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Abstract

In this paper we study the transport of track parameter covariance matrices — the so-
called error propagation — in the inhomogeneous magnetic field of the ATLAS experiment.
The Jacobian elements are transported in parallel with the track parameters, avoiding the
inherent need of any purely numerical scheme of propagating a set of auxiliary tracks. We
evaluate the quality of the transported Jacobians by a very thorough, purely numerical ap-
proach of obtaining the same derivatives, providing a quantitative understanding of the ef-
fects of including gradients of energy loss and the magnetic field on the accuracy of the error
propagation. Irrespective of the accuracy of the underlying track parameter propagation, the
method of parallel integration of the derivatives is demonstrated to be significantly faster
than even the simplest numerical scheme. The error propagation presented in this paper
is part of thesimultaneous track and error propagation(STEP) algorithm of the common
ATLAS tracking software.



1 Introduction

Experimental particle physics is opening a new window for particle discoveries and precision measure-
ments of existing theories by the startup of the Large Hadron Collider being commissioned at the Eu-
ropean Organization for Nuclear Research — CERN — located just outside Geneva, Switzerland. The
LHC accelerator will collide protons at a center of mass energy of 14 TeV at four beam crossings, one
of which houses the ATLAS detector [1]. This is the largest of the LHC experiments, employing a great
variety of detector technologies to identify and measure the properties of a wide range of particles. The
complex magnetic field and big amount of material within the ATLAS detector, along with the high
collision rate of the accelerator, make track reconstruction very challenging. Track parameter and the
associated error propagation is at the heart of almost any reconstruction algorithm, hence good accuracy
and high speed — along with the consideration of material effects, such as energy loss and multiple
scattering — are essential to the ATLAS tracking algorithms, such as thesimultaneous track and error
propagation(STEP) algorithm presented here. This algorithm transports the track parameters and as-
sociated covariance matrices through the dense volumes of the simplified ATLAS material description
— the so-called tracking geometry [2] — which approximates the material distribution of the ATLAS
calorimeter and muon spectrometer by a set of blended dense volumes to speed up the tracking pro-
cess. This paper describes the error propagation of the STEP algorithm, while the transport of the track
parameters is found in Ref. [3].

Error propagation is usually handled in a purely analytical or numerical way. The first case is pos-
sible when the track model is explicitly given, thus allowing a direct derivation from the track model of
the Jacobian needed to transport the covariance matrix. Unfortunately, explicit track models are limited
to straight lines or helices, only useful in a vanishing or homogeneous magnetic field. Within the inho-
mogeneous ATLAS magnetic field, a numerical approach is necessary. The simplest numerical way of
finding the derivatives of the transport Jacobian involves the propagation of one auxiliary track for every
track parameter, which usually amounts to five additional tracks.

There is, however, a third alternative to the error propagation; the semi-analyticalBugge-Myrheim
method[4]. This method propagates the transport Jacobian in parallel with the track parameters at
little extra cost. Although this method has been known for many years, its accuracy and speed are
not well documented in the scientific literature. In this paper we study the quality and speed of the
Bugge-Myrheim method as a function of the accuracy of the underlying track parameter propagation.
Furthermore, we look at the impact of the magnetic field and energy loss gradients on the accuracy and
speed of the error propagation. We also show that the Bugge-Myrheim method is significantly faster than
any purely numerical approach.

In Section 2 we describe the error propagation in general before going into detail on the Bugge-
Myrheim method in Section 3. Furthermore, we look at the numerical error propagation — used for
validating the semi-analytical error propagation — in Section 4. In Section 5 we compare the elements
of the transport Jacobian obtained by the semi-analytical and the numerical error propagation. Moreover,
in Section 6 we perform a statistical test of the semi-analytically transported covariance matrix. Finally,
we present a short conclusion in Section 7.

Natural units (¯h= c= 1) are used throughout this paper, and vectors and matrices are generally given
in bold italic and bold capital letters, respectively.

2 Error propagation

The track parameters are often reconstructed from empirical data with associated uncertainties intro-
duced by noise from the material interactions during the parameter transport, and uncertainties related
to the misalignment and limited resolution of the detector. Here we focus on transporting the intrinsic
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Figure 1: Transporting the track parameters and the associated uncertainties (covariance matrix) —
indicated by the ellipses and cones — from one surface to another. The uncertainty of the momentum
magnitude is omitted in this illustration.

measurement errors arising from the limited detector resolution, Fig. 1, given by the symmetric 5× 5
covariance matrix with entryi j ;

Σi j = 〈(ξi −〈ξi〉)(ξ j −〈ξ j〉)〉 (1)

whereξξξ is a vector of thelocal track parameters

ξξξ =


l0
l1
φ

θ

λ

 (2)

and〈ξi〉 are the expectation values of these parameters. The local track parameters [5] are defined by
the local track position at a surface (l0, l1), the direction of the track momentum in the global ATLAS
coordinate system (φ ,θ ) and the signed inverse of the momentum (λ ≡ q/p). The global Cartesian,
right-handed ATLAS coordinate system is approximately given by the LHC tunnel centre (x), the earth’s
surface (y) and the LHC beam pipe (z). The spherical polar coordinatesφ andθ are defined as follows
within this coordinate system; the azimuthal angleφ is given by the opening between the projection of the
momentum into thex-y plane, and thex-axis, while the polar angleθ is given by the opening between the
momentum and thez-axis. Together they define the direction of the momentum in the ATLAS coordinate
system unambiguously, giving the following relations between the momentum components (px, py, pz)
and the angles (φ ,θ );

px = pcosφ sinθ

py = psinφ sinθ

pz = pcosθ (3)

Theglobal track parametersused within STEP — to accommodate the propagation of bending tracks
— are given in the above-mentioned global ATLAS coordinate system by

(x,y,z,Tx,Ty,Tz,λ )

whereTTT = ppp/p is the normalized tangent vector to the track, and (x,y,z) is the track position.
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If the track model is explicitly given, the common approach to transporting the covariance matrix
is to expand the analytical parameter propagation functions to first order in a Taylor series, and use
these derivatives to propagate the covariance matrix in an approximate way. This is calledlinear error
propagation. The availability of the derivatives of the propagated track parameters with respect to those
at the starting point of the propagation — the so-calledJacobianJ — is therefore essential to the linear
error propagation. In our case, the Jacobian becomes a 5×5 matrix

J =


∂ lfinal

0

∂ l initial
0

· · · ∂ lfinal
0

∂λ initial

...
...

...
∂λfinal

∂ l initial
0

· · · ∂λfinal

∂λ initial

 (4)

and transporting the symmetric covariance matrix by linear error propagation simply becomes a similar-
ity transformation

ΣΣΣfinal = J ·ΣΣΣinitial ·JT (5)

However, because of the inhomogeneous magnetic field of ATLAS, and the resulting lack of explicit
analytical functions for the propagation of the track parameters, the Jacobian cannot be calculated di-
rectly. The linear error propagation (5) is still valid, but the Jacobian must be obtained in another way.
This is done in three steps; first, we find the Jacobian required for transforming the covariance matrix
from the initial local track parameters to the initial global track parameters used within the STEP al-
gorithm. Furthermore, this Jacobian is transported along with the track parameters to the destination
surface. Finally, it is multiplied by the Jacobian which transforms the covariance matrix to the local
track parameters at the destination surface. The resulting Jacobian (4) transports the covariance matrix
from one set of local track parameters at the initial surface to another set of local track parameters at the
destination surface (5). The initial and destination surfaces can be picked independently from any of the
five surfaces defined within the ATLAS event data model, and positioned arbitrarily. In this paper we
focus only on the second of the three steps; the transport of the Jacobian along the track.

3 Semi-analytical error propagation by using the Bugge-Myrheim method

As mentioned above, the common way of obtaining the derivatives (Jacobian) needed for the linear error
propagation is to expand the parameter propagation functions to first order in a Taylor series. The lack
of analytical parameter propagation functions in this case unfortunately makes this approach impossible.
Another common technique is the numerical error propagation described in Section 4. This method is
slow, but robust and accurate, making it useful for testing the error propagation. A third way of obtaining
the Jacobian is to differentiate the recursion formulae of the numerical integration method directly. This
is the essence of the Bugge-Myrheim method. For reasons of efficiency and consistency, the natural
choice is to pick the same integration method as used in the STEP parameter propagation, which is
the adaptive Runge-Kutta-Nyström method. The Bugge-Myrheim method, however, follows the same
principles regardless of the chosen integration method, only the recursion formulae change.

The basic idea of the adaptive Runge-Kutta-Nyström method is to divide the integration interval
into steps and solve each step independently in an iterative procedure. Every step becomes an initial
value problem and can be solved as best suited for that particular part of the integration interval. This is
especially useful when varying the step lengthh to make the procedure adaptive. The solution of every
step is estimated by evaluating the equation of motionu′′ at four different points — often referred to as
stages— along the step. Every stage, except the first, is based on the previous stages of the step. In the
end, all stages are weighted and summed to find the solution to the step.
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In the parameter propagation, we find the propagated global track parameters — whereΛ is the
integrated change inλ , or the total energy loss — of the equation of motion

uuu =


x
y
z
Λ

 , uuu′ =
duuu
ds

=


Tx

Ty

Tz

λ

 (6)

by integrating their respective differential equations by using some recursion formulaeF andG. Given
the Runge-Kutta-Nyström method, one step (numbered byn) becomes

uuun+1 = F(sn,uuun,uuu
′
n) = FFFn(uuun,uuu

′
n) = uuun +huuu′n +

h2

6
(uuu′′1 +uuu′′2 +uuu′′3)

uuu′n+1 = G(sn,uuun,uuu
′
n) = GGGn(uuun,uuu

′
n) = uuu′n +

h
6
(uuu′′1 +2uuu′′2 +2uuu′′3 +uuu′′4) (7)

To obtain the derivatives (Jacobian) of the propagated global track parameters with respect to the
initial local track parameters (i denoting initial)

ξξξ
i =


l i
0

l i
1

φ i

θ i

λ i

 (8)

the recursion formulae (7) have to be differentiated with respect toξξξ
i , giving

Jn+1 =

 ∂uuun+1

∂ξξξ
i

∂uuu′n+1

∂ξξξ
i

 =

 ∂FFFn

∂ξξξ
i

∂GGGn

∂ξξξ
i

 =

 ∂FFFn
∂uuun

∂FFFn
∂uuu′n

∂GGGn
∂uuun

∂GGGn
∂uuu′n

 ·

 ∂uuun

∂ξξξ
i

∂uuu′n
∂ξξξ

i

 = Dn ·Jn (9)

where the derivatives∂uuun/∂ξξξ
i and∂uuu′n/∂ξξξ

i of the 8×5 JacobianJ are given by the 4×5 matrices

∂uuun

∂ξξξ
i =


∂xn
∂ l i0

· · · ∂xn
∂λ i

...
...

...
∂Λn
∂ l i0

· · · ∂Λn
∂λ i

 ,
∂uuu′n
∂ξξξ

i =


∂Tx

n
∂ l i0

· · · ∂Tx
n

∂λ i

...
...

...
∂λn
∂ l i0

· · · ∂λn
∂λ i

 (10)

Dn is an 8× 8 matrix containing the recursion formulaeFFFn andGGGn differentiated with respect to the
global track parameters

Dn =
∂ (FFFn,GGGn)
∂ (uuun,uuu′n)

=

 ∂FFFn
∂uuun

∂FFFn
∂uuu′n

∂GGGn
∂uuun

∂GGGn
∂uuu′n

 (11)

giving the 4×4 matrices

∂FFFn

∂uuun
=


∂Fx

n
∂xn

· · · ∂Fx
n

∂Λn
...

...
...

∂FΛ
n

∂xn
· · · ∂FΛ

n
∂Λn

 ,
∂FFFn

∂uuu′n
=


∂Fx

n
∂Tx

n
· · · ∂Fx

n
∂λn

...
...

...
∂FΛ

n
∂Tx

n
· · · ∂FΛ

n
∂λn

 (12)
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and

∂GGGn

∂uuun
=


∂GTx

n
∂xn

· · · ∂GTx
n

∂Λn
...

...
...

∂Gλ
n

∂xn
· · · ∂Gλ

n
∂Λn

 ,
∂GGGn

∂uuu′n
=


∂GTx

n
∂Tx

n
· · · ∂GTx

n
∂λn

...
...

...
∂Gλ

n
∂Tx

n
· · · ∂Gλ

n
∂λn

 (13)

By writing the recursion formulae of the derivatives as a product ofDn andJn (9), we can differentiate
the recursion formulaeFFFn andGGGn with respect to the global track parametersuuun anduuu′n instead of the
initial local track parametersξξξ i . This simplifies the differentiation a lot, giving

∂FFFn

∂uuun
= 1+

h2

6
(
∂uuu′′1
∂uuun

+
∂uuu′′2
∂uuun

+
∂uuu′′3
∂uuun

)

∂FFFn

∂uuu′n
= h+

h2

6
(
∂uuu′′1
∂uuu′n

+
∂uuu′′2
∂uuu′n

+
∂uuu′′3
∂uuu′n

)

∂GGGn

∂uuun
=

h
6
(
∂uuu′′1
∂uuun

+2
∂uuu′′2
∂uuun

+2
∂uuu′′3
∂uuun

+
∂uuu′′4
∂uuun

)

∂GGGn

∂uuu′n
= 1+

h
6
(
∂uuu′′1
∂uuu′n

+2
∂uuu′′2
∂uuu′n

+2
∂uuu′′3
∂uuu′n

+
∂uuu′′4
∂uuu′n

) (14)

To calculate these derivatives explicitly, we need to differentiate the individual stages of the Runge-
Kutta-Nystr̈om method with respect to the global track parameters,

Ak =
∂uuu′′k
∂uuu′n

, Ck =
∂uuu′′k
∂uuun

(15)

wherek denotes the individual stages, anduuu′′k is given — in a general form — by the equations of motion
of the global track parameters [4]

x′′ = λ (TyBz−TzBy)
y′′ = λ (TzBx−TxBz)
z′′ = λ (TxBy−TyBx)

Λ′′ = −λ 3gE
q2 (16)

The last equation handles the energy loss, withE being the energy andg the energy loss per unit distance.
The energy loss and its gradient varies little within each recursion step, hence the values calculated in
the first stage are recycled by the following stages. This lowers the computing cost considerably.

Writing the 4×4 Ak andCk matrices in a general form, we get

A =


∂x′′

∂Tx · · · ∂x′′

∂λ
...

...
...

∂Λ′′

∂Tx · · · ∂Λ′′

∂λ

 =


0 λBz −λBy TyBz−TzBy

−λBz 0 λBx TzBx−TxBz

λBy −λBx 0 TxBy−TyBx

0 0 0
(

1
λ
(3− p2

E2 )+ 1
g

∂g
∂λ

)
Λ′′

 (17)

and

C =


∂x′′

∂x · · · ∂x′′

∂Λ
...

...
...

∂Λ′′

∂x · · · ∂Λ′′

∂Λ

 =


λ (Ty ∂Bz

∂x −Tz∂By

∂x ) λ (Ty ∂Bz
∂y −Tz∂By

∂y ) λ (Ty ∂Bz
∂z −Tz∂By

∂z ) 0

λ (Tz∂Bx
∂x −Tx ∂Bz

∂x ) λ (Tz∂Bx
∂y −Tx ∂Bz

∂y ) λ (Tz∂Bx
∂z −Tx ∂Bz

∂z ) 0

λ (Tx ∂By

∂x −Ty ∂Bx
∂x ) λ (Tx ∂By

∂y −Ty ∂Bx
∂y ) λ (Tx ∂By

∂z −Ty ∂Bx
∂z ) 0

−λ 3E
q2

∂g
∂x −λ 3E

q2
∂g
∂y −λ 3E

q2
∂g
∂z 0


(18)
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Figure 2: Schematic plot of the Ridders algorithm. The graph shows the parameterization of the sym-
metric derivativeg(hi).

With the help of these matrices, we find the elements ofDn, which is multiplied byJn to produce the
transported JacobianJn+1 (9). This procedure is repeated for every recursion step, transformingJ along
the way.

When applied to real problems, the gradients ofA andC are usually quite costly to calculate, hence
it is common practice to set all of the∂g/∂λ , ∂Bi/∂x j and∂g/∂x j gradients,i and j indicating thex,
y andz components, to zero. This is, however, only correct for the material gradients∂g/∂x j of the
blended dense volumes of the simplified ATLAS material description.

4 Numerical error propagation

To test the semi-analytical error propagation, we need an alternative way of calculating the derivatives of
the Jacobian (4). The most straightforward way is by using the definition of the numerical derivative

f ′(ξi)≈
f (ξi +hi)− f (ξi)

hi
(19)

where f (ξi) propagates the local track parameters — denoted byi — from the initial surface to the target
surface, whilehi is kept sufficiently small, ideally zero. By using the above definition of the derivative,
we vary the initial local track parameters by a small amounthi , one at a time. This is the key to knowing
exactly how these variations translate to the final local track parameters. Registering the changes to the
final parameters gives us the 25 derivatives of the Jacobian.

Though very easy and straightforward, this method is quite inaccurate. One way of increasing the
accuracy is by using the symmetric derivative

g(hi)≈
f (ξi +hi)− f (ξi −hi)

2hi
(20)

which typically has a fractional error two orders of magnitude better than the original definition of the
derivative [6].

To further increase the accuracy, we use a numerical method called Ridders’ algorithm [6]. The
essence of Ridders’ algorithm is to parameterize the symmetric derivative as a function ofhi alone by
calculating it for descending values ofhi , Fig. 2. This parameterization ofg(hi) is used to estimate the
derivative in the limithi → 0. Since it has to be done for every derivative, this method is very time
consuming and only useful for testing.

Compared to the semi-analytical error propagation even the simplest numerical error propagation is
slow, needing at least five additional parameter propagations for every track, increasing the computing
time accordingly.
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Figure 3: Logarithms of the absolute, relative residuals of the∂ l f
1/∂λ i Jacobian term in an inhomo-

geneous magnetic field with energy loss. The semi-analytical derivatives are calculated at three error
tolerances with both gradients included, whereas the numerical derivatives are all calculated at a toler-
ance of 10−8.

5 Validating the Jacobian in an inhomogeneous magnetic field including
energy loss

To get a complete understanding of the semi-analytical error propagation, we need to study the Jacobian
terms in a realistic, inhomogeneous magnetic field with energy loss. The test setup involves propagating
muons — through solid Silicon in the realistic ATLAS magnetic field — in random directions, covering
all azimuthal and polar angles at momenta ranging from 500 MeV to 500 GeV, starting off from an initial
surface located at the interaction point of the ATLAS detector. The particles are propagated towards a
target surface randomly placed and rotated in a cube with sides of 20 m centered in the detector. During
this test, the derivatives required by the error propagation are calculated twice; first semi-analytically by
the Bugge-Myrheim method, and then numerically by the Ridders algorithm. The numerical derivatives
define the baseline for the semi-analytical terms. To assure the quality of the numerical derivatives,
the STEP propagator at an error tolerance of 10−8 is used for calculating the symmetric derivatives
of the Ridders algorithm. The error tolerance is a user specified number steering the accuracy of the
propagation, a low tolerance giving a high accuracy, and vice versa. Theabsolute, relative residual

|semi-analytical derivative−numerical derivative|
|numerical derivative|

(21)

is then used to compare the 25 derivatives of the semi-analytical and numerical Jacobians.
Figure 3 shows three histograms of the logarithm of the absolute, relative residuals of the Jacobian

element∂ l f
1/∂λ i , f andi indicating the final and initial values. These histograms are typical of all the

∂ l f
0/∂ξξξ

i and∂ l f
1/∂ξξξ

i Jacobian elements.
Figure 4 shows the effect on the residuals of two Jacobian terms by only including one type of

gradient into the calculation of the semi-analytical derivatives. These terms are only sensitive to either
the magnetic field gradients or the energy loss gradient. Due to the underlying single precision of the
analysis program used to produce the plots (ROOT [7]), no relative difference better than approximately
10−7 is seen. Entries with better relative precision become identically zero and are not shown.

Figure 5 shows the mean values of residuals of a selection of Jacobian terms with and without both
gradients included. All of the semi-analytical derivatives are sensitive to the gradients, especially the
angular derivatives.
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Figure 4: Logarithms of the absolute, relative residuals of two Jacobian terms in an inhomogeneous
magnetic field with energy loss. The semi-analytical derivatives are calculated with, and without includ-
ing the magnetic field gradients∂Bi/∂x j (left) and the energy loss gradient∂g/∂λ (right). Both the
semi-analytical and numerical derivatives are calculated at an error tolerance of 10−8.

The improvements in the residuals when turning on the magnetic field gradients are presented on
the left-hand side of Fig. 6, while the additional improvements by including the energy loss gradient
are shown to the right. The effect of the energy loss gradient is only seen in the last column of the
Jacobian,∂ξξξ

f
/∂λ i , illustrated by the constant∂ l f

0/∂φ i residual in the right-hand plot of Fig. 6, whereas
the effects of the magnetic field gradients show up all over the Jacobian, except in the last row∂λ f /∂ξξξ

i ,
as illustrated by the constant∂λ f /∂λ i residual in the left-hand plot of the same figure.

Figure 7 shows the additional computing time — relative to the STEP parameter propagation — spent
by the semi-analytical error propagation, magnetic field and energy loss gradients. The error propagation
is only done after the adaptive parameter propagation has found the optimal step length, making the
nominal computing cost of the error propagation relatively stable over the whole error tolerance range.
Thus, the drop in the additional computing cost of the error propagation at low error tolerances is mostly
caused by the increased computing cost of the parameter propagation.

6 Verifying the propagated covariance matrix in an inhomogeneous mag-
netic field including energy loss

In the previous sections we have looked at the individual Jacobian elements to get a deeper understanding
of the error propagation. Now, we examine the final covariance matrix produced by the linear error prop-
agation (5). From this transformation, we see that the elements of the final covariance matrix are sums
and products of many initial covariance and Jacobian terms. Evaluating the final covariance elements
on an individual basis becomes prohibitively difficult, yet testing the Jacobian alone is not sufficient to
guarantee the quality of the error propagation. Only a full error propagation, using a realistic initial
covariance matrix, allows us to test the significance of the missing, or inaccurate Jacobian elements, and
the gradients. To perform this test, we use the fact that the initial covariance matrix defines the Gaussian
variances and correlations of the initial track parameters. By varying the initial track parameters accord-
ing to their associated covariance matrix before propagating them to the target surface, the variation of
the final track parameters should be reflected in the final covariance matrix. In short, we use the initial
covariance matrix for smearing the simulated tracks and the final track parameters for statistically testing
the propagated covariance matrix, Fig. 8.
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Figure 5: Mean values of the logarithms of the absolute, relative residuals in an inhomogeneous magnetic
field with energy loss. The semi-analytical derivatives are calculated at different error tolerances by
including no gradients (left) and both gradients (right), whereas the numerical derivatives are all found
at a tolerance of 10−8.
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Figure 6: Improvements in the mean values of the logarithms of the absolute, relative residuals by in-
cluding the magnetic field gradients (left), and the additional improvements by including the energy loss
gradient (right) in an inhomogeneous magnetic field with energy loss. The semi-analytical derivatives
are calculated at different error tolerances, whereas the numerical derivatives are all found at a tolerance
of 10−8.

6.1 Smearing the initial track parameters according to the covariance matrix

To simulate the variances and correlations of the initial local track parameters, we first decompose the
initial covariance matrix into two triangular matrices by using Cholesky’s method [6]

ΣΣΣinitial = L ·LT (22)

This method is easy to use and sufficient for decomposing symmetric, positive definitive matrices such
as the covariance matrix.

The elements of the initial covariance matrices are picked at random from Gaussian distributions
with mean values of zero and widths of 50µm for the positionsl0 andl1, 1 mrad for the anglesφ andθ ,
and 1% for the inverse momentumλ . These are realistic values of the resolution of the ATLAS detector,
except from the 1%λ uncertainty, which is too optimistic. This is kept low due to the big amount of
material — and hence large energy losses of the particles — in the test setup.
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Figure 8: Testing the error propagation by smearing the initial track parameters according to the covari-
ance matrix. The residual is normalized by the propagated covariance to produce the pulls, and multiplied
by the inverse of the propagated covariance to find the chi-square. The angles and the momentum are
smeared similarly to the positions shown in the figure.

After decomposing the initial covariance matrix, we use it to smear [8] the initial local track param-
etersµµµ i (i denoting initial)

ξξξ
i = µµµ

i +L ·ηηη (23)

whereL is the lower triangular matrix obtained through the Cholesky decomposition (22), andηηη is a
vector of five independent variables picked at random from a Gaussian distribution of mean zero and
variance one. Equation (23) assumes that the initial local track parameters are Gaussian distributed and
smears them accordingly by using the initial covariance matrix.

6.2 Statistical validation of the semi-analytically propagated covariance matrix

In this test, muon tracks are generated — with their initial parameters smeared according to the above
procedure — and propagated by using the test setup described in Section 5, replacing the Silicon with
Iron. Enough tracks are generated to make the statistical uncertainties insignificant. The track parameter
and error propagation is done by STEP with the magnetic field and energy loss gradients included, at
an error tolerance of 10−8 to assure the quality of the tracks. Each track is propagated twice to produce
the undisturbedµµµ and smearedξξξ local track parameters at the target surface. Theξξξ − µµµ residuals
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are then statistically compared to the semi-analytically propagated covariance matrixΣΣΣfinal by using the
normalized residuals, orpull values

ξ̂
j

k =
ξ

j
k −µ

j
k√

Σ j j
final,k

(24)

and thechi-square
χ

2
k = (ξξξ k−µµµk)

T ·ΣΣΣ−1
final,k · (ξξξ k−µµµk) (25)

with k indicating the simulated tracks andj the track parameters.
Sinceξ

j
k is Gaussian distributed aroundµ

j
k , the pull values should be Gaussian distributed around

zero. Moreover, if the propagated covarianceΣΣΣfinal,k is correct, the width of the pull values should
be normalized to one. All of the pull values presented in Fig. 9 satisfy these requirements, showing
good agreement between the semi-analytical error propagation and the simulation. The tails of theλ

pull are intrinsic to the semi-analytical error propagation and arise from the information loss caused by
introducing the temporary global track parameters during the error propagation.

Whereas the pull values are calculated for each parameter of the simulated track, the chi-square
incorporates the whole covariance matrix and all of the track parameters. Assuming that all five track
parameters are Gaussian distributed, and that these distributions obey the variances and correlations
given by covariance matrix, the test chi-square distribution should be similar to the standard chi-square
distribution corresponding to five degrees of freedom. By integrating the standard chi-square distribution
from the test chi-square to infinity, we get the so-calledp-value, or probability value of this test statistic.
If the test chi-square distribution is correct, the p-value plot is flat. Inverting the covariance matrix by
using singular value decomposition [6], we get the flat p-value plots of Fig. 10, showing good agreement
between the semi-analytical error propagation and the simulation.

6.3 Estimating the impact of the gradients on the semi-analytical error propagation

The covariance matrices of the pulls of Fig. 9 are all propagated by including the∂g/∂λ and∂Bi/∂x j

gradients discussed in Section 5 into the error propagation. Including these gradients improves some
elements of the Jacobian significantly. Such improvements are also seen when comparing the p-values
found by only including the magnetic field gradients (right) to those found by excluding all of the gra-
dients (left) in Fig. 10. The flat p-value plot found by only including the magnetic field gradients leaves
little room for further improvement. Thus, only the magnetic field gradients — and not the energy loss
gradient — are included into STEP by default. The gradients’ influence on the pulls is insignificant,
consequently they are not presented here.

Pull and p-values obtained by using an error tolerance of 10−2 for the semi-analytical error propaga-
tion — instead of the 10−8 used in Figs. 9 and 10 — produce similar plots, indicating little sensitivity to
the error tolerance in the semi-analytical error propagation.

7 Conclusion

In this paper we have performed an extensive study of the Bugge-Myrheim method, gaining a quantitative
understanding of the impact of the magnetic field and energy loss gradients on the accuracy and speed of
the semi-analytical error propagation. Results show that only the magnetic field gradients have a visible
effect on the covariance matrices transported by the semi-analytical error propagation in the ATLAS
magnetic field, hence the energy loss gradient is left out of the error propagation by default.

The computing cost increase — relative to the parameter propagation — by adding the semi-analytical
error propagation is less than 100% at medium and high accuracies. This is significantly less than
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Figure 9: Pull values of the final parameters of tracks smeared by the initial covariance matrix, and their
Gaussian fits (solid lines). The covariance matrices are propagated semi-analytically at an error tolerance
of 10−8 with the gradients included.

the minimal computing cost increase of 500% seen in the numerical error propagation methods. Fur-
thermore, the additional computing cost for including the magnetic field and energy loss gradients is
around 30–40% for each type of gradient. Finally, the nominal computing cost and accuracy of the
semi-analytical error propagation is relatively stable over the whole error tolerance range.
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