.

A related algorithm, the dynamic-noise-adjustment
method �Kartvelishvili, 2007�, was shown to yield similar
results with less computational load. It can be regarded
as a simplified version of the GSF. It makes a selection
between a radiating and a nonradiating component at
each material layer and thereby propagates only a single
component through the detector.

Another application of the GSF has been found for
the task of discriminating between different types of ma-
terial encountered during a track reconstruction proce-
dure �Strandlie and Frühwirth, 2006a�. In a detector
setup with complex structures consisting of different
types of material, the standard approach is to create a
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reconstruction geometry with averaged material proper-
ties. The GSF approach is to create one component for
each of the different types of material present in the
structure and using the measurements a posteriori to de-
cide which of the types of material the particle actually
went through.

If the vertex fit is formulated as a Kalman filter �see
Sec. II.D.1�, the latter can be generalized to a Gaussian-
sum filter by taking a similar approach as in track fitting
�Frühwirth and Speer, 2004; Speer and Frühwirth, 2006�.
As multiple scattering usually is absent in vertex fitting,
it is the observations, i.e., the estimated track param-
eters of a previous track fit, which are modeled by
Gaussian mixtures. The Gaussian-sum filter can be use-
ful in two scenarios. In many cases the distribution of
the estimation errors shows a Gaussian core and non-
negligible tails. These tails reflect imperfections of the
track reconstruction. They may be caused by the track
finder picking up wrong hits or distorted hits or by defi-
ciencies in the material description, the calibration, or
the alignment of the tracking device. In this first sce-
nario, the components of the Gaussian in general have
the same mean vector but different covariance matrices.
In the second scenario, the track itself has been esti-
mated by a GSF, for instance, because it is an electron
track. In this second scenario, the components have dif-
ferent mean vectors and very likely also different cova-
riance matrices. The most general mixture model for the
estimated track parameters is therefore the following
one:

f�q� = 

m=1

M

�m��q ;qm,Vm�, 

m=1

M

�m = 1. �76�

In the first scenario, the joint mean vector of all compo-
nents is the actual estimate q̃.

If a track is added to the vertex in the course of the
GSF, the prior distribution of the vertex position is itself
a Gaussian mixture,

g�x� = 

k=1

K

�k��v ;vk,Ck�, 

k=1

K

�k = 1. �77�

After the track has been added, the joint posterior of the
vertex position and the track momentum is a mixture
with M ·K components,

p�v,p� = 

k=1

K



m=1

M

pkm�„�v,p� ;�vkm,pkm�,�km… . �78�

The calculation of the components weights pkm, the
mean vectors �vkm ,pkm�, and the joint covariance matri-
ces �km is analogous to Eq. �75�. For more details about
the limitation of the number of components, smoothing,
and results with simulated data, see Speer and Frühwirth
�2006�.

D. EM algorithm and adaptive track fitting

In the single-track formulation of the elastic arm algo-
rithm, the energy function E reads

E��Sk,sik�,q� = 

k
�Sk�


i=1

nk

sikMik� + ��Sk − 1�2	 ,

�79�

where the sum over k denotes sum over layers, nk is the
number of measurements in layer k �including double
counting due to potential left-right ambiguities in a drift-
tube detector�, and Mik is the squared distance from
measurement i in layer k to the single arm or track un-
der consideration. The track parameter vector is de-
noted by q. The binary assignment variables Sk and sik

are either 0 or 1, and sik obeys the constraint 
i=1
nk sik=1.

The variable Sk is 0 if all measurements in layer k are
regarded as noise and 1 if one of them is not. The effec-
tive energy becomes in this case

Eeff�q� = − T

k

ln�nke−�/T + 

i=1

nk

e−Mik/T� . �80�

As mentioned, the minimization of this nonquadratic
energy function in general requires time-consuming
nonlinear approaches in order to locate the minimum
with a required accuracy. It was realized by Ohlsson et
al. �1992� and Yuille et al. �1994� that the EM algorithm
is an alternative way of minimizing such energy func-
tions. The EM algorithm proceeds by alternating expec-
tation and minimization steps and is guaranteed to con-
verge to a, possibly local, minimum of the energy
function �Dempster et al., 1977�.

The expectation step calculates the average of the
original energy function as given in Eq. �79� over the
assignment variables, conditioned on the current value
q� of the track parameters. This defines the function

Q�q�q�� = 

�Sk,sik�

E��Sk,sik�,q� · P��Sk,sik��q�� , �81�

where P��Sk ,sik� �q�� is the joint distribution of all assign-
ment variables, given that the track parameters are
equal to q�. The result of the summation is �Frühwirth
and Strandlie, 1999�

Q�q�q�� = 

k �


i=1

nk

Mik
e−Mik� /T

nke−�/T + 

j=1

nk

e−Mjk� /T

+ �
nke−�/T

nke−�/T + 

j=1

nk

e−Mjk� /T�
= 


k
�


i=1

nk

Mikpik� + �p0k� � , �82�

where the primed quantities refer to a track with param-
eters q�. The interpretation of pik� is the probability of
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measurement i in layer k being assigned to the track,
whereas p0k� is the probability that none of the measure-
ments is assigned to the track.

In the minimization step the function Q is minimized
with respect to the parameters q, regarding the primed
quantities as fixed. The last term in Eq. �82� is indepen-
dent of q, so the same result is obtained if

Q1�q�q�� = 

k



i=1

nk

Mikpik� �83�

is minimized with respect to the parameter vector q. The
new value of the parameter vector is used to recalculate
the assignment probabilities, and the function Q1 is
again minimized. These alternating expectation and
minimization steps are repeated until convergence, and
the EM algorithm can be seen to amount to an itera-
tively reweighted least-squares procedure, where the
weights are given by the assignment probabilities. The
risk of reaching a local minimum of the energy function
can again be decreased by annealing the temperature
parameter T.

This is an important result. Through the application of
the EM algorithm, the nonlinear problem of minimizing
a nonquadratic energy function is solved by iterated
minimizations of a quadratic energy function, which can
be done by a linear least-squares estimator. If the Kal-
man filter is chosen as the linear least-squares estimator,
the elastic arm algorithm becomes an iterated Kalman
filter with annealing. The resulting algorithm is called
the deterministic annealing filter �DAF� �Frühwirth and
Strandlie, 1999�. It has the additional advantage with re-
spect to the standard formulation of the algorithm that
material effects such as energy loss and multiple scatter-
ing can be taken into account in a straightforward man-
ner. In addition, track models that do not have a simple
parametric form can also be dealt with as the prediction
step of the Kalman filter in general can consist of track
propagation through an inhomogeneous magnetic field.
An example of the outcome of a track fit using the DAF
is shown in Fig. 14. In this example it is evident that
annealing helps to avoid local minima of the energy
function.

On the other hand, the running of a weighted Kalman
filter as part of one iteration of the DAF can be re-
garded as a simplified version of a Gaussian-sum filter,
where the GSF state vector is collapsed after every up-
date. The iteration procedure can be motivated from a
desire of overcoming the problem of insufficient infor-
mation in the initial phase of the GSF. The DAF is thus
seen to build a bridge between approaches based on
neural networks or deformable templates and more clas-
sical approaches based on the application of stochastic
filters.

With the GSF analogy in mind, the assignment
weights of the DAF can be made more general than
those arising from the elastic arm algorithm. In particu-
lar, they can take into account the fact that competing
observations need not have the same precision. As a
consequence they are similar to the GSF weights but do

not include the covariance matrix of the predicted state
since the track from the previous iteration is regarded as
fixed during an expectation step of the EM algorithm,

pik =
��mik;Hkx

k�n
* ,Vik�

c + 

j=1

nk

��mjk;Hkx
k�n
* ,Vjk�

, �84�

where � is again the Gaussian probability density func-
tion, mik is measurement i in layer k, Vik is the associ-
ated covariance matrix, x

k�n
* is the smoothed prediction

from the previous iteration, and c is a cutoff term resem-
bling the term containing � in the elastic arm weights
given in Eq. �82�. A further generalization of the calcu-
lations of the assignment weights is presented by Strand-
lie and Zerubia �1999�, allowing arbitrary probability
distribution functions of the measurement errors.

The multitrack formulation of the elastic arm algo-
rithm is via the EM algorithm generalized to a multi-
track formulation of the DAF. This algorithm, called the
multitrack filter �MTF� �Strandlie and Frühwirth, 2000�,
amounts to a set of iterated Kalman filters running in
parallel �see Fig. 15�. As for the DAF with respect to the
single-track version of the elastic arm algorithm, deci-
sive features are, e.g., the ability of taking material ef-
fects and inhomogeneous magnetic fields correctly into
account.

The fact that the minimization of a nonquadratic en-
ergy function can be done by iterated minimizations of a
quadratic function has quite far-reaching consequences.
The minimization of the quadratic function can in prin-
ciple be done by any relevant least-squares estimator.
For instance, in a two-dimensional detector setup where
the track model is the arc of a circle, a linear circle fit
method based on a mapping to the Riemann sphere and
fitting a plane to three-dimensional measurements leads
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FIG. 14. �Color online� A track fitted with the DAF, with
�solid line� and without �dash-dotted line� deterministic an-
nealing. Without annealing the algorithm is seen to find a sub-
optimal solution to the optimization problem. Adapted from
Strandlie and Zerubia, 1999.
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to an adaptive approach called the elastic planes algo-
rithm �Strandlie et al., 2000�. Since the backbone method
for fitting is a very fast approximate circle fit, the elastic
planes algorithm shown by Strandlie et al. �2000� is much
faster than the DAF and equally precise as long as the
assumption of the purely circular track model holds at
least approximately.

Another important consequence is that the DAF and
the MTF immediately can be translated into analogous
methods for adaptive, iterated, linear estimation of ver-
tices, as first suggested by Strandlie �2000�. Adaptive
methods of vertex fitting are described in Sec. III.F.

E. Comparative studies

The DAF was first implemented for simulation studies
in the barrel part of the ATLAS transition radiation
tracker �Frühwirth and Strandlie, 1999�. The barrel TRT
consists of 75 layers of drift tubes �straws�. The layers as
well as the tubes in each layer are separated by about
6.8 mm. Because of the inherent left-right ambiguity of
the drift time measurement, most hits have a mirror hit.
The DAF was compared in terms of precision and run-
ning time to the following other methods: the GSF, the
EAA, and the ETA. Two different annealing schedules
were used for the DAF and EAA. In the “nominal
schedule” the final value of the temperature T corre-
sponded to the actual standard error of the observations,
whereas in the “frozen schedule” the final value of T
was smaller by a factor of 9. The result of the GSF was
computed in two ways using either all components or
only the best �most probable� component. The ETA was
implemented using either a Gaussian �ETA-G� or a
Lorentzian �ETA-L� potential. The results for tracks
with mirror hits are shown in Table I. The precision of
the method is quantified by the relative generalized vari-

ance �determinant of the covariance matrix� of the track
parameters with respect to the true ones, the baseline
being the DAF for tracks without mirror hits.

Some interesting conclusions may be drawn from
Table I. First, the mathematical equivalence of the EAA
and the DAF is illustrated by nearly identical results.
The DAF is, however, faster by almost a factor of 2.
Second, cooling the DAF below the nominal standard
deviation of the observations slightly deteriorates the
precision. Third, using the full posterior information of
the GSF is slightly better than just using the most prob-
able component. The latter is equivalent to a combina-
torial Kalman filter �see Sec. II.B.3�. The GSF is consid-
erably slower than the other methods. Finally, the ETA
is about as fast as the EAA but not competitive in terms
of precision.

The robustness of the estimators was studied by con-
taminating the tracks with noise. In each tube, the cor-
rect drift distance was replaced by a random drift dis-
tance with a probability of 10%. The results are shown
in Table II.

It is evident that the performance of the GSF has de-
teriorated considerably, showing its inherent lack of ro-
bustness. The precision of the ETA is again worse than
the one of the DAFs, the Gaussian potential being
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FIG. 15. �Color online� Two nearby tracks from a simulated
event in the ATLAS TRT are fitted with the MTF. Since the
TRT is a drift-tube detector, there are two ambiguous mea-
surements for each tube hit by a charged particle. Additional
noise hits are added in about every second tube. The true mea-
surements are marked by open circles. The solid lines are the
fitted tracks. From Strandlie and Frühwirth, 2000.

TABLE I. The relative generalized variance Vrel and the rela-
tive running time trel of various adaptive estimators for tracks
with mirror hits. The baseline is the DAF for tracks without
mirror hits. The different versions of the methods are ex-
plained in the text. Adapted from Frühwirth and Strandlie,
1999.

Method Vrel trel

DAF nominal 1.54 1.21
DAF frozen 1.74 1.41
GSF all 1.59 7.04
GSF best 1.78 7.04
EAA nominal 1.56 2.12
EAA frozen 1.71 2.44
ETA-G 3.11 2.38
ETA-L 3.51 2.87

TABLE II. The relative generalized variance Vrel and the rela-
tive running time trel of various adaptive estimators for tracks
with mirror hits and noise. The baseline is the DAF for tracks
without mirror hits. The different versions of the methods are
explained in the text. Adapted from Frühwirth and Strandlie,
1999.

Method Vrel trel

DAF nominal 3.96 1.19
GSF all 27.33 6.86
ETA-G 5.77 2.72
ETA-L 6.56 2.89
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somewhat less susceptible to the influence of the mirror
and noise hits.

The MTF was first studied by Strandlie and Frühwirth
�2000� using pairs of tracks in the ATLAS barrel TRT. A
typical pair of tracks, including all hits, mirror hits and
additional noise hits, is shown in Fig. 15. Four competi-
tion schemes were analyzed:

�1� Competition between hits. In each layer, there is
competition between all hits for each track, but no
competition between the tracks. This scheme is
equivalent to the DAF.

�2� Competition between tracks. In each layer, there is
competition between all tracks for each hit but no
competition between the hits. This scheme is
equivalent to the original formulation of the EAA
�Ohlsson et al., 1992�.

�3� Global competition. In each layer, all tracks compete
for all hits.

�4� Competition between tracks and between mirror hits.
This is a refinement of scheme 2, specific for detec-
tors with mirror hits.

With the MTF, the initial values of the track param-
eters play an important role. In order to separate the
effect of the initialization from the properties of the
competition schemes, the track parameters were initial-
ized at their true values. Table III shows the relative
generalized variance of the four schemes for tracks with
mirror hits and additional noise hits at various noise lev-
els. The baseline is a single-track fit of all tracks.

Scheme 1, the DAF, is consistently the least precise.
Scheme 2 is also less precise than schemes 3 and 4.
Schemes 3 and 4 are comparable but not entirely equiva-
lent. At noise levels below 20%, scheme 4 is better,
whereas at higher noise levels scheme 3 is better. The
explanation is that scheme 4 implements a competition
between a hit and its mirror hit, whereas scheme 3 treats
all hits in a layer in the same manner. If the dominant
source of ambiguity are mirror hits, scheme 4 is best
equipped to deal with this situation. If, on the other
hand, noise hits are the dominant source, scheme 3 is
better, being designed to cope with additional noise hits.

Other studies, based on more detailed simulations,
have been made in the CMS tracker �Winkler, 2002;
Speer et al., 2006b�. For track reconstruction in dense
jets, the DAF was shown to yield substantial improve-
ments both in track parameter resolutions and in the
overall track quality with respect to the standard
Kalman-filter based procedure. The MTF provided reso-
lutions similar to the DAF but gave better estimates of
the track parameter covariance matrices in the most dif-
ficult situations, i.e., in the core of the jets with the high-
est energy.

The possibility of applying adaptive algorithms such
as the DAF and the GSF for track reconstruction in
scenarios with very large amounts of background and
noise have been addressed in a couple of feasibility stud-
ies �Frühwirth and Strandlie, 2006; Strandlie and Früh-
wirth, 2006b�. In these studies the robust version of the
GSF, allowing for missing observations, was used.

Two different experimental setups were studied. One
of them �setup C� is an all-silicon tracking detector simi-
lar to the CMS tracker at the LHC. The other one �setup
A� is a combined silicon and drift-tube detector system
similar to the ATLAS inner detector at the LHC. In
both experiments, track finding was starting from seeds
that were track segments in the innermost parts of the
detectors. These seeds consisted of measurements in
three consecutive layers with pixel resolution in setup C,
whereas the seeds consisted of measurements from
seven consecutive layers �three with pixel resolution and
four with silicon strip resolution� in setup A. Track find-
ing was then carried out in the 10 outermost silicon strip
layers in setup C and in the 36 drift-tube layers in setup
A. In both cases the track fit was carried out using the
full information from all measurements in the track can-
didates, including the seeds.

Results from the simulation experiments with setup C,
similar to the CMS tracker, are shown in Fig. 16. Track
finding was performed using either the combinatorial
Kalman filter �CKF� or the GSF, whereas the track fit
was done either by a standard Kalman smoother �KSM�
or by the DAF. In addition to the correct measurements,
noise was added with a density of 3 hits/mm2 in the in-
nermost silicon layer, decreasing inversely proportional
to the radius. In addition, the true hits were replaced by
noise hits with a 30% probability. The results are shown
as a function of the quality of the measurements consti-
tuting the seeds. The pixel hits were distorted by in-
creasing the width of the Gaussian smearing with a scale
factor k. Thus k=1 gives perfect seeds, and increasing
the value of k gives seeds which are gradually deterio-
rated.

The efficiency of track finding is seen to be quite simi-
lar for all combinations of track finding and track fitting
methods. As expected, the performance gets worse as
the quality of the seeds decreases. The resolution is con-
sistently, but not dramatically, better using the DAF in
the track fit as compared to the KSM. Track finding at a
noise level of 10 hits/mm2 in the innermost silicon layer
was also studied �Frühwirth and Strandlie, 2006�, but at
this noise level track finding broke down completely be-

TABLE III. The relative generalized variance of the multi-
track fit with competition schemes 1–4 at various noise levels
with mirror hits. The baseline is a single-track fit of all tracks
separately. Reprinted from Strandlie and Frühwirth, 2000.

Noise level �%�

Competition scheme

1 2 3 4

0 281 36.2 4.52 2.84
10 270 58.7 5.35 4.35
20 388 100.9 6.26 7.06
30 358 185.3 7.19 9.51
40 409 238.9 9.50 12.44
50 653 301.6 11.66 17.65
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cause almost all track candidates found were just ran-
dom collections of noise hits.

Results from the simulation experiments with setup
A, similar to the ATLAS inner detector, are shown in
Fig. 17. The performance is shown as a function of the
maximum number of components or branches kept by
the GSF or the CKF. In addition to the same combina-
tions of track finding and track fitting methods as shown
in Fig. 16, a fully DAF-based combined track finding
and fitting was tried out. In this case, the seed was ex-
trapolated through the entire volume of the drift-tube
detector, and measurements in a band along the ex-
trapolated track constituted the track candidate used by
the DAF track fit.

It can be seen that the track finding efficiency of the
GSF is better than that of the CKF and that the accuracy
of the DAF track fit is better than the KSM track fit.
The efficiency of the stand-alone DAF is by far the best
in this case, as it finds several of the tracks not being
found by the CKF or GSF due to too many missing hits.
The difference in accuracy between the stand-alone
DAF and the DAF track fit initiated by the CKF or GSF
track finding is also due to the larger track sample fitted
by the stand-alone DAF, containing tracks with more
missing hits and thereby yielding less estimation accu-
racy.

The stand-alone DAF was also tried out in setup C
but gave a significantly smaller efficiency than the other
methods. The reason is the larger amount of material
present in a silicon-based detector as compared to a gas-
eous one, leading to more multiple scattering and the
lower quality of the seeds. The first extrapolation
through the entire detector can then be quite far away

from the real track, and with a lot of noise hits present,
the DAF is not able to recover.

In general, the stand-alone DAF seems to work best
as compared to other methods when initiated with high-
quality seeds and when used in detector setups with rela-
tively little material. This can be explained by the fact
that the DAF uses information from the entire set of
measurements in the track candidate when calculating
the assignment weights, and the full power of this fea-
ture is utilized in situations with long-range propagation
of information from the measurements. With a signifi-
cant amount of material present, the information from
measurements far away is blurred by multiple scattering,
and the assignment power decreases. In the track fit,
however, the DAF seems at these noise levels to be the
method of choice in both experimental setups.

F. Adaptive vertex fitting

The deformable templates method of vertex finding
can be rewritten as an iterated reweighted least-squares
estimator. In the case of a single vertex to be found, the
algorithm is called the adaptive vertex fit �AVF� �Walt-
enberger, 2004; Waltenberger, Frühwirth, and Vanlaer,
2007�. The estimator can be interpreted both as an EM
algorithm and as a redescending M-estimator �Frühwirth
and Waltenberger, 2008�. If the estimator is formulated
as an adaptive filter, the corresponding dynamical sys-
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fitted track parameters with respect to the true values of the
parameters—for various combinations of track finding and
track fitting methods are shown as a function of the scale fac-
tor k. The results are from setup C, similar to the CMS tracker.
From Strandlie and Frühwirth, 2006b.
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FIG. 17. Track finding efficiency and track fitting accuracy—
expressed by the generalized variance of the residuals of the
fitted track parameters with respect to the true values of the
parameters—for various combinations of track finding and
track fitting methods are shown as a function of the maximum
number of components kept by the CKF or the GSF. The re-
sults are from setup A similar to the ATLAS inner detector.
From Strandlie and Frühwirth, 2006b.
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tem has no process noise. In the light of the results in
Sec. III.E it can therefore be expected that the adaptive
approach is particularly appropriate to vertex fitting.

The AVF is an alternating sequence of two steps: es-
timation of the vertex position and computation of the
track weights. If the estimator is enhanced by determin-
istic annealing, the temperature parameter is decreased
after every iteration. In the EM interpretation, the
weight of a track is the posterior probability of the track
actually belonging to the vertex, called the assignment
probability.

The estimation can be performed by a Kalman filter
or by any other least-squares estimator, e.g., one of the
simplified estimators described in Sec. II.D. The compu-
tation of the weight of track k is a special case of Eq.
�69�,

wk =
e−�k

2/2T

e−�cut
2 /2T + e−�k

2/2T
, �85�

where �k
2 is the weighted distance of track k from the

current vertex position, �cut
2 is a cutoff, and T is the tem-

perature parameter. The shape of the weight function
for a cutoff of �cut

2 =9 and different values of the tem-
perature is shown in Fig. 18. The weight is equal to 0.5 if
�2=�cut

2 . At low temperatures the weight function ap-
proaches a step function, resulting in a yes or no deci-
sion about the assignment of the track to the vertex.

As mentioned, the AVF can also be interpreted as a
redescending M-estimator with annealing. In this inter-
pretation the estimator can be analyzed in terms of its
influence function and associated concepts such as gross-
error sensitivity and rejection point �Hampel et al.,
1986�.

The weight function drops to zero very quickly for
large values of �k

2. This poses a problem if the initial
position of the vertex is very far from the true vertex
position. Some care has to be taken to ensure that the
initial vertex is where the majority of the tracks are.
Various robust estimators with high breakdown point

�see Huber �1981�� have been studied by Waltenberger
�2004� and Waltenberger, Frühwirth, and Vanlaer �2007�.
An estimator has a high breakdown point if a large frac-
tion of the data can be outliers without destroying the
estimator. For a formal definition, see Rousseeuw and
Leroy �1987�.

Alternatively, hierarchical cluster finding methods as
well as nonhierarchical methods such as vector quanti-
zation, the k-means algorithm, and deterministic anneal-
ing can be used to construct the initial vertex position
�Chabanat et al., 2005�.

The AVF has originally been developed for the CMS
experiment. It has also been used by the H1 experiment
�Aktas et al., 2005, 2006; Erdmann, 2006� and is one of
the methods implemented for the ATLAS experiment
�Piacquadio et al., 2008�. For comparisons to other ver-
tex estimation methods, see Frühwirth et al. �2003a,
2003b�, D’Hondt et al. �2004�, and Speer et al. �2006a�.
As an example, Table IV shows a comparison between
the AVF and the Kalman filter �KF� on two kinds of
vertices: the primary vertex of the process pp→ tt̄H and
the decay vertex of the Bs meson in the decay channel
Bs→J /��→�+�−K+K−. The data come from a full
simulation in the CMS detector �Speer et al., 2006a�.

Table IV shows the average �2 of the fit divided by the
number of degrees of freedom, the average calculation
time, and three quantities that characterize the distribu-
tion of the residuals in the transverse �x� and longitudi-
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FIG. 18. �Color online� Adaptive vertex fit. The weight func-
tion wk of track k as a function of the distance �k

2 to the vertex
for four values of the temperature. The cutoff is at �cut

2 =9.

TABLE IV. Comparison of the main properties of the
Kalman filter �KF� and the AVF on two physics processes. Top:
Bs→J /��→�+�−K+K−. Bottom: pp→ tt̄H. Reprinted from
Speer et al., 2006a.

Bs→J /��→�+�−K+K−

Filter KF AVF

Avg. �2 /ndf 1.32 0.97
Avg. time �ms� 1.2 3.8
Res. x ��m� 55 54
95% cov. x ��m� 164 155
Pull x 1.08 1.02
Res. z ��m� 74 73
95% cov. z ��m� 471 440
Pull z 1.08 1.02

pp→ tt̄H

Filter KF AVF

Avg. �2 /ndf 2.05 0.77
Avg. time �ms� 13 54
Res. x ��m� 14 10
95% cov. x ��m� 118 21
Pull x 1.51 0.99
Res. z ��m� 18 13
95% cov. z ��m� 122 30
Pull z 1.46 1.00
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nal �z� directions: the standard deviation of a Gaussian
fitted to the distribution, the half-width of the symmetric
interval covering 95% of the distribution, and the stan-
dard deviation of a Gaussian fitted to the standardized
residuals �pulls�.

In the low-multiplicity decay of the Bs the AVF is only
slightly better than the KF. In the high-multiplicity pri-
mary vertex of the tt̄H events the AVF improves the
resolution by about 30% and reduces the tails signifi-
cantly. The estimated error, as indicated by the standard
deviation of the pulls, is also much improved. Of course,
the AVF is always slower than the KF.

The AVF can also be used to construct a general pur-
pose vertex finder, the adaptive vertex reconstructor
�AVR� �Waltenberger, 2008�. Concisely stated, the AVR
is an iterated AVF. The flow chart in Fig. 19 defines the
algorithm in more detail. A study of its performance in
the context of b tagging in CMS is reported by Walten-
berger �2008�.

The single-vertex AVF can be extended without diffi-
culty to a multivertex fitter �MVF� �Frühwirth and Walt-
enberger, 2004� with N	1 vertices. The vertices now
compete for the tracks. Consequently, the weight of
track k with respect to vertex n is computed by

wnk =
e−�nk

2 /2T

e−�cut
2 /2T + 


i=1

N

e−�ik
2 /2T

, �86�

where �ik
2 is the weighted distance of track k from the

current position of vertex i, �cut
2 is the cutoff, and T is the

temperature parameter �see also Eq. �69��. If there is a
competing vertex nearby, the weight function of a track
changes drastically as compared to the AVF. Figure 20
shows the weight wnk of a track k with respect to a ver-
tex n if there is a competing vertex i at a distance of
�ik

2 =1. Even for �nk
2 =0 the weight wnk is now only about

0.6 at a temperature T=1. It is only at very small tem-
peratures that the algorithm decides unambiguously in
favor of the closer vertex.

The MVF is implemented in the vertex reconstruction
software of CMS and ATLAS �Costa, 2007�. The adap-
tive algorithms described in this section are also avail-
able in the experiment independent vertex reconstruc-
tion toolbox RAVE �Waltenberger and Moser, 2006;
Waltenberger, Mitaroff, and Moser, 2007�.

IV. DETECTOR ALIGNMENT

A. Introduction

The models used for the estimation of track param-
eters �see Eq. �12�� and vertex parameters �see Eq. �28��
comprise a deterministic part, describing the motion of a
charged particle in a magnetic field, and a stochastic
part, describing the observation errors and the interac-
tion of a charged particle with the material of the detec-
tor. There is, however, an additional source of uncer-
tainty not taken into account so far, namely, the limited
knowledge of the precise location and orientation of the
sensitive elements of the detector. Determining the loca-
tion and orientation to the required precision is called
detector alignment. In some cases deformations of the
sensitive elements, such as sagging or bending, also have
to be determined.

There are various possibilities for the treatment of
alignment corrections, ranging from simple translations
and rotations, equivalent to those of a rigid body, to
more complex deformations such as bends or twists. In a
solid-state detector such as a silicon tracker the fre-
quency of realignment depends mainly on the mechani-
cal stability, which in turn depends on the temperature
and on the magnetic field. In a gaseous detector such as
a time projection chamber �TPC�, tracks may be dis-
torted not only because of a mechanical deformation but
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FIG. 19. Flow chart of the AVR based on the AVF. Adapted from Waltenberger, 2008.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

χ2
cut

=9χ2
ik

=1

χ2
nk

w
nk

T=9
T=4
T=1
T=0.1
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because of inhomogeneities of the magnetic field in the
chamber and the electric field used to operate the cham-
ber �Dydak, 2003�. As the buildup of positive ions con-
tributes to the latter, the frequency of realignment de-
pends also on the stability of the beam conditions
�intensity and momentum�.

Misalignment compromises tracking and vertex find-
ing �see, e.g., Barbone et al. �2006� and Vanlaer et al.
�2006�� and thus directly affects physics measurements
such as momentum and invariant mass �Lampén et al.,
2008�. It also deteriorates the precision of impact param-
eters and thereby reduces the efficiency of b-tagging al-
gorithms �Lampén et al., 2008�. Alignment is therefore
an extremely important task. As a general rule, the pre-
cision of the alignment should be significantly better
than the intrinsic resolution of the sensitive elements. In
order to achieve this, various strategies can be used.
Sensor positions can be measured in the laboratory or in
situ by lasers. To obtain the ultimate precision, however,
reconstructed tracks have to be used.

With a sufficiently large number of tracks the statisti-
cal errors of the estimated alignment parameters can be
made as small as required. The challenge is to control
the systematic errors to the required level �Brown et al.,
2009�. This is due to the fact that for any kind of tracks
there are several degrees of freedom that are not con-
strained, usually referred to as weak modes, weakly de-
fined modes, or �2-invariant modes. The most important
global distortions of a detector with cylindrical symme-
try �see Fig. 21� have been classified by Brown et al.
�2007� and are reproduced in Table V.

A reasonable strategy to avoid global deformations is
to use different kinds of tracks for track-based align-

ment, for instance, tracks from interactions, cosmic
muons, and beam halo muons. An obvious weak mode is
a translation or rotation of an entire tracking device,
which can only be fixed with some kind of reference
frame, be it an external system or by definition.

In many cases alignment algorithms were developed
ad hoc and consequently were difficult to port to other
experiments. The ever increasing requirements on align-
ment performance, both in terms of precision and in
terms of the sheer number of parameters to be esti-
mated, have instigated the development of a generic al-
gorithm called Millepede �Blobel and Kleinwort, 2002;
Blobel, 2006, 2007�. Millepede has been used and is be-
ing used by several large experiments. It is worth noting
that the largest LHC experiments, ATLAS and CMS
�see below�, which have the most difficult alignment
tasks, do not rely on a single alignment method but have
implemented several methods. This is extremely useful
for debugging and cross validation.

The alignment of large tracking devices poses a seri-
ous computing challenge. It will be shown that it is pos-
sible to parallelize at least part of the alignment task.
With a relatively small number of processors, of the or-
der of 50, close to 105 alignment constants can be com-
puted in less than 12 h �see Sec. IV.D.4.e�.

B. Global alignment

The foundation of a track-based alignment method is
an enhanced track model in which the observations de-
pend not only on the track parameters q but also on a
set of alignment parameters a,

m = d�a,q� + �, var��� = V , �87�

where a describes the deviation of the ideal geometry
from the actual geometry. For a sample of n tracks, the
model can be written as

x

y

z

R

R

Φ

Φ

FIG. 21. A cylindrical detector and the coordinates R, �, and
z. The effects of distortions in these three coordinates are de-
scribed in Table V. For instance, a distortion �� that varies
with z is a twist.

TABLE V. Main systematic distortions in a system with cylin-
drical geometry and multiple layers. Distortions in R, �, and z
are considered as a function of these coordinates. The poten-
tial impact of these distortions on physics results is indicated
�in italics�. Adapted from Brown et al., 2007.

�R �� �z

vs Radial expansion Curl Telescope
R Distance scale Charge asymmetry z

momentum

vs Elliptical Clamshell Skew
� Vertex mass Vertex

displacement
z momentum

vs Bowing Twist z expansion
z Total momentum CP violation Distance scale
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�m1

]

mn
� = �d1�a,q1�

]

dn�a,q1�
� + ��1

]

�n
� . �88�

It is evident that model �88� is formally the same as
model �28� used in vertex estimation. Starting from ap-
proximate parameter values ă and q̆i, model �88� can be
expanded into an approximate linear model

�
m1�

m2�

]

mn�
� =�

A1 B1 0 ¯ 0

A2 0 B2 ¯ 0

] ] ] � ]

An 0 0 ¯ Bn

��
a

q1

]

qn

� +�
�1

�2

]

�n

� ,

�89�

with

Ai =
 �di�a,qi�
�a



ă,q̆i

, Bi =
 �di�a,qi�
�qi



ă,q̆i

,

�90�
mi� = mi − di�ă,q̆i� + Aiă + Biq̆i.

The main difference between vertex estimation and
alignment is the fact that the vector a of global align-
ment parameters can be much larger than the vector v
of global vertex parameters. Computing the estimated
alignment parameters ã according to Eq. �33� is there-
fore not always feasible. In general, however, it is suffi-
cient to solve the system of linear equations,

�

i=1

n

Ai
TGi

BAi�ã = 

i=1

n

Ai
TGi

Bmi�, �91�

where Gi
B is defined as in Eq. �33�. This approach is

taken in the Millepede program, originally developed
for the alignment of the H1 experiment �Blobel and
Kleinwort, 2002; Blobel, 2006, 2007� using advanced nu-
merical methods to solve the system of linear equations.
Millepede is written in FORTRAN but has been translated
to C�� for the alignment of the LHCb vertex locator
�VELO� �Viret et al., 2005�.

As in the case of the vertex fit, the alignment param-
eters can also be estimated by a Kalman filter �Früh-
wirth et al., 2003; Widl et al., 2006; Widl and Frühwirth,
2008�. In this approach the alignment parameters are
updated after a track is processed. In principle, all align-
ment parameters can be updated, but if their number is
large, the update is restricted to the detector modules
that have significant correlations with the ones in the
current track. This is accomplished by the computation
of a suitable measure of distance between modules
based on recording which modules have been hit by the
same track. This bookkeeping task consumes a signifi-
cant part of the computing time required by the algo-
rithm. The method can be parallelized by splitting the
track sample into several subsamples and processing the
subsamples on individual cores. The final alignment pa-
rameters are computed as the weighted mean of the in-
dividual results �Widl and Frühwirth, 2009�.

C. Iterative alignment

Alternatively, the alignment parameters can be con-
sidered as missing data. The estimation is performed by
an EM-like algorithm by iterating the following two
steps: M step, reconstruct a sample of tracks using the
current alignment parameters; E step, update the align-
ment parameters using the residuals of the reconstructed
tracks.

The M step involves only estimation of track param-
eters using some standard estimation method and the
calculation of residuals in the alignable modules crossed
by the track. The E step can be accomplished in several
ways. The simplest one is to fill the residuals into histo-
grams and to extract the alignment corrections from the
mean or median of the histograms. This approach is,
however, restricted to those parameters which are di-
rectly accessible from the histograms, i.e., shifts. A more
sophisticated approach is the parametrization of the re-
siduals as a function of the track parameters. By fitting
the parametrized models to the residuals, shifts and ro-
tations can be extracted from the histograms. The statis-
tically most satisfactory method is the minimization of a
�2 function �Karimäki et al., 2003� in each module to be
aligned. For a given module, the �2 function has the
form

�2 = 

j

�j
TGj� , �92�

where � is the residual between the observed position
and the alignment dependent impact point of the track
and Gj is the inverse covariance matrix of the observa-
tion. The sum is taken over all tracks seen by the mod-
ule. The correction to the local alignment parameters a
can be computed explicitly by

�a = �

j

Jj
TGj Jj�−1�


j
Jj

TGj�j� , �93�

where Jj is the Jacobian matrix,

Jj =
���a�

�a
, �94�

computed at the current value of the local alignment
parameters. The method is an essentially local one as
each module is aligned independently from all the other
ones.

D. Experimental examples

In the LEP era, the main task was the alignment of
the various mostly gaseous tracking devices relative to a
reference tracking detector �see, for instance, Wieden-
mann �1992� and Andreazza and Piotto �1999��. With the
advent of large-scale semiconductor tracking devices the
demands on the alignment methods have risen enor-
mously both in terms of precision and in terms of the
number of elements to be aligned. For instance, in the
silicon vertex tracker �SVT� of BaBar there are 340 ele-
ments to be aligned �Brown et al., 2009�; in the central
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detector of the DØ experiment 976 elements �Sopczak,
2006�; in the silicon tracker of the CDF experiment for
Run IIb 2304 elements �Akimoto et al., 2006�; in the
ATLAS silicon tracker 5832 elements �Aad et al., 2008�;
and in the CMS inner tracker 13 300 elements �Cha-
trchyan et al., 2008�.

In order to address the challenges of detector
alignment at LHC, a workshop was held in 2006. The
proceedings �Blusk et al., 2007� are a useful source of
information, offering both experience from running ex-
periments and describing the strategies of the four LHC
experiments, including alignment validation �Golling,
2007�. Follow-up workshops were held in 2007 and 2009.
The presentations are available online �CERN Indico,
2007, 2009�. Information about experiments at LEP and
SLD was gathered from the, sometimes scant, literature.

1. Z factories

Track-based alignment in experiments at Z factories
�LEP at CERN and SLD at SLAC� is characterized by
the following traits: clean events with relatively small
multiplicities; an abundance of high-energy muons; a
precise knowledge of the center-of-mass energy of the
collisions; and, as a consequence, the possibility to im-
pose momentum constraints on the muons used for
alignment.

a. DELPHI

At the LEP collider, the experiment with the most
complex tracking system was DELPHI �Abreu et al.,
1996�. In the barrel region it comprised three gaseous
detectors—the central TPC, an inner drift �ID� chamber,

and an outer drift �OD� chamber—and a silicon vertex
detector �VD�. In the forward region there were two
forward drift chambers on each side, forward chamber
A �FCA� and forward chamber B �FCB�. In addition,
the ring imaging Čerenkov counters and the muon
chambers had to be aligned relative to the central track-
ing system. The alignment strategy of the DELPHI
tracking detectors is described by Andreazza and Piotto
�1999�.

The OD was used to fix the z axis and the transverse
coordinates, while the TPC was used to fix the origin of
the coordinate system. The alignment procedure started
with the internal alignment of the VD. This was ob-
tained by assigning the status of master to one of the
three layers �closer, inner, and outer�. The master layer
was aligned as a full pseudocylindrical object using all
overlap constraint between adjacent modules. The mod-
ules of the other two layers were aligned individually
with respect to the corresponding master modules. An
example of the precision achieved in the internal align-
ment with 1999 data is shown in Fig. 22. For the internal
alignment of the upgraded VD at LEP2, see Brückman
de Renstrom �2004�.

After the internal alignment, the VD was aligned glo-
bally, treating it as a rigid object. The transverse position
was determined relative to the OD and the longitudinal
position relative to the TPC. Once the position of the
VD in the transverse plane was fixed, its longitudinal
position was determined by looking at the residuals be-
tween VD and TPC. Once the VD was aligned, it could
be considered as a stable reference system. The TPC
and the ID were therefore aligned in the transverse
plane with respect to the VD-OD system. The residuals
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FIG. 22. Residual distributions after the inter-
nal alignment of the DELPHI VD for 1999
data taking: �a� tracks in closer overlaps, �b�
tracks in inner overlaps, and �c� tracks in
outer overlaps. The residuals are computed
between a hit in the overlap and the track
when it is forced through the other hit in the
overlap. The width of each distribution has to
be divided by �2 to obtain the single hit pre-
cision for that layer. Also shown are �d� the
inner layer residuals for three-hit tracks. The
tracks are forced through hits associated in
closer and outer and interpolated to inner
modules. The residuals are plotted between
interpolated tracks and hits in inner modules.
For this plot, the width has to be divided by
�1.5 to obtain the silicon precision, assuming
that it is the same in each of the three layers.
From Andreazza and Piotto, 1999.
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after alignment with 1999 data are shown in Fig. 23.
The forward chambers were aligned relative to the

VD, including its very forward part, the very forward
tracker �VFT�, and the ID. The TPC was not used be-
cause of distortion problems. FCB, the chamber further
from the interaction point, was aligned first. Then FCA
was aligned using the already aligned FCB in the track
reconstruction. The last step was the alignment of the
very forward tracker. Tracks fitted with VD, ID, FCA,
and FCB were used plus the constraint from the beam
spot. A consistent position of the VFT with respect to
the other barrel detectors was enforced using the over-
lap between the first layer of pixels and the outer layer
of the VD �see Fig. 24�.

b. ALEPH

The ALEPH detector �Decamp et al., 1990� was an-
other experiment at the LEP collider. The alignment of
its tracking devices is described by Wiedenmann �1992�.
The tracking detectors of ALEPH were the central TPC,
a drift chamber called the inner tracking chamber �ITC�,
and a silicon VD. Alignment involved the determination
of the global positions of TPC, ITC, and VD considering
each component as a rigid body and the determination
of TPC sectors and VD wafers relative to each other.
The final global and local positions were obtained from
real data from Z0 decays, starting from survey measure-
ments.

In the first step the ITC was aligned relative to the
TPC. Three translations and three Euler angles were es-
timated by minimizing the residuals between the ex-
pected hit positions from the TPC and the observed hit
positions in the ITC. In an analog way the VD was
aligned relative to the ITC-TPC system.

The second step was the relative alignment of TPC
sectors in the transverse plane using muons from Z0 de-
cays. Each muon track was fitted with three helix seg-

ments, one in the ITC, one in an inner sector, and one in
an outer sector of the TPC. First the inner TPC sectors
were aligned relative to the ITC helix segments, then the
outer TPC sectors were aligned relative to the helix seg-
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FIG. 23. Alignment of the DELPHI detector: R� residuals between VD+OD tracks �dimuons from Z0 run in 1999� and hits in
TPC �left� and ID �right�. From Andreazza and Piotto, 1999.
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FIG. 24. �Color online� Alignment of the DELPHI detector:
residuals in R� and z between hits in VFT and tracks fitted
with VD, ID, FCA, and FCB. The upper plots are made for
tracks in the region 15° ���21° �no overlap with VD� and
lower plots in region 21° ���25° �overlap with VD�. In both
cases the mean values are at zero showing an alignment posi-
tion consistent with both the barrel and the forward detectors.
The sample of tracks is composed of muons from the Z0 run in
1999. From Andreazza and Piotto, 1999.
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ments in the ITC and the already aligned inner TPC
sectors.

In the third step the VD was aligned internally using
the concept of a constrained residual �for details see
Wiedenmann �1992��. Finally, TPC sectors were aligned
longitudinally relative to the VD by fitting a single helix
to the two tracks of a Z0→�+�− event, with the momen-
tum constrained to the beam energy, and using only VD
and ITC hits. For each TPC sector two alignment con-
stants were determined, a longitudinal shift and a rota-
tion around the sector center.

The entire procedure was iterated one more time us-
ing the previously determined alignment corrections.
The final resolutions of the impact parameter of recon-
structed tracks were 25 �m in the transverse and 29 �m
in the longitudinal direction.

Although the alignment strategies of DELPHI and
ALEPH were necessarily different in the details, some
common features can be identified. In both cases a de-
tector or pair of detectors served as a system of refer-
ence; in both cases the gaseous detectors were treated as
rigid bodies; and in both cases the wafers of the silicon
vertex detectors were aligned individually.

c. SLD

The vertex detector of the SLD experiment was of a
size comparable to the ones of DELPHI and ALEPH,
consisting of 96 alignable elements. The alignment pro-
cedure is described by Jackson et al. �2003, 2007�. A
novel feature is the solution of the alignment equations
by singular value decomposition of the system matrix.

2. B factories

Track-based alignment in experiments at B factories
�PEP-II at SLAC and KEKB at KEK� faces an environ-
ment similar to the Z factories, with the exception that
track momenta are much lower.

a. BaBar

An example is the BaBar experiment at the PEP-II
asymmetric collider at SLAC. The alignment strategy of
the 340 wafers of its SVT is described in detail by Brown
et al. �2007, 2009�. The track sample used is a mix of
physics triggers and cosmic rays passing near the nomi-
nal interaction point. Various cuts ensure high quality of
tracks and an approximately uniform illumination of the
SVT.

The selected tracks are fitted using the SVT and part
of the surrounding drift chamber. For each wafer, a �2 is
computed by summing over the residuals of all hits in
the wafer and minimized independently for the align-
ment parameters of the wafer. The �2 can be extended
to contain optical survey information. The minimization
procedure is iterated until the parameters of all wafers
stabilize. In the inner layers the curvature radius of the
wafers is estimated in addition to the six degrees of free-
dom of translation and rotation.

The validation of the alignment procedure shows that
global distortions can be reduced to a negligible level.

For instance, Fig. 25 shows hit residuals in the inner
three layers of the SVT from selected e+e−→�+�−

events. The top row shows residuals in the local u coor-
dinate of the wafers, pointing in the direction of increas-
ing �. The bottom row shows residuals in the local v
coordinate of the wafers, orthogonal to u. The residual
distributions are centered at zero, and the shapes of the
data and Monte Carlo distributions are very similar. A
Gaussian fit to the core of the distributions gives mean
values consistent with zero and sigma values of 14 �m
�13 �m� in data �Monte Carlo� for the local coordinate u
and 18 �m �16 �m� data �Monte Carlo� for the local
coordinate v.

b. BELLE

The silicon vertex detector of the BELLE experiment
at KEK �Alimonti et al., 2000� is smaller than the one of
BaBar, comprising only 102 wafers. Its internal align-
ment using cosmic rays at zero magnetic field is de-
scribed by Zhao �2000�.

3. HERA

Concerning the complexity of the detectors, the ex-
periments at the HERA electron-proton �ep� collider
were closer to hadron collider experiments. The asym-
metry of the beams was reflected in the marked asym-
metry of the detectors.
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FIG. 25. �Color online� Single-hit residuals �left� and normal-
ized residuals �right� from the inner three layers of the BaBar
SVT. The top row corresponds to the u coordinate on each of
the wafers and the bottom row to the v coordinate. The ex-
perimental data are shown as points and Monte Carlo simula-
tion as histograms. The smooth curves are the results of a
Gaussian fit to the data. From Brown et al., 2009.
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a. H1

The H1 experiment was one of the two multipurpose
detectors at the electron-proton collider HERA at
DESY in Hamburg. It has a complex tracking system,
consisting of a central, a forward, and a backward
tracker �Abt et al., 1997�. The alignment strategy is de-
scribed by Kleinwort �2007�. The data sets used for
track-based alignment include survey data, tracks from
ep interactions, and cosmic muons. The central tracker
is used as the frame of reference.

During the HERA-I data taking period �1992–2000�
the central jet chamber �CJC� and the central silicon
tracker were aligned and calibrated jointly using Mille-
pede �Blobel and Kleinwort, 2002; Blobel, 2007�. A total
number of 465 alignment parameters and 774 calibration
constants were estimated.

Several improvements were introduced for HERA-II
data taking. Millepede was used for the online calibra-
tion of the time-dependent CJC parameters. The central
silicon tracker was aligned internally using the singular
value decomposition of the system matrix. The align-
ment relative to the CJC was achieved by treating it as a
rigid body.

b. ZEUS

The other multipurpose detector at HERA was the
ZEUS experiment. During HERA-II running it used a
silicon microvertex detector �MVD�, consisting of 600
barrel and 112 forward sensors. The alignment strategy
is described by Mankel �2007�. The track samples used
included cosmic muons and tracks from ep collisions.
Alignment with cosmic muons was done for individual
ladders by an iterative �2 minimization algorithm
�Kohno, 2006�. Alignment with tracks from collisions
was done for individual sensors, increasing the number
of alignment parameters from 180 to 3560. Millepede
was used for this alignment task.

4. Hadron colliders

Alignment of detectors at hadron colliders is faced
with high data rates, a large background of low-energy
tracks, and no well-defined center-of-mass energy. At
LHC, the alignment problem is exacerbated by addi-
tional background because of pileup and in the case of
ATLAS and CMS silicon trackers that are much larger
than all of their predecessors. Both ATLAS and CMS
have large muon detectors that need to be aligned rela-
tive to the central tracking system. As LHCb aims for
extremely precise vertex reconstruction, it has to place
strict constraints on its alignment.

a. DØ

The DØ experiment at the Fermilab Tevatron collider
�Abazov et al., 2006� has a silicon microstrip tracker
�SMT� with 976 alignable elements, the same order of
magnitude as the ZEUS MVD. The alignment proce-
dure is described by Sopczak �2006, 2007�. It is an itera-
tive �2 minimization, local for each wafer. In the outer

part of the central tracking system, the central fiber
tracker can be aligned either simultaneously with the
SMT or after the SMT has been aligned.

b. LHCb

The LHCb experiment �Augusto Alves, et al., 2008� at
the LHC is mainly dedicated to B physics. To achieve its
physics goals it relies to a large extent on the perfor-
mance of its precision VELO. The VELO �Behrendt,
2009� consists of 21 stations along the beam axis, each
one divided into two modules. Each module supports
two sensors, one measuring the radial coordinate �R�
and the other one the azimuthal coordinate ���. While it
is not a large system, it has particularly demanding align-
ment requirements because the modules, each with a
single hit resolution below 10 �m in both coordinates,
have to be retracted by 3 cm from the beam line while
the machine is filled. As the alignment of the VELO has
a significant effect on the high-level trigger, a fast but
nevertheless precise alignment should be possible at any
time �Viret, 2007�.

The track-based alignment of the VELO is described
by Viret �2007�, Viret et al. �2008�, and Gersabeck �2009�.
The track sample used is a mixture of tracks from the
primary vertex and tracks from beam halo or beam-gas
interactions. The first step of the alignment is the rela-
tive alignment of the two sensors on each module. The
second step is the relative alignment of the modules in
each half of the VELO. Both steps use a global minimi-
zation method based on the Millepede algorithm. The
third step is the alignment of the two halves with respect
to each other. This requires tracks that pass through
both halves. As only six relative alignment constants
have to be determined, global minimization using matrix
inversion is used. The performance of the alignment al-
gorithm has been assessed with test beam data �Gersa-
beck et al., 2008�. The accuracy obtained is about 2 �m
for translations and 0.1 mrad for rotations. The global
alignment strategy of LHCb is described by Baldini et al.
�2006, 2007�.

c. ALICE

The ALICE experiment �Aamodt et al., 2008� at the
LHC is dedicated to heavy-ion physics. Its inner tracking
system �ITS� �ALICE Collaboration, 1999� is composed
of 2198 silicon pixel, silicon drift, and silicon strip mod-
ules, which is modest compared to ATLAS or CMS but
one order of magnitude higher than in the heavy-ion
experiment STAR �Margetis et al., 2007; Fisyak et al.,
2008�. The ITS has to be aligned internally as well as
relative to the TPC. Both a local iterative method based
on the minimization of residuals and a global method
based on Millepede are envisaged for this task. The
muon spectrometer of ALICE will be aligned using
Millepede �Castillo, 2007�.

d. ATLAS

The ATLAS experiment �Aad et al., 2008� at the LHC
has an inner detector �ATLAS Collaboration, 1997a,
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1997b� that consists of two parts, a silicon tracking sys-
tem closer to the interaction point and a straw-tube
tracking system, the transition radiation tracker �TRT�.
The silicon tracker system consists of 5832 individual
silicon modules, arranged in three pixel �PIX� layers and
four strip �SCT� layers in the barrel and three PIX and
nine SCT disks in each of the end caps. Track-based
alignment is described by Escobar �2006�, Brückman de
Renstrom �2007a, 2007b�, Karagöz Ünel �2007�, and
Morley �2008�. A number of independent alignment al-
gorithms have been implemented and tested. The first is
a global �2 minimization. Various methods for solving
the resulting large system have been tested. The second
one is an iterated local �2 minimization. The third one is
called robust alignment and is suitable to align any kind
of detector with overlapping sensors. Alignment of the
TRT can be done by local �2 minimization using tracks
extrapolated from the silicon tracking system �PIX
+SCT� or internally using global �2 minimization �Bocci
and Hulsbergen, 1997�. The track-based alignment of
the ATLAS muon spectrometer is described by Kortner
et al. �2007�.

The alignment procedures have been studied on simu-
lated data and validated with test beam and cosmics
data. As an example, Fig. 26 shows the momentum of
PIX and SCT modules in the test beam before and after
alignment with the local �2 method.

e. CMS

The all-silicon tracker of the CMS experiment �Cha-
trchyan et al., 2008� at the LHC has an area of about
200 m2 and thus is the largest that has ever been built
�CMS Collaboration, 1998, 2000�. The pixel part consists
of 1440 alignable modules, of which 768 are in the barrel

and 672 in the end caps; the silicon microstrip part con-
sists of 11 860 alignable modules, of which 6084 are in
the barrel and 5776 in the end caps. Summaries of the
alignment strategy are given by Ronga �2007� and Weber
�2007�. In addition to collision data such as Z0→�+�−

events, cosmic muons and beam halo muons will be
used. In addition, vertex and mass constraints can be
used to better constrain the alignment parameters and
to suppress weak modes.

Three algorithms have been implemented to solve the
CMS alignment challenge. The first one is global optimi-
zation with Millepede using the GMRES method for
solving the large system of linear equations �Schleper et
al., 2008�. The second one is global optimization by the
Kalman alignment algorithm �KAA� �Widl et al., 2006;
Frühwirth and Widl, 2007; Widl and Frühwirth, 2008�.
The third one is local optimization by the hit and impact
point �HIP� algorithm �Karimäki et al., 2003, 2006�.

All algorithms have been studied individually on
simulated data. Results are reported by Karimäki et al.
�2006�, Schleper et al. �2008�, and Widl and Frühwirth
�2009�. For example, the entire tracker with 44 432 align-
ment parameters was aligned with Millepede using
2�106 � pairs and imposing a constraint on the invari-
ant mass �Schleper et al., 2008�. The final alignment pre-
cisions of the most sensitive coordinate were about
1.2 �m for the pixel barrel modules, 2.5 �m for the pixel
end-cap modules, about 10 �m for the strip barrel mod-
ules, and about 23 �m for the strip end-cap modules.

The alignment of large tracking detectors such as the
CMS tracker can be speeded up considerably by paral-
lelization. The Millepede alignment of the tracker, per-
formed for the 2008 Computing, Software and Analysis
Challenge �CSA08�, took about 1.5 h on 50 cores for the
preparation of the large matrix and 5 h on a single CPU
for solving the linear system and the computation of the
final result �CMS Collaboration, 2009a�. The alignment
with the KAA took about 15 h on ten cores �Widl and
Frühwirth, 2009�.

A comparison of the three methods with cosmics data,
recorded at the tracker integration facility of CMS, is
reported by Adam et al. �2009a, 2009b�. About 2000
modules, 15% of the entire tracker, were activated.
More than 4�106 cosmic triggers were recorded at dif-
ferent temperatures and different trigger conditions.
The comparison shows that in the barrel HIP and KAA
performed equally well, Millepede being slightly worse.
In the end caps all methods performed on the same
level. As an example, Fig. 27 shows the hit residuals of
the three methods in the barrel, separately for single-
and double-sided modules in the inner and outer barrels,
respectively.

V. CONCLUSIONS

This review has shown that adaptive methods of track
and vertex reconstruction are in widespread use today.
They have been adopted by the large LHC experiments,
but it seems that their impact has been greater in vertex

FIG. 26. �Color online� Alignment of the ATLAS inner detec-
tor: momentum resolution of pixel and SCT modules for a
combined test beam run of 100 GeV �+ without alignment cor-
rections �nonfitted histogram� and with alignment corrections
derived with the local �2 method �Gaussian-fitted histogram�.
From Gonzalez-Sevilla, 2008.
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reconstruction than in track reconstruction. We can
think of two potential reasons for that. First, in spite of
the large track multiplicity, track finding and fitting can
still be comfortably accomplished by traditional or hy-
brid methods, such as the combinatorial Kalman filter.
Second, the reconstruction of the decay vertices of very
short-lived particles such as B mesons is sufficiently dif-
ficult to give adaptive methods an edge over the tradi-
tional ones. In any case it can be stated that the tradi-
tional distinction between pattern recognition, on the
one hand, and estimation and testing, on the other hand,
has begun to dissolve and has been superseded by dy-
namic competition between different hypotheses about
what constitutes a track or a vertex.

Not all methods discussed here exhibit the same de-
gree of adaptivity. For example, the deterministic an-
nealing filter is “more adaptive” than the Gaussian-sum
filter �GSF�, as it does not require an explicit outlier
model and thus manages with less assumptions about
the data. The GSF in turn is more adaptive than a plain
Kalman filter, as it explores several hypotheses about
the observations or the process noise in parallel until in
the end one of them is selected as the winner or the
most probable ones are combined to the final result.

The first method that merits the label adaptive was
the application of the Hopfield network to track finding.
The structure of the network is not fixed but determined

by the data, and each state of the network represents a
hypothesis about which hit belongs to which track. In
this case the competition takes place sequentially as
each state of the network is superseded by a better one
due to the dynamics of the update. The incorporation of
a physical track model into the Hopfield network has
never been tried, and indeed it is difficult to see how this
could be accomplished. For this reason the Hopfield net-
work is not able to deliver a statistically optimal esti-
mate of the track parameters. The concept of the elastic
arm or deformable template, namely, the merging of a
continuous estimation problem with a combinatorial op-
timization problem, was able to overcome this limitation
but—in the original formulation—at the price of a non-
trivial minimization task. The introduction of a tempera-
ture parameter gave the user the choice either to en-
force a hard decision about which hit belongs to which
template or to retain a probabilistic element by not cool-
ing down to zero. After it had been recognized that the
EM algorithm was an alternative method of minimizing
the error function or energy function of the deformable
template, the entire concept could be transferred to the
well-known realm of least-squares estimation and sto-
chastic filters. It turned out that, with the Kalman filter
as the basic building block, the construction of an adap-
tive filter actually required little additional work. With
equally small effort other least-squares estimators can
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FIG. 27. �Color online� Alignment of the CMS tracker: hit residuals from three track-based algorithms: HIP �solid�, Millepede
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be upgraded to an adaptive version as well. As vertex
fitting is much more independent of the experimental
setup than track fitting, adaptive vertex reconstruction
algorithms could be made available in a toolbox that can
easily be interfaced with experiment specific software.

In the field of alignment algorithms there is a promis-
ing candidate for a general purpose, experiment inde-
pendent method: the Millepede algorithm. Nevertheless
the two largest experiments at LHC have implemented
one or even several alternative solutions. This is no
doubt a wise decision as the results of even a fairly ma-
ture method such as Millepede will be accepted with
more confidence if they are cross validated our indepen-
dent algorithms.

VI. OUTLOOK

In spite of the apparent success of adaptive methods
there remain a number of open questions and research
problems. In the following we give a list of problems to
be tackled, with no claim of being exhaustive. Some of
them might not yet be urgent but might get so at an
upgraded hadron collider, for instance, the super-LHC
�SLHC� �Scandale and Zimmermann, 2007�. The reader
should be aware that the following items are to some
extent speculative and inevitably tinted by our experi-
ences, predilections, and expectations.

A. Parallelization of track finding and fitting

The move to multicore technology in computing has
opened up possibilities that could lead to substantial
gains in the speed of track reconstruction. Consequently,
methods that exploit the parallelism in the hardware,
both multicore and data level parallelism �single instruc-
tion multiple data �SIMD��, would be a major step
ahead in the reconstruction code. For instance, the
SIMDized Kalman-filter based track fit described by
Gorbunov et al. �2008� takes only about 1 �s per track,
which is 10 000 times faster than the original version.
Going beyond the simple Kalman filter, parallelization
of the combinatorial Kalman filter would be a promising
research project, with a potentially large impact on the
methodology of track finding. This is connected with the
problem how to use tracker information in the first level
trigger at the SLHC. Full track finding in the first level
seems out of the question today, but further research in
this direction may overcome this limitation.

B. Track finding or fitting at very high noise levels

At the SLHC the track multiplicity and the noise level
will be even higher than today at the LHC. In this case
an attractive alternative to the combinatorial Kalman
filter could be a fast global pattern recognition, e.g.,
based on methods from signal processing and image
analysis, and a subsequent adaptive filter to sort out the
details of the hit-track association.

C. Track reconstruction in narrow jets

In narrow jets the hit-track association could benefit
from a multitrack filter, characterized by a competition
between all tracks for all hits in any given detector ele-
ment crossed by the jet. The main problem to be solved
is the initialization of the filter with the correct number
of templates. Also, it has not been conclusively shown
yet that the simultaneous competition of all tracks in the
jet for the hits is actually superior to a sequential appli-
cation of single adaptive filters.

D. Adaptive vertex reconstruction

A similar question can be posed in the task of vertex
reconstruction: Is the multivertex fit really superior to a
sequential application of the adaptive vertex fit, and if so
in which circumstances? A study with decay vertices of
very short-lived particles should be able to shed some
light on this question.

E. Non-Gaussian phenomena

One of the available solutions to non-Gaussian effects
such as bremsstrahlung is the Gaussian-sum filter, which
approximates the non-Gaussian density in question by a
mixture of Gaussians. This is not entirely satisfactory
because of two reasons: it is only an approximation and
it is computationally expensive. It would be interesting
to study whether a filter using the actual densities could
be formulated and made computationally feasible. It still
would have to involve approximations as the propaga-
tion and the update of the track state would have to be
computed by numerical convolution and numerical inte-
gration. On the other hand, the exponential rise in the
number of components and time-consuming collapsing
procedures could be avoided.

F. Usage of posterior weights

Some adaptive methods, because of their Bayesian
flavor, return several hypotheses about a track or vertex,
each one with its posterior weight. The question arises
how to use this information in subsequent stages of data
analysis. One example is the fit of an electron track with
the Gaussian-sum filter, the final state being a mixture of
Gaussians. If the electron track is to be used in a vertex
fit, there are two possibilities: the mixture is collapsed to
a single Gaussian and processed by an adaptive or least-
squares fit or the entire mixture state is processed by a
Gaussian-sum vertex filter. The latter approach can be
expected to give the better results, but this has yet to be
shown conclusively. A more difficult question arises if
kinematic constraints are to be imposed on the results of
an adaptive vertex fit: How are the assignment prob-
abilities of the tracks to the vertex to be treated by the
kinematic fit? These and similar questions need to be
studied if the full potential of adaptive methods is to be
exploited.

1454 Are Strandlie and Rudolf Frühwirth: Track and vertex reconstruction: From …

Rev. Mod. Phys., Vol. 82, No. 2, April–June 2010



G. Estimation of material

A general problem, which to our knowledge has so far
been not met with a general solution, is the estimation of
the amount and the distribution of the material in a
tracking detector from reconstructed tracks. In the track
simulation program usually a detailed detector descrip-
tion is available so that there is a close correspondence
between the detector model and the actual detector. In
track reconstruction a simplified detector model is em-
ployed in most cases mainly because of the amount of
computing time that is considered tolerable. The simpli-
fied model often reflects only inadequately the actual
amount and location of the material and often assumes
that the material is concentrated in thin layers when it is
actually not. The consequences are unsatisfactory �2 dis-
tributions and biased test statistics. The solution of this
inverse problem is in our opinion a challenging but in-
teresting and important research topic.
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