
A
TL

-S
O

FT
-P

U
B-

20
07

-0
07

17
D

ec
em

be
r

20
07

Concepts, Design and Implementation of the
ATLAS New Tracking (NEWT)

T. Cornelissen, M. Elsing, I. Gavrilenko
CERN

S. Fleischmann
University of Bonn, Germany

W. Liebig
NIKHEF, Amsterdam, The Netherlands

E. Moyse
University of Massachusetts, USA

A. Salzburger (Editor)∗

Leopold Franzens Universität Innsbruck, Austria & CERN

for the ATLAS Inner Detector Software Group

December 17, 2007

ATLAS NOTE
The ATLAS Experiment, http://www.atlas.ch

Abstract

The track reconstruction of modern high energy physics experiments is a very complex task
that puts stringent requirements onto the software realisation. The ATLAS track reconstruction
software has been in the past dominated by a collection of individual packages, each of which
incorporating a different intrinsic event data model, different data flow sequences and calibration
data. Invoked by the Final Report of the Reconstruction Task Force, the ATLAS track reconstruc-
tion has undergone a major design revolution to ensure maintainability during the long lifetime
of the ATLAS experiment and the flexibility needed for the startup phase. The entire software
chain has been reorganised in modular components and a common Event Data Model has been
deployed during the last four years. A complete new track reconstruction that concentrates on
common tools aimed to be used by both ATLAS tracking devices, the Inner Detector and the
Muon System, has been established. It has been already used during many large scale tests with
data from Monte Carlo simulation and from detector commissioning projects such as the com-
bined test beam 2004 and cosmic ray events. This document concentrates on the technical and
conceptual details of the newly developed track reconstruction, also referred to as New Tracking.
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1 Introduction

The event reconstruction of modern high energy physics experiments is a very complex task but indis-
pensable for any analysis of the underlying physics process. At the LHC with its design luminosity of
1034 cm−2s−1 and multiple overlaying proton-proton collisions the resulting high track density puts
stringent challenges to the track reconstruction software. The ATLAS detector consists of two inde-
pendent tracking devices: the Inner Detector (ID) close to the interaction region — realised as the
pixel detector at innermost radii, Semiconductor Tracker (SCT) using silicon strips, and a Transi-
tion Radiation Tracker (TRT) — and the Muon System (MS), that combines Monitored Drift Tubes
(MDT), Cathode Strip Chambers (CSC), Thin Gap Chambers (TGC), and Resistive Plate Chambers
(RPC). While the Inner Detector reconstruction has to deal with the high track density that imposes
a large number of combinatorial track candidates, the Muon System track reconstruction is mainly
limited by the huge amount of inert material, the cavern background and the highly inhomogeneous
magnetic field.
In the past1, the ATLAS track reconstruction software consisted for both, ID and MS, of several
competing reconstruction programs, each of which incorporating its own data model, different recon-
struction geometries, varying concepts in material integration and separate philosophies in algorithmic
sequence and steering2. Performance comparisons between the various programs on different levels
of the reconstruction chain have been almost impossible. New developments in terms of calibration,
conditions or alignment data that are needed for a more realistic description of the ATLAS detector
had to be integrated separately into the existing software packages, since the use of common tools was
not incorporated into the underlying software design.
The long lifetime of the ATLAS experiment, however, requires a reconstruction software that is flex-
ible, extendable, easy to maintain or change, whilst keeping the performance at the highest and the
CPU time consumption at the lowest possible level. The ATLAS Reconstruction Task Force (RTF)
recognised in 2003 [1] the potential danger of sticking with the monolithic, and sometimes even single-
author software structure, and developed a guideline for the transition of the ATLAS reconstruction
software to a modern, modular pattern that is based on common interfaces and a shared Event Data
Model (EDM). During the last four years this shared EDM has been developed and established [2],
which builds a cornerstone of the ATLAS New Tracking (NEWT). Given the modular software struc-
ture, New Tracking is not a name for yet another reconstruction program, but rather a collective term
for the philosophy that has been deployed throughout the new track reconstruction software. A lot
of the existing and well performing code that has been part of the past reconstruction programs has
been integrated as components into the new modular design. Currently, NEWT spans over about 250
software packages, located in the common Tracking repository as well as in the associated sub-detector
repositories, and concentrates the work of many developers. NEWT has been developed in full coher-
ence with the ATLAS software framework ATHENA and respects ATLAS coding standards [3]. This
document is based on the ATLAS software release 12.0.6. Developments that have been integrated
after this release are clearly marked within the context.

1.1 Document Structure

This document is organised as follows: Section 2 gives an introduction to the ATHENA framework,
concentrating on the concepts and modules used in the realisation of New Tracking, Sec. 3 focuses
on the high level structure of the ATLAS New Tracking in both algorithm sequence and data flow;
additionally, an overview of the most common Tracking interfaces and tools is given. Section 4
describes the track reconstruction strategies and their implementation in the current ID New Tracking.
Section 5 describes the usage of the common tools in the Muon System and in the context of muon
combined reconstruction. Finally, Sec. 6 will give a conclusion, but will also present an outlook of the
ongoing evolution of the New Tracking realm. The appendix explains typesetting and gives a brief
overview on the used software packages such as an index of used abbreviations within this document
for the orientation of the reader.

1Starting from the design phase of the ATLAS experiment.
2Commonality has not even been met in the used programming language, as for historical reasons these track

reconstruction programs have been written in C, C++, Fortran or even a mixture of all three.
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2 The embedding Software Framework ATHENA

The main concept of NEWT is to factorise the complex process of track reconstruction into well
defined modules that represent a single task or a grouped operation. A common interface structure
for these modules has been defined and the EDM acts hereby as the language between the different
components. This allows single parts of the entire reconstruction process to be modified or exchanged
without disrupting the untouched parts of the software chain.
To understand the structure of the ATLAS New Tracking, it is necessary to be familiar with the
main concepts of the underlying software framework, not necessarily on a detailed technical, but on
an abstract level. The following section should give the reader enough knowledge to understand the
concepts of algorithmic sequences and the overall data flow, while attempting to minimise the purely
technical aspects of the ATLAS software structure. The reader is, however, encouraged to read further
in [4], Sec. 3.3, where a complete overview of the ATHENA framework is given.

2.1 The ATHENA Framework and the Component Architecture

The ATLAS ATHENA software framework is an enhanced version of the original C++ based soft-
ware framework GAUDI [5] that was initially developed by the LHCb collaboration. Nowadays, the
two projects have been merged to a joint ATLAS-LHCb project, sometimes referred to as GAUDI-
ATHENA.

2.1.1 The ATHENA Component Pattern Architecture

The component model is a very common software architecture of large-scale software projects. Com-
monly used interfaces are defined and allow various alternative realisations — i.e. in software terms,
different implementations — of the same task. The component library structure allows that these
alternative modules are loaded as shared libraries at job configuration level. This leads to a flexible
software structure and reduces in addition dependencies between the various libraries used in the final
executable, which in turn increases the stability and decreases the complexity of the build process of
the ATLAS software3. Further information about the ATLAS software model can be found in [6].
The ATHENA framework provides a set of defined interfaces at different levels in the program sequence
that also build the base pattern of the ATLAS New Tracking:

• The Service class is designed to provide dedicated functionality during the entire program
execution, e.g. the central data storages (transient event store or the detector store) are realised
as ATHENA Service objects. Service instances are handled by a central ExtSvc manager,
that regulates initialisation and finalisation.

• The Algorithm class is dedicated for actions to be taken exactly one time for every processed
event, e.g. most of the data preparation algorithms are realised as Algorithm classes. These have
to be registered to a central ApplicationMgr in the job configuration that steers initialisation,
finalisation and the execution of the Algorithm at every event.

• Unlike the Algorithm class provides the AlgTool are more flexible solution for repeated oper-
ations, mainly called through an Algorithm that either owns the associated AlgTool (i.e. con-
sequently a private AlgTool) or retrieves it from the central ToolSvc, where all public tools
are registered. This pattern allows AlgTool instances to be shared between different applica-
tions, such as e.g. the same Extrapolator AlgTool instance is used at several places within the
reconstruction process.

In general, the Algorithm is responsible for retrieving input data collections from and writing the out-
put data to the transient event store, which is realised through the ATHENA Service StoreGateSvc.
The actual operations are usually not performed by the Algorithm, but delegated to AlgTool units,
that can be shared between different tasks. Per event, the various Algorithm instances are called one

3In the ATLAS computing model, test builds of the entire software suite take place on a daily basis to allow a coherent
and parallel code development of the multiple authors. Additionally, it increases the frequency of the development cycles
and allows large scale evolutions of the software in a gradual way.
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after the other by the ApplicationMgr through which the reconstruction sequence is defined. There
is no additional dependency between the different Algorithm classes rather than they rely on the
input data to be existing and retrievable through the StoreGateSvc. Following [7], this data centered
architecture will be further on referred to as blackboard architecture style, where the StoreGateSvc
acts as the blackboard to which the clients write to or read from (in ATHENA, this is represented by
the templated StoreGateSvc::retrieve(), respectively StoreGateSvc::record() interface). The
ApplicationMgr plays the role of a controller (teacher) in this model and organises the reading and
writing to and from the blackboard. The result of the blackboard design can be seen as a pseudo data
flow : in an abstract picture the data objects are handed over from one Algorithm to the next one in
the reconstruction sequence, while in reality the data exchange always progresses via the blackboard.
Figure 1 shows a schematic UML sequence diagram for a sample usage of the three main framework
components in a simple processing example.

es: StoreGateSvc am : ApplicationMgr ua : UserAlgorithm

0: StatusCode initialize()

3*: StatusCode execute()

ts: ToolSvc

ut : UserTool

1: StatusCode retrieveTool(IUserTool*)

2: StatusCode initialize()

4: StatusCode retrieve(InputDataCollection*)

5*: OutputData* process(InputData&)

6: StatusCode record(OutputDataCollection*)

7: StatusCode finalize()

Figure 1: A simplified UML sequence diagram for the data flow and sequence steering in the ATHENA
framework. Every Algorithm is registered to the ApplicationMgr that calls the initialize() interface
method at job startup, the execute() for every event and the finalize() method in the job termination
phase. The initialize() call to the Algorithm may trigger the retrieval of an AlgTool from the ToolSvc.
The main framework methods are templated and return a StatusCode object that indicates the success state
of the performed operation.

2.1.2 Data Factory Pattern and Encapsulation of algorithmic Code

A main concept on the ATLAS computing model — and a natural consequence of the blackboard
design — is a clear and strict separation between data classes and algorithmic code, that is mainly
carried out by AlgTool classes. Operations are performed on input data classes, and newly created
output data is hereby produced. In general, modifications to the input data are not allowed, but
the modification of an object leads rather to the creation of a new one. In C++ terms, these new
objects are dynamically created using the new operator. This concept is intrinsically imposed by the
blackboard framework design that is concentrated around a central data store service: allowing modi-
fications of an object would change the object immediately at every appearance in the reconstruction
chain and since there is no relation between the different Algorithm modules, a direct manipulation
of EDM objects could affect any decoupled Algorithm that uses the same input sample without being
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triggered. This is the reason why the tracking EDM classes in general do not have modification or
set methods which are commonly used in many other application libraries4. This model will in the
following be referred to as data factory pattern.

3 Concepts and Common Components of the New Tracking

In a complex software project of large scale that serves both users and developers on different levels of
interaction, it is inevitable that common structures and patterns are identified and named, such that
an intuitive guideline through the — for the single user — almost unmanageable matrix of components
is present5. Section 3.1 tries in the following to define these common structures in an abstract way,
while Sec. 3.2 concentrates on the actual used common components in the context of the ATLAS New
Tracking reconstruction.

3.1 Reconstruction Sequences, Modules, Tasks and Operations

In the following, the components of the track reconstruction software will be classified as sequences,
modules, tasks and operations:

• A sequence specifies a complete process of several complex reconstruction steps leading to high
level output objects; track finding with two strategies may be performed through two different
sequences, established as different Algorithm chains.

• A module denotes, in general, the complete chain of retrieving input data from the transient
event store, processing the data, and the successive recording of the output data. Most data
preparation processes are realised as modules; another example would be track refitting, where
a complete track collection is retrieved from the StoreGateSvc and a new collection of tracks is
recorded to it after refitting with a track fitter. Modules are in general realised as Algorithm
classes with their associated access to the transient event store.

• A task describes on the other hand a well-defined execution without direct interaction with the
algorithm sequence. The refit of a track, e.g. is a task in this scope and a module consists usually
of one to several tasks. Tasks are often performed by AlgTool classes which are directly called
by an Algorithm; such AlgTool instances will be in the following called at first level.

• The lowest component to be mentioned in this context is an operation, usually performed by
an AlgTool object of lower level. Operations are often shared between tasks (and a task is in
general built of several operations) and performed several times, but do — contrary to a task —
not lead to a direct output data object. The extrapolation of a track representation to surfaces,
which is needed in track fitting as well as in pattern recognition, vertex fitting and combined
reconstruction is an example for such an operation.

Lower level algorithmic code or utilities are not forced into the AlgTool schema since this creates a
quite substantial overhead to a simple class definition: small mathematical utility classes, functors
for object sorting and access, but also little manipulator friend classes are therefore concentrated in
dedicated utility packages that do not embody the component library pattern, but are of an installed
library type6.

4For low level objects that have not been written to the transient event store or those that are scheduled for immediate
further processing it is, however, sometimes useful when small modifications are allowed without necessarily creating a
new object and destroying the old one. In this case, dedicated helper classes that are in a C++ friend relation to the
data objects can be called that perform the manipulation, while respecting the self-consistency of the object.

5The ATLAS offline release has already exceeded the number of 1000 component packages.
6The major difference between component libraries and installed libraries is their role in the linking process of the

software build. While component libraries can be loaded dynamically at run time as shared libraries, installed libraries
have to be linked against. In more illustrative words: when one deals with goods it is necessary to know their size and
shapes, while it is not obligatory to about the dealer who delivers them.
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3.2 Common Interfaces and Tracking AlgTool Classes

The framework Algorithm class builds the natural interface for a module, while operations and tasks
impose a higher granularity and have to be defined by an interface structure that allows multiple actual
implementations. In the ATLAS New Tracking, there exist two different types of interface definitions
for AlgTool objects: common interfaces that define operations and tasks performed on base class
level of the tracking EDM and specific interfaces that describe operations that are particular to a
sub-detector. Common interface definitions are concentrated in the Tracking repository, while specific
interfaces are spread out over the sub-detector repositories. Common interfaces do not necessarily
imply that the implementations can be kept in an generic way or an abstract level. Moreover, some
operations and tasks will be best performing if a very specific and for the sub-detector technology
optimised way can be found. In this case, the actual AlgTool classes are located in the sub-detector
repositories and the method interface is, if possible, overridden such that the base class EDM object
is hidden by the concrete sub-detector implementation. Table 1 gives an overview of the locations of
common interfaces defined in the Tracking repository.

Table 1: Locations and brief description of common interfaces concentrated in the Tracking repository. For
future releases it is scheduled to move the track fitting interfaces into a dedicated TrkFitterInterfaces package
to sustain a coherent naming schema.

Interface package Description Example
TrkExInterfaces propagation, extrapolation, material effects IPropagator
TrkDetDescrInterfaces building of the TrackingGeometry IGeometryBuilder
TrkMagFieldInterfaces magnetic field access, parameterisations IMagneticFieldTool
TrkFitterUtils fitting interfaces and extensions ITrackFitter
TrkToolInterfaces truth processing, updator, ... IUpdator
TrkValInterfaces validation tools IResidualPullCalculator
TrkVertexFitterInterfaces vertex seed finding, fitting IVertexFitter

The list of specific interfaces that define tasks and operations in the sub-detectors is wide-spread, every
single AlgTool is represented through a dedicated interface even if only one single implementation is
currently present7. This allows code development beyond the level of pure structured programming,
but it also necessary for the component pattern design. Modularity is hereby achieved through the
fact that all interactions between modules are kept purely on interface level.

3.3 The ATLAS Tracking Event Data Model and Reconstruction Geometry

A common EDM is inevitable for a modular software architecture. It allows the definition of abstract
interfaces by identifying similar tasks to be performed through the method signature and the return
type of the method, respectively. Different concrete implementations of the same abstract interface
class may be created for e.g. different sub-detectors, realising a similar operation with different but
optimised implementations.
During the last four years a common ATLAS tracking EDM has been deployed, concentrated around
a very flexible and extensible Track class. The collection of Track objects is capable of holding
the entire tracking information of the event. The polymorphic inheritance structure of the ATLAS
tracking EDM enables the definition of tasks that can be performed on base class level, or — if
detailed information about the actual data type is required — on objects of concrete type. Even a
brief description of the EDM classes that are used in NEWT would go far beyond the scope of this
document, but is essential for the understanding of the implementation of the New Tracking chain.
The reader is therefore encouraged to find all detailed information about the EDM in [2]. The main
tracking EDM classes, such as the track and measurement representations will in the following be
used without further description of their class structure.

7The definition of tasks and operations through interfaces allows to evaluate, modify and eventually exchange the
single modules of the track reconstruction during the long term operation of the ATLAS detector.
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Together with the new EDM a common reconstruction geometry has been developed coherently to
guarantee a consistent geometrical description for the use in track reconstruction. A core Surface
class description has been introduced that builds the interface of geometrical information (given by the
central ATLAS detector description) with tracking relevant data, such as hits on detecting surfaces.
In other words, the Surface builds the binding link between the geometry and the linear algebra ap-
plications of the EDM. The purely mathematical description given by the Surface classes is extended
to Layer and TrackingVolume object that give access to the material and magnetic field information.
The full reconstruction geometry will be in the following referred to as TrackingGeometry and is
described in detail in [8].

Common Tools Many repeating tasks and operations during track reconstruction can be performed
without the need of any dedicated information about the underlying detector technology. This is in
particular given for purely mathematical operations or higher level tasks that operate on base class
level of the underlying tracking EDM. Track and vertex fitting are, in general, independent from the
way the track information has been gathered as long as the EDM provides enough — and mathematical
consistent — information about the track to perform the fit. In the ATLAS New Tracking realm,
these tasks have been identified and concentrated in common AlgTool implementations, ordered in
an intuitive package structure in the Tracking repository. The main tools and concepts are described
in the following sub-sections. The building of the reconstruction geometry, which is also realised in
the common interface structure of the New Tracking reconstruction is omitted in this consideration,
since it is done only once at startup of the reconstruction job.

3.3.1 The Extrapolation Engine

The transport of track parameters (i.e. the representation of a track with respect to given detector sur-
faces) is a very frequent process in track reconstruction. It can be performed with different complexity,
following diverse track models and propagation techniques. In many tasks, special consideration has
to be paid on the correct integration of the effects originating from interactions of the particle with the
traversed detector material, while in others this is of minor importance. The ATLAS extrapolation
package provides a very flexible set of AlgTool implementations, including propagators for the purely
mathematical transport of the track parameters, classes for material effects integration and magnetic
field access. The extrapolation package is located in the TrkExtrapolation CVS repository and is based
on the newly developed reconstruction geometry package. Further details about the extrapolation
package can be found in [9].

3.3.2 Magnetic Field Access

The access to the magnetic field information in ATHENA is done by a dedicated Service, the
MagFieldAthenaSvc. In the pattern finding stage of track reconstruction it is usually sufficient to use
a less granular parameterisation of the magnetic field, while in the final track fit, the best description
of the magnetic field is used to achieve the optimal track resolution. In NEWT, a dedicated AlgTool
interface layer between the standard ATHENA magnetic field access service and the client code has
been inserted to allow specific simplifications, modifications of the given magnetic field map or the
direct access to the ATHENA MagFieldSvc through one single interface. For the extrapolation pack-
age the access to the magnetic field tool is given through a special MagneticFieldProperties class.
The MagneticFieldProperties class is a base class of the TrackingVolume class, which allows the
definition of different field configurations for different parts of the detector. This is of special interest
for many pattern recognition programs where simplified parameterisations provide, in general, a satis-
factory accuracy for the pattern search. The additional flexibility of modifications and distortions will
be in particular important for the scaling and adjustment of the magnetic field during the start-up
phase of the ATLAS experiment and did proof well during data taking of the ATLAS combined test
beam in 2004.
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3.3.3 The ITrackFitter Interface and common Track Fitters

A track fit is the estimation of the best set of parameters describing the track with respect to a
given reference surface when a collection of hits is given to define the track trajectory. This fitting
procedure can be performed in various different ways, while the input data to the fit is properly
defined: fitting can be done on a set of non-calibrated hits (i.e., in the ATLAS EDM, a collection of
PrepRawData) objects, on a set of calibrated measurements of various types (in ATLAS realised as
extensions of a MeasurementBase base class) or as a refit of a given Track or TrackSegment object.
Only few additional parameters, such as a particle type hypothesis for the material effects integration
or a possible outlier logic steering are needed to specify the fitting procedure. In NEWT, a general
ITrackFitter interface has been imposed that defines the main functionality of any used track fitter;
currently six different fitting techniques are implemented under this interface and can be chosen at
job configuration level:

• KalmanFitter (KF): the KalmanFitter is a straight-forward implementation of the Kalman
filter technique that has been adopted for the track fitting in high energy experiments [10]. It
combines forward filtering, backward smoothing and an outlier rejection; it uses the extrapolation
engine with its underlying reconstruction geometry for filter step predictions. For the ATLAS
silicon detector, the KF has a dedicated extension for he fitting of electron tracks, that lose
stochastically a significant part of their energy due to bremsstrahlung effects. In this case, the
purely Gaussian process noise assumption — for energy loss based on ionisation loss — that is
intrinsic to the best estimator mechanism of the Kalman approach is far from being optimal.
A special dynamic noise adjustment schema (DNA) [11] has been developed that still uses a
Gaussian error assumption, but adapts the value of the applied variance with respect to the
amount of traversed material.

The gain matrix driven update of a track prediction with a given measurement is the main
concept of the Kalman filter technique. In NEWT, this specific operation is defined by an
IUpdator interface and accessed by the KalmanFilter. The different IUpdator realisations
that exist in the ATLAS New Tracking realm are described in Sec. 3.3.4.

• DeterministicAnnealingFilter (DAF): the deterministic annealing technique [12] combines
the standard Kalman filter formalism with a probabilistic description of the measurement assign-
ment to a track; per detecting surfaces several measurements can be fitted at once, each weighted
by the current assignment probability given through the track fit. An annealing schema using a
defined Boltzman function is performed by cooling the system temperature to a threshold level
while iterating the track fit. This schema allows the DAF to perform local pattern recognition
in combination with a track fit in detector regions with high hit multiplicities. The DAF is im-
plemented using the KalmanFitter underneath and imposing the additional annealing schema.
The DAF extends the tracking EDM with a probabilistic hit description, i.e. multiple hits are
grouped together in one single measurement class. Details about the actual implementation of
the DAF concept in the ATLAS New Tracking realm can be found in [13].

• GaussianSumFilter (GSF): the GSF is a special multi-Gaussian extension of the standard
Kalman fitter [14], aimed at the reconstruction of electron tracks. In the GSF approach, the
highly non-gaussian probability density function of the electron energy loss is modeled by a
mixture of several Gaussians. To integrate this model into the track parameterisation, the track
parameters for the GSF are realised as a multi-component bundle and processed simultaneously.
Evidently, the GSF needs an extended EDM for handling the multi-component approach. Com-
ponent reduction is imposed at several steps to avoid an exponential growth of the number of
components describing the track during the full track fit.

• AlignmentKalmanFitter (AKF): the alignment of the ATLAS detector will be a challenging
task that is of particular interest at the startup phase of the experiment. Track based alignment
procedures play hereby an important role and will be carried out trough the entire lifetime of
the experiment. Recently, an extended version of the Kalman filter has been developed [15]
that integrates the update of the detector surface orientation and position into the intrinsic
measurement update of a Kalman filter step. This technique is realised in ATLAS through a
special AlignmentKalmanFitter that is based upon the standard KalmanFitter implementation
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and an extended version of the ATLAS reconstruction geometry that introduces custom alignable
Surface objects8.

• GlobalChi2Fitter: the track fit through the minimisation of a global χ2 value is a very common
and robust fitting technique that is described in various publications (such as [16]). Given purely
Gaussian process noise, the minimisation of the χ2 value that is built from the hit residuals at
every measurement surface marks the best set of estimators of the track trajectory. Material
effects enter the χ2 function as additional fitting parameters, weighted by their expected variance
due to their stochastic behavior. The minimisation of the global χ2 value is then, in general,
performed by solving a set of linear equations through a matrix inversion. Thus, the number
of global parameters have to be kept low to minimise the CPU time consumption. In NEWT,
this technique is implemented through the GlobalChi2Fitter, which has been of extensive use
while reconstructing data from the combined test beam 2004 and during the reconstruction of
tracks originating from cosmic rays, see Sec. 4.4. The GlobalChi2Fitter is interfaced with the
common reconstruction geometry via a dedicated dynamic layer schema.

• DistributedKalmanFilter (DKF): this is a modified version of the the Kalman filter formal-
ism that estimates the track parameters only for the perigee representation. This leads to a
significant speed-up of the algorithm, since the for the original Kalman approach necessary
propagations of the state vector to the measurement surfaces are reduced to a pure integration
of material effects. The DKF also deploys a χ2 based outlier rejection and an internal node
schema for representing barrel or endcap measurements. It has been designed mainly for the use
in the ID LVL2 Trigger and Event Filter and is a substantial part of the ID LVL2 application
IDSCAN [17].

3.3.4 The IUpdator Interface

The update of the predicted track parameters with a measurement is a commonality of most pro-
gressive track fitting algorithms. Different models based on a covariance or weight matrix formalism
can hereby be used. The mathematical background for the measurement update is well defined, how-
ever, the realisations can differ through approximations. In NEWT a dedicated IUpdator interface is
provided and four different AlgTool implementations exist: three of which incorporate a covariance
matrix based formalism and differ mainly through the used underlying math library and numerical
stability. The fourth IUpdator implementation deploys a weight matrix approach and is superior in
timing performance when being used with the DAF since it saves unnecessary matrix inversion when
weighting the individual measurements.
The IUpdator can also be used to perform a reverse measurement update, as long as the full informa-
tion on the measurement surface (including the combined covariance matrix) is given. This allows to
calculate unbiased hit residuals without performing an additional track fit, which is a useful feature
for the validation and alignment algorithms.

3.3.5 Calibration on Track

One concept of the ATLAS New Tracking is the (re-)calibration of the measurement based on the
track direction and sensor intersection point. This can be used e.g. for the definition of the drift radius
sign, error scaling, future calibration or conditions data depending on a given module intersection
such as dead or noisy channel information. The imposed calibration model includes the adaption of
cluster errors as well as the integration of chamber or module distortions to account for a realistic
geometry description. Every sub-detector technology in ATLAS will have different strategies for
calibration, optimised for performance of the individual part. To integrate the on track calibration
into the general track fit, it is necessary to provide a schema that is at highest level independent
from the used concepts and encapsulated from the sub-detector realms. This is established through a
mixture of a common interface and various different implementations in the sub-detector repositories.

8The Surface objects of the ATLAS reconstruction geometry are fully integrated into the conditions data schema of
ATLAS and retrieve alignment data at geometry construction or triggered through a callback in case that the geometry
setup has changed during a single reconstruction job. The AlignableSurface that extends the common Surface base
class introduces, however, a user-open alignment update possibility which is needed for this iterative alignment approach.
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The IRIO OnTrackCreator defines this transition from non-calibrated (PrepRawData) to calibrated
(RIO OnTrack) EDM objects and finds a common implementation in the Tracking realm: the so-called
RIO OnTrackCreator, holds a collection of pointers to further IRIO OnTrackCreatorTool objects,
each of which representing a different sub-detector.

3.3.6 Summary, Scoring and Helper Tools

The ATLAS tracking EDM provides various models of classifications for tracks: the most widely used
quality information of fitted tracks is the χ2 value together with the number of degrees of freedom ndof

of the track fit. This information is directly accessible through the Track object, but does not contain
a lot of information about the track morphology. The χ2/ndof is a good parameter for a fast separation
of good and bad tracks or for the application of quality cuts on a given track sample. However, it
does not help in classifying the tracks any further which is necessary at various stages in the track
reconstruction (i.e. the identification of fake tracks, the solving of hit ambiguities or evaluation of
track extensions). Detailed information about the track characteristics in the sub-detector has to be
accessible, which in the ATLAS EDM is realised through a TrackSummary object. The New Tracking
uses a dedicated track scoring approach: first the TrackSummary is created by the TrackSummaryTool,
which parses the Track object and records the hit statistics and characteristics for the various sub-
detectors into a pre-defined enumeration schema. Helper tools in both, ID and MS, guarantee hereby
the access to the relevant information that is specific to the detector technology. The TrackSummary
is not assigned to a Track object as a private member, since many of the hit characteristics, such as
shared hits, are a property of the processed track collection and not of a single track. Dedicated scoring
functions that give bonus or penalty points for different patterns calculate a final track score that is
then used for the track classification. Since the ITrackScoringTool allows different implementations
of scoring functions that may also incorporate a different scoring system, the track score is not stored
on track to prevent comparisons of track scores from different sources and with different meanings.

3.3.7 Truth Association and Validation

The validation of the entire track reconstruction chain is a necessary but complex task, since many
different processes contribute to the final track reconstruction result. In the ATLAS New Tracking
realm, dedicated emphasis has been put on having automated validation procedures for different stages
of the track reconstruction process. The common EDM allows to concentrate the validation algorithms
into a separate structure, while supporting the input of several different track reconstruction sequences
as long as they comply with the tracking EDM.

Truth Association For many validation studies using Monte Carlo simulated data the association of
reconstructed input data with the Monte Carlo truth is essential. The ATLAS tracking EDM follows
a strict association pattern for the truth binding, i.e. no direct link between the event data object and
the corresponding Monte Carlo truth object exists, but the relation between the two is purely done by
an associative container. Several sets of Algorithm and AlgTool classes exist that parse given EDM
input containers and establish the association to the truth objects. The truth association is mainly
done on three different levels:

• Hit Truth Association: the clusters and drift circles are in ATLAS represented by PrepRawData
objects. The first stage in the truth association of the track reconstruction is thus to find the
relation of the PrepRawData objects to the simulated hits and through back navigation in the
Monte Carlo record to the generated particle. Given the track density in the ATLAS detector
it is possible that during the clusterisation process one PrepRawData object is constructed from
several simulated hits that are caused by different generated particles. To account for this ambi-
guity, the PrepRawData truth collection is implemented as an associative container that allows
this multiple relationship, even with given assignment probabilities (in C++ terms this is done
using an STL multimap object).

• Track Truth Association: the task of associating the reconstructed track objects with the
generated particles is defined defined by the IDetailedTrackTruthBuilder interface. A track
can hereby correspond to one or many generated particles; since in full detector simulation many
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hard interaction processes change the identifier of the particle, while for tracking the given chain
of truth particles is in the optimal case still reconstructed as a whole, a one-to-many relationship
has been established as default. The classification whether a track corresponds to a given truth
trajectory is done using the PrepRawData truth collection created in the hit truth association
process.

• TrackParticle truth association: the TrackParticle class is not in particular a component
of NEWT, but builds the interface of track reconstruction to many analysis applications. Addi-
tionally it marks the representation of the track in the AOD containers9. Since in the ATLAS
data model the Track is not contained anymore in the AOD, it is convenient to establish a
dedicated truth association container for the TrackParticle objects, by simply forwarding the
track truth information.

The Monte Carlo truth association is highly detector specific, therefore most of the Algorithm im-
plementations are located in the sub-detector repositories. However, the common steering and the
interfaces to be used by the different technologies are concentrated in the ATLAS Tracking realm.

Validation The validation of NEWT concentrates on two different topics: performance and reliability.
Performance validation is in general done at various stages and is in many cases deeply woven into the
sub-detector concepts. However, on a general track level it can be to some extent performed within the
common tracking framework. A dedicated package, the TrkValidation concentrates therefore several
Algorithm and AlgTool objects capable of filling histograms from tracking EDM objects from base
class level, Tab. 2 presents an overview and a brief description of the components that can be found
in the TrkValidaiton container.

Table 2: Container packages and brief description of their content in the TrkValidation package, packages
dedicated for the validation of the vertexing performance are omitted since they are not particular to NEWT.

Container Description
TrkValAlgs steering algorithm for track based validation, including track parameter

residuals and pulls, hit residuals and pulls (biased and unbiased),
an Algorithm for track difference calculations, material validation

TrkValInteraces interface definitions for AlgTool classes used within this context
TrkValTools several AlgTool classes that are mainly used by modules from the

TrkValAlgs package: a general residual and pull calculator,
a hit position helper, etc.

Many of the performance actions rely on the Monte Carlo truth information and thus require the truth
association to be done before. Hit residuals and pull distributions for hits on surfaces can however
be calculated without truth association, since the true hit position is given by the measurement. The
TrkValidation follows hereby the described structure of a common interface and dedicated implemen-
tations of AlgTool classes in the sub-detector realms to guarantee access to the underlying specific hit
information. If the complete track information is provided, i.e. both the measurement and the track
representation are given with covariance matrices, the unbiased residual can be calculated by applying
an reverse update step to the track. Additional validation and statistics packages can be found in
the sub-detector repositories such as e.g. the InDetRecStatistics package that focusses on a detailed
validation of the pattern recognition efficiency and track reconstruction resolution in comparison with
Monto Carlo truth information for the Inner Detector.
The reliability of the software is of similar importance as the tracking performance. In the ATLAS
computing model, automatic test runs on standard input samples are performed for every new build of
the software project to monitor sudden changes on the performance level. Additionally, the ATHENA
framework provides several Service implementations to monitor memory consumption and leaks10,

9In the ATLAS computing model, the event data exists on the persistent side in two levels, the Event Summary
Data (ESD) and the highly compressed Analysis Object Data (AOD) that should be suitable for almost any analyses.

10The liability of memory leaks is one of the drawbacks of the data factory software design, since the latter requires
a precise tracking of the object ownership.
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timing performance and status code return values. The ATLAS New Tracking adds in addition an
instance counting schema for the EDM object, performed by the EventDataMonitor (also located in
the TrkValidation package) that can only be executed in a special debug mode.

4 The ATLAS New Tracking in the Inner Detector

In modern track reconstruction strategies there is no clear border between the classical modules
pattern finding and track fitting. This is — on the one hand — due to the fact that many pattern
finding strategies (contrary to a classical histogram based approach) nowadays incorporate a two
stage pattern: a global pattern search, as well as a local pattern recognition where track fitting is
already part of. On the other hand, many track fitters such as the combinatorial Kalman filter or the
deterministic annealing filter incorporate an intrinsic pattern recognition during the fitting process.
Thus, the full chain of pattern recognition and track fitting will be in the following described as a
single unit.
The ID New Tracking currently covers two sequences, the main inside-out track reconstruction and a
consecutive outside-in tracking. The primary pattern search concepts for both sequences have been
to a large extent adopted from the already existing ATLAS ID reconstruction program xKalman [18],
but integrated and accomplished by additional components in the common NEWT approach. A
third sequence, the second stage pattern recognition for the finding of V0 vertices, kink objects due
to bremsstrahlung and their associated tracks has been also deployed using the common tracking
tools and EDM, but is not particular to the New Tracking approach. Section 4.1 and Sec. 4.2 will
in the following describe the main concepts and tools used for establishing a full Inner Detector
reconstruction chain under the New Tracking, while Sec. 4.3 highlights the special adoption of the
ATLAS ID New Tracking for the third level trigger stage, the ATLAS Event Filter (EF). To distinguish
the EF realisation from the standard ID reconstruction, latter will be in the following also referred to
as offline reconstruction.

4.1 Inside-out Track Reconstruction

The primary ID pattern recognition follows an inside-out strategy for track finding. It is realised
as a sequence of modules — each represented through a dedicated Algorithm— and described in
more detail in the following sub-sections. Figure 2 shows an extended UML sequence diagram for the
inside-out tracking. In a classical picture, many modules of the sequence can be divided into global
pattern recognition and consecutive local pattern recognition that only works on the reduced output
sample of the global search results.

4.1.1 SpacePoint Formation

The first step in the inside-out track reconstruction is the creation of three-dimensional representations
of the silicon detector measurements, which are then called SpacePoint objects. For measurements
with the pixel detector this is a very simple task, since the pixel modules provide a two-dimensional
local measurement that is — using the constraint of the Surface representing the detector element
– transformed into a SpacePoint by a simple local-to-global transformation. Single SCT clusters can
not be transformed directly into a three-dimensional representation, since the precise measurement on
an SCT module can only be given orthogonally to the silicon strip direction. The transformation to a
three-dimensional point is therefore not constraint and a direct representation as a three-dimensional
point can not be defined. However, the SCT detector is built with a sandwich module structure,
i.e. two silicon modules are glued together back to back, but rotated by a stereo angle with respect to
another, this relation — and together with a beam spot constraint — this can be used to construct
the three-dimensional SpacePoint. The position of the beam spot is hereby automatically retrieved
from the conditions data or can be set by hand (e.g. for cosmic ray reconstruction). In contrast to
the pixel detector, where each cluster directly leads to a SpacePoint object, the SCT SpacePoint
formation features an intrinsic noise suppression at the very first pattern stage, since it requires two
different modules with separate readout for the creation of one single SpacePoint object.
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Figure 2: The main sequence of modules and some of the AlgTool classes used in the ATLAS New Tracking
for the Inner Detector illustrated as an extended UML sequence diagram. Following a blackboard architecture
structure, the transient event store (StoreGateSvc) acts as the blackboard for reading and writing of event
data, the ApplicationMgr as the controller of the system. Only two levels of embedded AlgTool classes
are shown, where dashed lines indicate a uses relationship, while the dotted line indicates possible sharing of
AlgTool instances.

4.1.2 SpacePoint seeded Track Finding

The SpacePoint collections filled in the previous step are further processed for seeding the track
candidate search in the Inner Detector. The SiSPSeededTrackFinder Algorithm represents this
second module in the inside-out sequence. It can be divided into two different tasks, the track seed
finding and the track candidate creation, based on the seeds found in the first step.
The seed search marks the global part of the pattern recognition and can be done in the following
ways, using the SiSpacePointSeedMaker:

• Seed search with z vertex constraint: SpacePoint pairs from only the pixel detector are
found in a first step and z vertices are built from these pairs using a dedicated SiZVertexMaker



14

-400 -200 0 200 400

-400

-200

0

200

400

r [mm]

r [mm]y [mm]

x [mm] z [mm]

ϕ
-3 -2 -1 0 1 2 3

100

200

300

400

500

SpacePoint Z-800 -600 -400 -200 0 200 400 600 800

0

100

200

300

400

500

Figure 3: SpacePoint seeds consisting of two (short seeds) respectively three (long seeds) objects in the
ATLAS Inner Detector barrel for a tt̄ event, found with the z-vertex constraint seed search: the seeds consisting
of two SpacePoint objects are used to determine z-coordinates of the predicted vertex positions. Only vertices
within a defined range around the interaction point are used to constrain further seeds with three or more
SpacePoint objects. For convenience, only seeds that are entirely in the barrel region are drawn.

AlgTool. The vertices are filled in histograms, keeping the seeds compatible with a given
momentum and transverse impact range. A fast primary vertex search is performed and the
primary vertex is used to further constrain the seeds with three or more space points. The
tolerance region for predicted vertices from constructed seeds can hereby be chosen as a cut
parameter. Figure 3 shows the seeds for vertex finding and track candidate search for an example
tt̄ event in the pixel and SCT barrel.

• Unconstrained seed search: The seed search can also be performed without the given z vertex
constraint, which leads to a significantly higher number of initial track seeds (and in the following
track candidates). The unconstrained seed search is evidently more time consuming, but more
efficient to find tracks in events with loosely constraint primary vertices, such as H → γγ decays
or non-physical single track events with superimposed pile-up signatures. Figure 4 shows the
z vertex distribution for an example tt̄ event and Fig. 5 shows the resulting SpacePoint seeds
found without z vertex constraint.

The z vertex scan is the standard SpacePoint seeded track search strategy in the ATLAS release
12.0.6, while for further production releases the unconstrained seeding is foreseen to be default in the
ID NEWT track reconstruction.
Once the SpacePoint seeds are found, the road building process is started: the seeds provide already
enough directional information to build roads of detector elements for the further search of associated
hits to one track candidate. This marks the beginning of the local part of the silicon pattern recogni-
tion. At this stage, the SpacePoint objects are dissolved into the cluster objects of which they have
been originally build from. This is, because the track candidate creation involves track fitting, which
is in general performed on either PrepRawData or RIO OnTrack level11. The cluster collections that
contain also the clusters that have not been used to create SpacePoint objects are retrieved from the
transient event store and those that are located on detector elements that build a road are used for the
track candidate. A Kalman fitter-smoother formalism is used to simultaneously follow the trajectory

11The SpacePoint class, however, has been recently integrated into the MeasurementBase schema and could also be
used for track fitting on this level. Since the creation of the SpacePoint objects include a projective error treatment,
the fit on RIO OnTrack level is more precise.
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Figure 4: The distribution of the z vertex co-
ordinate vz of the projected vertices that origi-
nate from the different SpacePointSeed objects
in the same event as shown in Fig. 3. The nar-
row distribution shows the vz distribution for the
seeds made of two pixel SpacePoint instances,
where the other two show the same distributions
for the seeds build from three SpacePoint objects
for both, the z vertex constraint (solid) and the
non-constraint (dashed) configuration. Addition-
ally the region around the primary vertex found
through the fast z vertex scan on the pixel seeds is
shown.

and include successive hits in the track candidate fit. This approach is intrinsic to the Kalman filter
formalism: it progressively updates the track information (including the covariances) and thus pre-
dicts precisely the track representation on the next measurement surface. Since, in general, a silicon
detector element has more than one hit per event, the prediction leads to the most likely extension of
the trajectory, while detecting outliers immediately via their large contribution to the χ2 of the track.
SpacePointSeed objects do not necessarily lead to a track candidate, in contrary, only in about 10
percent of the cases the seed is successfully extended to a track candidate, stored in the common Track
EDM format. The track finding from seeds, realised through the SiSPSeededTrackMaker AlgTool
provides also the possibility to find more than one track candidate from a given seed, but this is a
very rare case in the ATLAS ID event reconstruction.
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Figure 5: The same event as shown in Fig. 3 using the second silicon seed strategy without vertex constraint.
The SpacePoint seed build of three objects are spread over a large z-range that leads to an increase of the
track candidates for further processing.

4.1.3 Ambiguity Solving

The seeded track finding results in a very high number of track candidates, that have to be resolved
before the extension into the outer TRT can be done. Many of these track candidates share hits,
are incomplete or describe fake tracks, i.e. tracks where the majority of associated measurements do
not originate from one single particle. The tracks have to be therefore ranked in their likelihood to
describe the real trajectories of particles from the underlying physics event. A first step here is to refit
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the track using the refined reconstruction geometry that has a detailed material description. However,
the track fit only results in a global parameter, the χ2 divided by the degrees of freedom, which is in
most cases not appropriate to decide whether a track was a good or fake track. For the classification of
tracks, a so-called track scoring strategy has been developed [19], that describes in addition to the fit
quality morphologic parameters of the track: different characteristics of a track are hereby represented
by a beneficial or penalty track score, which all together form an overall track score. In general, each
hit associated with the track leads to a better score value to favor fully reconstructed tracks rather
than small track segments. The measurements of different sub-detectors are, in general, weighted
with different scores, preferring the precision measurements (e.g. pixel clusters) and downgrading
measurements from less precise detector parts. Table 3 gives a qualitative overview of the different
benefits and penalties of tracks found in the SpacePoint seeded track search, and Fig. 6 illustrates
some of the track characteristics to be resolved in the SCT barrel detector.

Table 3: Track characteristics that lead to benefits or penalties in the ATLAS silicon detector track score.

Track characteristics Detector Effect on the track score
B layer hole pixel strong penalty
Layer hole pixel penalty
Overlap hit pixel, SCT strong benefit
Sensor hole SCT weak penalty
Layer hole (module) SCT strong penalty

Hits that are shared between tracks are — after the track scoring has happened — mainly assigned
to the track with higher score, while the remaining track is being refitted without the formerly shared
hit12. The refitted track is again scored and enters the remaining list of tracks to be evaluated. In an
iterative procedure, the tracks with highest score are bundled and tracks that fall beyond a certain
quality cut are neglected for further processing.

sensor hit

module hit

ambiguous hit

hole

a
b

c

Figure 6: Simplified model of the am-
biguity solving process, illustrated in the
SCT Barrel. Tracks a, b, and c have been
found through the seeded track finding, but
share several hits. The χ2/ndof may not
be appropriate to distinguish a true from a
fake track, therefore dedicated track scor-
ing that is optimised for each sub-detector
is used. In the shown example, e.g. a mod-
ule hit representing measurements on both
sides of the SCT silicon detector are scored
relatively higher than two single hits with-
out associated backside module. Hits in a
overlap region as for track b are in particu-
lar high scored, while holes on track, i.e. an
expected hit that has not been found, lead
to a penalty in the track score.

4.1.4 TRT Track Extension

The track (segment) extension from the silicon detector into the TRT consists of two modules, the
TRT ExtensionAlg and the InDetExtensionProcessor. The TRT ExtensionAlg Algorithm steers
the extension finding on a single track by track basis; the tracks found through the silicon seeds and

12In a recently introduced strategy, that has not yet been part of the ATLAS 12.0.6 release, hit sharing between tracks
is allowed when the track fulfills dedicated quality criteria. This is to account for the fact that in the pixel system the
readout creates an artificial ambiguity between hits that are joined together to one readout element (ganged pixels).
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resolved by the ambiguity processing are used as an input to find compatible sets of TRT measurements
that are further processed as candidate extension. Again, the TRT ExtensionAlg simply delegates
this task to a dedicated AlgTool, represented through the ITRT TrackExtensionTool interface. The
silicon-only track must hereby not be modified, the association of the TRT hits are therefore purely
extensions and is not done by a combination. Figure 7 shows the extensions of the silicon seeded
tracks into the TRT detector for a sample tt̄ event.
Two concrete implementations of the track extension tool exist:

• TRT ExtensionTool xk: the TRT ExtensionTool xk is the standard implementation used in the
Inner Detector New Tracking. It follows a classical approach starting with road finding through
track extrapolation, and — using the hit coordinates expressed in r− φ in the barrel, and r− z
in the endcap region, respectively — performs a line fit to estimate whether the hit is compatible
with the silicon track seed or not.

• TRT ExtensionTool DAF: this extension tool is designed using the deterministic annealing filter
(see Sec. 3.3.3) that is optimised for very high hit densities. The DAF strategy also starts
with the road building (and uses hereby the same AlgTool as the first extension strategy), but
follows a different philosophy for the hit finding and hit assignment; TRT measurements within
the road are grouped together on the same readout element (or on planes perpendicular to the
extrapolated track, depending of the initial configuration) and represented as one input object
to the track fit. The different hits within the group are weighted by their likeliness to represent
the true hit, while the weights correspond mainly to the distance of the hit from the trajectory
prediction (i.e. the residual).

The TRT ExtensionAlg produces a map of the seeded silicon tracks and the found extensions, if no
extension is found through the concrete version of the ITRT TrackExtensionTool the second map
entry is simply left empty. This map is written to the transient event store and successively picked
up by the second Algorithm in the TRT extension module, the InDetExtensionProcessor. This
Algorithm is responsible for evaluating the extended track with respect to the pure silicon track. The
comparisons of the two tracks is based on a combined track refit and then done using the track scoring
mechanism, comparing the track score of the original track with the one after refitting. Unlike the
track extension Algorithm which is not allowed to change the initial silicon track, the refit in the
InDetExtensionProcessor can modify the silicon hits by flagging them as outlier measurements. In
case that the track score of the silicon track is higher than the extended version, the silicon track is kept
and the TRT hits are put as outlier measurements onto this track. The InDetExtensionProcessor can
be configured to work optionally with the DAF specific extension algorithm. In this configuration the
DAF is specified as the track fitter used for the evaluation of the track extension, applying the annealing
schema on the multiple measurements associated to the track in the TRT ExtensionTool DAF.

4.2 Outside-in Track Reconstruction

The inside-out sequence of the ID New Tracking relies on a track seed found in the silicon detector.
In the track reconstruction process, some of these initial track seeds may not be found or do even not
exist: ambiguous hits can shadow the track seed in the silicon and prevent the score of the silicon
seeded track to survive the ambiguity processor on the one hand, and on the other hand, tracks
coming from secondary decay vertices further inside the Inner Detector volume (e.g. Ks decays)
or from photon conversions may not have any or only insufficient silicon hits to comply with the
inside-out sequence. In a third pattern, substantial energy loss — mostly of electrons — at outer
radii of the silicon SpacePoint seeded track and not known to the road building may guide the
TRT TrackExtensionTool into a wrong direction, such that no corresponding TRT hits are found.
The ID New Tracking realisation will establish therefore a second sequence in track reconstruction,
following an outside-in approach. The sequence will be realised as two different modules, starting with
a dedicated segment finding algorithm and a successive back tracking of the segments into the silicon
detector. In release 12.0.6 only the first part has been included and is discussed below.
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simply for the fact that no appropriate silicon seed
did exist for the further extension process. This is
mainly due to strong energy loss of the particle, or
due to the fact that the track segments originate
from photon conversions or other decay vertices
inside the Inner Detector volume.

4.2.1 TRT Segment Finding

The currently existing TRT segment finder implementation in the ID New Tracking realm is based
on the outside-in track reconstruction strategy taken from the legacy xKalman program. It follows a
two step procedure, starting with a global pattern search and a subsequent local pattern recognition
with intrinsic track segment building. Since the TRT drift tube measurements do not provide any
information about the coordinate along the straw direction, SpacePoint objects can not be built and
the global pattern recognition has to be done in projective planes. Evidently, the most adequate
projection planes for the TRT geometry have been chosen: the r − φ plane in the TRT barrel region
and the r − z plane in the TRT endcap part, where the single straws fan out on disc structures.
Assuming that the tracks originate roughly from the primary interaction region, track segments from
tracks with transverse momentum greater than 500 MeV appear as almost straight lines in the r − φ
and rigorous straight lines in the z − φ projection. There exist many techniques to find straight line
patterns. A very common one in high energy physics event reconstruction, the Hough transform [20],
is used to find the hit pattern: it is based on the simple fact that by transforming the projection
plane r−φ (or z−φ, respectively) into the parameter space of the straight line — in this specific case
identified as the initial azimuthal angle φ0 and the inverse momentum parameter cT (respectively cz)
— the points associated with one line are transformed into one single cell, since they satisfy the same
line parameterisation. The global track segment search thus can be reduced to the local maximum
finding in a two-dimensional histogram. To reduce the number of overlaying track segments, this
histograming process is done for several η slices of the TRT detector. The missing hit information
along the drift tubes in the TRT, however, results in the fact that hits have to be in general considered
in several different slices. This relation has to be tracked and resolved by a simple maximisation of the
the straw hits per found track candidate. Figure 8 shows a two-dimensional histogram for an example
η slice in the Hough space.

Local Pattern Recognition and Event Sample Cleaning The histogram method provides a set
of track segment candidates that are further processed in a second step of the TRT segment finding.
Whereas the global hough transform uses the straw center position for the finding of compatible sets of
hits, the drift time information is also used in the local pattern recognition process: using a Kalman
filter-smoothing formalism the track segments are build and the final collection of TrackSegment
objects are written to the transient event store.
In many cases, the TrackSegment finding will pick up segments that have been already successfully
associated to tracks found in the silicon detector by the extension Algorithm. To save CPU time the
segment finding is planned to work on a cleaned out hit sample. For the event cleaning, an association
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Figure 8: Straw representations in a part of the parameter space (φ bins and momentum bins) after applying
the Hough transform. The Illustration shows a subset of the full parameter space that is divided in the standard
configuration into 500 bins in the azimuthal direction, while trying 70 momentum hypotheses. The left side
shows the Hough space in a scatter plot, while the right histogram shows the same subset in a three-dimensional
version, where the most probably (φ0, cT ) hypothesis can be clearly identified; the plot is restricted to a single
η slice.

tool — the PRD AssociationTool — that is also used in the ambiguity processing phase can be taken
to find the hit-track relation.
The second step of the outside-in approach, the backtracking of the TRT TrackSegment objects into
the silicon Detector is planned to be integrated with release 13.0.0 and will be presented in a separate
document [21].

4.3 The Event Filter Realisation

One special aim that has been followed during the development of the ATLAS ID New Tracking
software was to be able to provide the same track reconstruction chain to the ATLAS High Level
Trigger realm. This is achieved through the modular NEWT design which allows to replace time-
critical components and full-featured offline modules by trigger-specific implementations.
The ATLAS trigger system consists of a three step triggering system, with one pure hardware-based
LVL1 trigger, followed by the software LVL2 and the Event Filter (EF) [22]. The trigger strategy
starts from a very fast calorimeter and Muon Spectrometer based region of interest (ROI) estimation.
The ROIs found in the LVL1 might be further refined in the LVL2 trigger, where the calorimeter
clustering is repeated with higher granularity and first tracking stand-alone algorithms are run in
the ID and the Muon System. The Event Filter is the last step in the ATLAS Trigger chain. It is
a pure software trigger, working on the output of the LVL2 trigger objects. These objects already
incorporate a hypothesis of the event morphology and steer the EF to run in one of several pre-defined
slices, among which are the electron, muon, b-jet, b-physics, tau and gamma slices. Each of these slices
contains a very similar Algorithm sequence as the ID inside-out tracking and are followed, depending
on the given slice by dedicated event reconstruction algorithms including vertex finding, b-tagging or
electron processing. In the EF realisation of NEWT dedicated Algorithm classes steer the underlying
AlgTool objects with ROI seeded input collections. The used AlgTool classes are directly taken from
the offline reconstruction chain but operated in a ROI seeded mode, where the trigger slice defines
the width of the ROI. Given the time constraint of the EF, which is of about 1 second of total process
time per event, the NEWT AlgTool classes are configured using simplifications such as the default z
vertex scan in the SpacePoint seed finding or the use of the fast vertex fitter in the post processing
time. For each trigger slice, a dedicated output collection is written to the transient event store, while
overlapping can take place in both ROI regimes and multiple appearance in the different pre-defined
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slices. Figure 9 shows an example simulated tt̄ event reconstructed with the offline Inner Detector New
Tracking, and the ROI seeded event filter reconstruction, illustrated with the ATLAS event display
ATLANTIS [23].
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Figure 9: An simulated tt̄ event reconstructed with the offline and Event Filter versions of the ATLAS New
Tracking. The Event filter has been executed here in the electron slice which determines a dedicated region
of interest size in which the full NEWT inside-out sequence is performed. The four regions of interest found
by the prior LVL1 and LVL2 trigger and associated to an electron hypothesis can be clearly distinguished.

4.4 NEWT in the Combined Test Beam and Commissioning Setup

A complete independent New Tracking sequence, the CTBTracking [24], has been initially developed
for the combined test beam run in 2004 (CTB2004). The CTB2004 was the first time that the
ATLAS offline reconstruction software had to reconstruct real data of a complete slice of the ATLAS
detector. The CTBTracking was the first complete reconstruction chain that was realised through
the modular NEWT design and served as a prototype for the new software model. It incorporates
a combinatorial track finding based on silicon space point samples that is valid for a small number
of track candidates and is based on the GlobalChi2Fitter, see Sec. 3.3.3. Intermediate fits of the
track candidates are used to reduce the number of track candidates and a χ2 based ambiguity solving
mechanism disentangles track candidates with ambiguous hit patterns. The CTBTracking has been
extensively used for the track reconstruction and alignment studies of the CTB2004 and has been
extended to be applicable for the ongoing ATLAS commissioning runs with cosmic ray tracks. Figure
10 shows a cosmic muon track reconstructed with the CTBTracking.

5 NEWT for Combined Reconstruction

Initially deployed in the ATLAS Inner Detector, common components and modules of the New Track-
ing have already spread widely into software applications for the Muon System and combined recon-
struction. The common ATLAS tracking EDM has also become the input event data format of all
track reconstruction algorithms of the Muon System and the ATLAS TrackingGeometry has been
expanded to a full description of the ATLAS detector. Although no complete reconstruction chain
based on the New Tracking concepts exists so far in the Muon System or combined reconstruction,
the following section will cover some of the main tools used in combined reconstruction.
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ATLAS Atlantis cosmics

Figure 10: A real cosmic ray event found by the
CTBTracking package and shown with the ATLAS
event display ATLANTIS. The CTBTracking has
been initially developed for the combined test beam
run and was the first reconstruction sequence en-
tirely build from New Tracking components using
the common event data model. The CTBTrack-
ing has been also adopted to serve the needs for
reconstructing cosmic ray tracks.

5.1 Calorimeter Impact and Vertex Expression

Based on the new ATLAS extrapolation engine, the TrackToCalo application was the first in a list
of following combined muon reconstruction tools13 that have been based on the tracking EDM and
common tracking tools. The TrackToCalo AlgTool is realised as a wrapper of the Extrapolator
AlgTool and prepares the input data for the track-to-cluster comparison: a specified track collection
is retrieved from the transient event store, for each of the tracks that are contained by the given
collection an extrapolation is performed to the different sampling layers of the calorimeter and the
cells with energy deposit are collected in a given isolation cone. The different coordinate definitions
between the Inner Detector and the calorimeter have to be hereby taken into account, which is
performed in the Reconstruction repository and completely shielded from the common Tracking tools.
TrackToCalo is realised as a central Algorithm that performs the comparison per default for every
track. However, many applications will be only interested in a particular subset of the track collection.
For this purpose, the single track operation is encapsulated in a dedicated AlgTool, the so-called
ExtrapolTrackToCaloTool which can be used independently by any client.
A very similar AlgTool, the TrackToVertex, performs the extrapolation of a track to a given vertex
position. It simply wraps the extrapolation engine preparing a user-friendly interface.

5.2 Combined Muon Refitting

The combined fit of a track that originates from a muon with the use of both independent tracking
devices is an outstanding goal of the new ATLAS track reconstruction. Clearly, two main strategies
can be identified to combine tracks from the Inner Detector with those found in the Muon System: a
single combination of the two tracks that are represented with respect to the same reference surface
(e.g. both track segments are in a perigee representation) based on a χ2 minimisation, or the complete
dissolving of the track into the hit objects and performing a combined track fit. While the first robust
method is widely used in ATLAS and achieves a satisfactory performance, the latter technique has
not been fully established yet using NEWT in the ATLAS offline reconstruction. A combined refit
is not in particular expected to gain on the track resolution substantially when being compared to
resolution given by the respectively better single sub-detector14, but should help to recover tails in
the combined track resolution, since the combined fit allows to redefine outlier measurements or to
re-weight hit contributions to the final track representation. The complete track refit will in addition
play an important role in the global alignment of the ATLAS detector. Various inevitable requirements
for the establishment of combined refitting have been met already: the common Track class as a well

13Most of these tools are located in the RecoTools CVS package of the ATLAS offline repository.
14It can be shown that the ID performance in terms of momentum resolution is superior to the MS for low momenta,

while for high momenta the outer Muon Spectrometer outplays the Inner Detector due to the higher magnetic field and
larger dimension.
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defined output of track reconstruction programs (including the entire common hit and measurement
descriptions), the creation and deployment of a global reconstruction geometry and the realisation
of tracking tools that work on complete technology independent base class level. First attempts of
combined refitting have been done [25] and show promising results and the validity of the applied
software design.

6 Conclusion and Outlook

Four years after the public release of the Final Report of the Reconstruction Task Force, a new modular
track reconstruction software has been established that includes a common EDM, an underlying
reconstruction geometry and is based on well-defined interfaces in a component pattern design. A
first complete model of the inside-out track reconstruction has been deployed in the Inner Detector
and is competitive in terms of performance and CPU time consumption to prior ATLAS reconstruction
programs, while providing an open and interactive model for future modifications and adoptions. The
second sequence based on common tracking tools, the outside-in tracking, is close to completion.
NEWT builds in addition the backbone of the ATLAS Inner Detector Event Filter by providing the
seeded pattern recognition and fitting tools used in the Event Filter trigger slices.
Moreover, all track reconstruction algorithms now provide the EDM objects as the output data,
allowing common validation and analysis applications to work independently on the reconstruction
chain used for track finding and fitting.

6.1 Outlook

The full migration of the previous track reconstruction programs into the New Tracking schema is
an ongoing effort of the ATLAS offline software project. NEWT was designed to allow both, the
easy introduction of newly developed concepts as modules to the common tracking effort and the
re-integration of the existing well-performing algorithms from past reconstruction packages. Latter is
deliberately foreseen without wiping the identity (in both concepts and performance) of these well-
tested algorithms. Recently, main components such as the intersection algorithms from the Inner
Detector stand-alone iPatRec [26] application have been integrated into the extrapolation engine
of New Tracking, and is followed by an ongoing effort to employ internally the common tracking
EDM. Finally, the track fitting AlgTool from iPatRec will be integrated as another implementation
of the common ITrackFitter interface to provide full flexibility to the user of the ATLAS offline
reconstruction.
A second big field of further development is the realisation of combined reconstruction and recovery
and detection strategies of bremsstrahlung radiation using the ATLAS New Tracking tools. Clearly
many parts of NEWT that have been described in this document can become parts of new Algorithm
chains that concentrate on higher stage pattern recognition, particle identification and event topology
classifications.
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A Appendix

A.1 Typesetting and Conventions

The following type setting conventions are followed throughout this document: software packages
within the ATLAS offline software repository [27] are written in Sans-Serif face, C++ or python class
names are written in Courier face. Namespace definitions as used in the software repository are
omitted in this document for readability. Table 4 gives an exhaustive list of the active container
packages in the Tracking repository, adding short descriptions of their content.
The software illustrations comply, in general, with Unified Modeling Language (UML) [28] standards,
extensions to the UML standard are identified explicitly in the figure capture.

Table 4: Active container packages and brief description of their content in the Tracking CVS repository

Container description
TrkAlgorithms Tracking specific Algorithm classes to be executed once per event,

i.e. truth association and conversion to persistent objects
TrkCBNT legacy package to fill the Combined Ntuple (CBNT)
TrkDetDescr container package for the reconstruction geometry,

concentrating the installed classes and geometry builders
TrkDoc documentation package
TrkEvent container package for all tracking EDM base classes,

concrete implementations may be found in the InnerDetector
or MuonSpectrometer, respectively

TrkEventCnv converter packages for persitification process
TrkExtrapolation container package for the extrapolation engine
TrkFitter track fitters implementing the ITrackFitter interface
TrkMagneticField magnetic field access tools, magnetic field parameterisations
TrkTools common tracking tools other than fitting, extrapolation, vertexing
TrkUtilityPackages mathematical utilities, such as a Hough transform
TrkValidation common validation package define on EDM base class level
TrkVertexFitter vertex fitting interface and implementations

A.2 Index of Abbreviation and Acronyms

AKF Alignment Kalman Filter is a dedicated extension of the Kalman Filter that incorporates
geometrical updates to the reconstruction geometry

AOD Analysis Object Data is the compressed event data dedicated for physics analysis

ATLAS A Toroidal LHC ApparatuS

CSC Cathode Strip Chambers are a technology used in the Muon System

CVS Concurrent Versions System is the used code archive and versioning software in ATLAS

CTB2004 Combined Test Beam was a combined test of a full sectorial ATLAS slice in 2004

DAF Deterministic Annealing Filter is an extension of the Kalman filter with an additional annealing
schema

DKF Distributed Kalman Filter is a fast version of the Kalman filter designed for the Trigger and
Event Filter

DNA Dynamic Noise Adjustment is a special extension of the Kalman filter in ATLAS

EDM Event Data Model - nomen est omen
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EF Event Filter is the third level, software based trigger in ATLAS

ESD Event Summary Data is the uncompressed event information

GSF Gaussian Sum Filter is a special multi-Gaussian extension of the standard Kalman Filter

ID Inner Detector is the inner tracking device of the ATLAS detector

LVL1 First Level Trigger in ATLAS, purely hardware based

LVL2 Second Level Trigger in ATLAS

MS Muon System is the outer tracking device for muons of the ATLAS detector

MDT Monitored Drift Tubes are used in the ATLAS Muon System

NEWT New Tracking

RCP Resistive Plate Chambers are another technology in the ATLAS Muon System

ROI Region of Interest a defined region for further processing in the Trigger chain

RTF Reconstruction Task Force - a task force held in 2003 focussing on the evolution of the ATLAS
event reconstruction

SCT Semi Conductor Tracker is the middle part of the ATLAS Inner Detector

STL Standard Template Library is a widely used container library for C++

TGC Thin Gap Chambers are used in the ATLAS Muon System

TRT Transition Radiation Tracker is the outermost part of the ATLAS Inner Detector

UML Unified Modeling Language is a standard in software modeling and illustration
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[14] R. Frühwirth, A. Strandlie, Track finding and fitting with the Gaussian-sum Filter, Proc. of CHEP
1998, 1998.
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