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Track and Vertex reconstruction
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We hadn’t found any tracks yet !

Reminder
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Global pattern recognition strategies
‣ Conformal mapping 

- the idea of conformal mapping is to transform your hit information into  
a parameter space, where your groups of hits are visible  

!
- you need a transformation for it which  

assumes a track model
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‣ Conformal mapping : Hough transform 
- transform your track hits from the x, y space  

into a more appropriate space 

- let’s assume that particles come from  
the interaction region + solve in the  
transverse direction

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =
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4A different approach: seeding & following
‣ Start of many track finding algorithms is the building of track seeds 

- groups of 2 or 3 measurements that are compatible with a crude track hypothesis 

- seeds are used to build roads to find track candidates
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! possibility of fake reconstruction

! in modern track reconstruction, this 

classical picture does not work 

anymore
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From seeds to track candidates

11

‣ The progressive filter  
- roads are built from track seeds and define a search window 

- following the road direction to find  
hits that are compatible with the track 
	needs a measure to define compatibility 

- a found hit used to update the track  
to follow to the next measurement layer 
needs a mechanism to update a track  
hypothesis 

- multiple hypothesis can be tested  
for one layer 

- only one track hypothesis is followed  
further 
needs a measure which candidate is  
better
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‣ Dense environments create problems for the progressive filter  

- there may not always be one obvious path to be followed:
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The combinatorial filter  
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‣ avoid ghosts, i.e. fake combinations from simply combinatorial grouping 

- start off with high quality seeds (clearly 2 hit seeds are not very stringent)
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14

‣ pattern recognition provides a set of measurements 
- are the measurements compatible with a track hypothesis ? 

- what are the track parameters closest  
to the interaction region (e.g. as perigee) 

- how well is the track measured ? 

!
!

‣ we need to perform a track fit  
- track fits are mostly based on  

least square estimators 

- this implies a gaussian error assumption 
(how close to the truth is this ?)
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‣ a more detailed look onto our toy detector



A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x 

Re
co

ns
tru

ct
io

n 
 - 

Pa
rt 

2 
- H

C
PS

S 
Au

g 
11

-2
2,

 2
01

4Track fitting

15

‣ a more detailed look onto our toy detector



A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x 

Re
co

ns
tru

ct
io

n 
 - 

Pa
rt 

2 
- H

C
PS

S 
Au

g 
11

-2
2,

 2
01

4Track fitting

15

‣ a more detailed look onto our toy detector



A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x 

Re
co

ns
tru

ct
io

n 
 - 

Pa
rt 

2 
- H

C
PS

S 
Au

g 
11

-2
2,

 2
01

4Track fitting

15

‣ a more detailed look onto our toy detector



A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x 

Re
co

ns
tru

ct
io

n 
 - 

Pa
rt 

2 
- H

C
PS

S 
Au

g 
11

-2
2,

 2
01

4Track fitting

15

‣ a more detailed look onto our toy detector



A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x 

Re
co

ns
tru

ct
io

n 
 - 

Pa
rt 

2 
- H

C
PS

S 
Au

g 
11

-2
2,

 2
01

4Global χ2 minimisation

16

‣ a classical least squares estimator problem !

with

one has to resort to numerical schemes such as the
Runge-Kutta integration of the equation of motion.

3. Error propagation

During the track parameter estimation procedure,
propagation of the track parameter covariance matrix
along with the track parameters themselves is often re-
quested. The standard procedure for this so-called linear
error propagation is a similarity transformation between
layers i and k,

Ck = Fk!iCiFk!i
T , "4#

where C is the covariance matrix and Fk!i is the Jacobian
matrix of the propagation from layer i to k,

Fk!i =
!qk

!qi
. "5#

For analytical track models the Jacobian is also analyti-
cal "Strandlie and Wittek, 2006#. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
propagation of the track parameters "Bugge and
Myrheim, 1981#.

4. Material effects

The most important effects on the trajectory of
charged particles caused by material present in the de-
tector volume are ionization energy loss and multiple
Coulomb scattering "Amsler et al., 2008#. For light par-
ticles such as electrons, radiation energy loss by brems-
strahlung also plays an important role. The fluctuations
of ionization energy loss are usually quite small, and
such energy loss is therefore normally treated
during track fitting as a deterministic correction to the
state vector "Frühwirth et al., 2000#. Bremsstrahlung en-
ergy loss, on the other hand, suffers from large fluctua-
tions "Bethe and Heitler, 1934# and affects therefore
both the state vector and its covariance matrix. Multiple
Coulomb scattering is an elastic process, which in a thin
scatterer disturbs only the direction of a passing charged
particle; in a sufficiently thick scatterer, the position in a
plane transversal to the incident direction is also
changed "Amsler et al., 2008#. Since the mean value of
the scattering angle and an eventual offset is zero, only
the covariance matrix is updated in order to incorporate
the effects of multiple scattering into the track fitting
procedure.

5. Measurement model

The measurement model hk describes the functional
dependence of the measured quantities in layer k, mk,
on the state vector at the same layer,

mk = hk"qk# . "6#

The vector of measurements mk usually consists of the
measured positions but can also contain other quanti-
ties, e.g., measurements of direction or even momentum.

During the estimation procedure the Jacobian Hk of this
transformation is often needed,

Hk =
!mk

!qk
. "7#

In many cases the Jacobian contains only rotations and
projections and can thus be computed analytically.

a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk!i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k,

mk = dk"q0# + !k, "8#

where dk is a composition of the measurement model
function mk=hk"qk# and the track propagator functions

dk = hk ! fk!k−1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk. A linear estimator requires a linearized
track model, and for this the Jacobian Dk of dk is
needed,

Dk = HkFk!k−1 ¯ F2!1F1!0, "10#

where H is the Jacobian of h and F is the Jacobian of f.
The observations mk, the functions dk, the Jacobians

Dk, and the noise !k can each be arranged in a single
vector or matrix,

m = $m1

]
mn

%, d = $d1

]
dn
%, D = $D1

]
Dn

%, ! = $!1

]
!n
% ,

"11#

where n is the total number of measurement layers. The
model now becomes

m = d"q0# + ! , "12#

and the linearized version is

m = Dq0 + c + ! , "13#

where c is a constant vector. The global least-squares
estimate of q0 is given by
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χ 2 = Δmk
TGK

−1

k
∑ Δmk

dk including transport of q to measurement layer k 
     and measurement mapping function

Δmk =mk − dk p( )q and Gk the covariance of measurement mk 
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‣ a classical least squares estimator problem !

with

one has to resort to numerical schemes such as the
Runge-Kutta integration of the equation of motion.

3. Error propagation

During the track parameter estimation procedure,
propagation of the track parameter covariance matrix
along with the track parameters themselves is often re-
quested. The standard procedure for this so-called linear
error propagation is a similarity transformation between
layers i and k,

Ck = Fk!iCiFk!i
T , "4#

where C is the covariance matrix and Fk!i is the Jacobian
matrix of the propagation from layer i to k,

Fk!i =
!qk

!qi
. "5#

For analytical track models the Jacobian is also analyti-
cal "Strandlie and Wittek, 2006#. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
propagation of the track parameters "Bugge and
Myrheim, 1981#.

4. Material effects

The most important effects on the trajectory of
charged particles caused by material present in the de-
tector volume are ionization energy loss and multiple
Coulomb scattering "Amsler et al., 2008#. For light par-
ticles such as electrons, radiation energy loss by brems-
strahlung also plays an important role. The fluctuations
of ionization energy loss are usually quite small, and
such energy loss is therefore normally treated
during track fitting as a deterministic correction to the
state vector "Frühwirth et al., 2000#. Bremsstrahlung en-
ergy loss, on the other hand, suffers from large fluctua-
tions "Bethe and Heitler, 1934# and affects therefore
both the state vector and its covariance matrix. Multiple
Coulomb scattering is an elastic process, which in a thin
scatterer disturbs only the direction of a passing charged
particle; in a sufficiently thick scatterer, the position in a
plane transversal to the incident direction is also
changed "Amsler et al., 2008#. Since the mean value of
the scattering angle and an eventual offset is zero, only
the covariance matrix is updated in order to incorporate
the effects of multiple scattering into the track fitting
procedure.

5. Measurement model

The measurement model hk describes the functional
dependence of the measured quantities in layer k, mk,
on the state vector at the same layer,

mk = hk"qk# . "6#

The vector of measurements mk usually consists of the
measured positions but can also contain other quanti-
ties, e.g., measurements of direction or even momentum.

During the estimation procedure the Jacobian Hk of this
transformation is often needed,

Hk =
!mk

!qk
. "7#

In many cases the Jacobian contains only rotations and
projections and can thus be computed analytically.

a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk!i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k,

mk = dk"q0# + !k, "8#

where dk is a composition of the measurement model
function mk=hk"qk# and the track propagator functions

dk = hk ! fk!k−1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk. A linear estimator requires a linearized
track model, and for this the Jacobian Dk of dk is
needed,

Dk = HkFk!k−1 ¯ F2!1F1!0, "10#

where H is the Jacobian of h and F is the Jacobian of f.
The observations mk, the functions dk, the Jacobians

Dk, and the noise !k can each be arranged in a single
vector or matrix,

m = $m1

]
mn

%, d = $d1

]
dn
%, D = $D1

]
Dn

%, ! = $!1

]
!n
% ,

"11#

where n is the total number of measurement layers. The
model now becomes

m = d"q0# + ! , "12#

and the linearized version is

m = Dq0 + c + ! , "13#

where c is a constant vector. The global least-squares
estimate of q0 is given by
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χ 2 = Δmk
TGK

−1

k
∑ Δmk

dk including transport of q to measurement layer k 
     and measurement mapping function

Δmk =mk − dk p( )q

one has to resort to numerical schemes such as the
Runge-Kutta integration of the equation of motion.

3. Error propagation

During the track parameter estimation procedure,
propagation of the track parameter covariance matrix
along with the track parameters themselves is often re-
quested. The standard procedure for this so-called linear
error propagation is a similarity transformation between
layers i and k,

Ck = Fk!iCiFk!i
T , "4#

where C is the covariance matrix and Fk!i is the Jacobian
matrix of the propagation from layer i to k,

Fk!i =
!qk

!qi
. "5#

For analytical track models the Jacobian is also analyti-
cal "Strandlie and Wittek, 2006#. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
propagation of the track parameters "Bugge and
Myrheim, 1981#.

4. Material effects

The most important effects on the trajectory of
charged particles caused by material present in the de-
tector volume are ionization energy loss and multiple
Coulomb scattering "Amsler et al., 2008#. For light par-
ticles such as electrons, radiation energy loss by brems-
strahlung also plays an important role. The fluctuations
of ionization energy loss are usually quite small, and
such energy loss is therefore normally treated
during track fitting as a deterministic correction to the
state vector "Frühwirth et al., 2000#. Bremsstrahlung en-
ergy loss, on the other hand, suffers from large fluctua-
tions "Bethe and Heitler, 1934# and affects therefore
both the state vector and its covariance matrix. Multiple
Coulomb scattering is an elastic process, which in a thin
scatterer disturbs only the direction of a passing charged
particle; in a sufficiently thick scatterer, the position in a
plane transversal to the incident direction is also
changed "Amsler et al., 2008#. Since the mean value of
the scattering angle and an eventual offset is zero, only
the covariance matrix is updated in order to incorporate
the effects of multiple scattering into the track fitting
procedure.

5. Measurement model

The measurement model hk describes the functional
dependence of the measured quantities in layer k, mk,
on the state vector at the same layer,

mk = hk"qk# . "6#

The vector of measurements mk usually consists of the
measured positions but can also contain other quanti-
ties, e.g., measurements of direction or even momentum.

During the estimation procedure the Jacobian Hk of this
transformation is often needed,

Hk =
!mk

!qk
. "7#

In many cases the Jacobian contains only rotations and
projections and can thus be computed analytically.

a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk!i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k,

mk = dk"q0# + !k, "8#

where dk is a composition of the measurement model
function mk=hk"qk# and the track propagator functions

dk = hk ! fk!k−1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk. A linear estimator requires a linearized
track model, and for this the Jacobian Dk of dk is
needed,

Dk = HkFk!k−1 ¯ F2!1F1!0, "10#

where H is the Jacobian of h and F is the Jacobian of f.
The observations mk, the functions dk, the Jacobians

Dk, and the noise !k can each be arranged in a single
vector or matrix,

m = $m1

]
mn

%, d = $d1

]
dn
%, D = $D1

]
Dn

%, ! = $!1

]
!n
% ,

"11#

where n is the total number of measurement layers. The
model now becomes

m = d"q0# + ! , "12#

and the linearized version is

m = Dq0 + c + ! , "13#

where c is a constant vector. The global least-squares
estimate of q0 is given by
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linearise the problem, starting from an initial state q0

dk p0 +δp( ) ≅ dk p0( )+Dk ⋅δpq qq0 q0

q0

with Jacobian

and Gk the covariance of measurement mk 
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‣ a classical least squares estimator problem !

with

one has to resort to numerical schemes such as the
Runge-Kutta integration of the equation of motion.

3. Error propagation

During the track parameter estimation procedure,
propagation of the track parameter covariance matrix
along with the track parameters themselves is often re-
quested. The standard procedure for this so-called linear
error propagation is a similarity transformation between
layers i and k,

Ck = Fk!iCiFk!i
T , "4#

where C is the covariance matrix and Fk!i is the Jacobian
matrix of the propagation from layer i to k,

Fk!i =
!qk

!qi
. "5#

For analytical track models the Jacobian is also analyti-
cal "Strandlie and Wittek, 2006#. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
propagation of the track parameters "Bugge and
Myrheim, 1981#.

4. Material effects

The most important effects on the trajectory of
charged particles caused by material present in the de-
tector volume are ionization energy loss and multiple
Coulomb scattering "Amsler et al., 2008#. For light par-
ticles such as electrons, radiation energy loss by brems-
strahlung also plays an important role. The fluctuations
of ionization energy loss are usually quite small, and
such energy loss is therefore normally treated
during track fitting as a deterministic correction to the
state vector "Frühwirth et al., 2000#. Bremsstrahlung en-
ergy loss, on the other hand, suffers from large fluctua-
tions "Bethe and Heitler, 1934# and affects therefore
both the state vector and its covariance matrix. Multiple
Coulomb scattering is an elastic process, which in a thin
scatterer disturbs only the direction of a passing charged
particle; in a sufficiently thick scatterer, the position in a
plane transversal to the incident direction is also
changed "Amsler et al., 2008#. Since the mean value of
the scattering angle and an eventual offset is zero, only
the covariance matrix is updated in order to incorporate
the effects of multiple scattering into the track fitting
procedure.

5. Measurement model

The measurement model hk describes the functional
dependence of the measured quantities in layer k, mk,
on the state vector at the same layer,

mk = hk"qk# . "6#

The vector of measurements mk usually consists of the
measured positions but can also contain other quanti-
ties, e.g., measurements of direction or even momentum.

During the estimation procedure the Jacobian Hk of this
transformation is often needed,

Hk =
!mk

!qk
. "7#

In many cases the Jacobian contains only rotations and
projections and can thus be computed analytically.

a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk!i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k,

mk = dk"q0# + !k, "8#

where dk is a composition of the measurement model
function mk=hk"qk# and the track propagator functions

dk = hk ! fk!k−1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk. A linear estimator requires a linearized
track model, and for this the Jacobian Dk of dk is
needed,

Dk = HkFk!k−1 ¯ F2!1F1!0, "10#

where H is the Jacobian of h and F is the Jacobian of f.
The observations mk, the functions dk, the Jacobians

Dk, and the noise !k can each be arranged in a single
vector or matrix,

m = $m1

]
mn

%, d = $d1

]
dn
%, D = $D1

]
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%, ! = $!1

]
!n
% ,

"11#

where n is the total number of measurement layers. The
model now becomes

m = d"q0# + ! , "12#

and the linearized version is

m = Dq0 + c + ! , "13#

where c is a constant vector. The global least-squares
estimate of q0 is given by
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χ 2 = Δmk
TGK

−1

k
∑ Δmk

dk including transport of q to measurement layer k 
     and measurement mapping function

Δmk =mk − dk p( )q

one has to resort to numerical schemes such as the
Runge-Kutta integration of the equation of motion.

3. Error propagation

During the track parameter estimation procedure,
propagation of the track parameter covariance matrix
along with the track parameters themselves is often re-
quested. The standard procedure for this so-called linear
error propagation is a similarity transformation between
layers i and k,

Ck = Fk!iCiFk!i
T , "4#

where C is the covariance matrix and Fk!i is the Jacobian
matrix of the propagation from layer i to k,

Fk!i =
!qk

!qi
. "5#

For analytical track models the Jacobian is also analyti-
cal "Strandlie and Wittek, 2006#. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
propagation of the track parameters "Bugge and
Myrheim, 1981#.

4. Material effects

The most important effects on the trajectory of
charged particles caused by material present in the de-
tector volume are ionization energy loss and multiple
Coulomb scattering "Amsler et al., 2008#. For light par-
ticles such as electrons, radiation energy loss by brems-
strahlung also plays an important role. The fluctuations
of ionization energy loss are usually quite small, and
such energy loss is therefore normally treated
during track fitting as a deterministic correction to the
state vector "Frühwirth et al., 2000#. Bremsstrahlung en-
ergy loss, on the other hand, suffers from large fluctua-
tions "Bethe and Heitler, 1934# and affects therefore
both the state vector and its covariance matrix. Multiple
Coulomb scattering is an elastic process, which in a thin
scatterer disturbs only the direction of a passing charged
particle; in a sufficiently thick scatterer, the position in a
plane transversal to the incident direction is also
changed "Amsler et al., 2008#. Since the mean value of
the scattering angle and an eventual offset is zero, only
the covariance matrix is updated in order to incorporate
the effects of multiple scattering into the track fitting
procedure.

5. Measurement model

The measurement model hk describes the functional
dependence of the measured quantities in layer k, mk,
on the state vector at the same layer,

mk = hk"qk# . "6#

The vector of measurements mk usually consists of the
measured positions but can also contain other quanti-
ties, e.g., measurements of direction or even momentum.

During the estimation procedure the Jacobian Hk of this
transformation is often needed,

Hk =
!mk

!qk
. "7#

In many cases the Jacobian contains only rotations and
projections and can thus be computed analytically.

a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk!i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k,

mk = dk"q0# + !k, "8#

where dk is a composition of the measurement model
function mk=hk"qk# and the track propagator functions

dk = hk ! fk!k−1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk. A linear estimator requires a linearized
track model, and for this the Jacobian Dk of dk is
needed,

Dk = HkFk!k−1 ¯ F2!1F1!0, "10#

where H is the Jacobian of h and F is the Jacobian of f.
The observations mk, the functions dk, the Jacobians

Dk, and the noise !k can each be arranged in a single
vector or matrix,

m = $m1
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mn

%, d = $d1

]
dn
%, D = $D1

]
Dn

%, ! = $!1

]
!n
% ,
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where n is the total number of measurement layers. The
model now becomes

m = d"q0# + ! , "12#

and the linearized version is

m = Dq0 + c + ! , "13#

where c is a constant vector. The global least-squares
estimate of q0 is given by

1424 Are Strandlie and Rudolf Frühwirth: Track and vertex reconstruction: From …

Rev. Mod. Phys., Vol. 82, No. 2, April–June 2010

linearise the problem, starting from an initial state q0

dk p0 +δp( ) ≅ dk p0( )+Dk ⋅δpq qq0 q0

q0

with Jacobian

and Gk the covariance of measurement mk 
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‣ in reality the particle gets deflected by material 
- multiple coulomb scattering 

material
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‣ in reality the particle gets deflected by material 
- multiple coulomb scattering 

materialχ 2 = Δmk
TGK

−1

k
∑ Δmk + δθi

TQi
−1

i
∑ δθi

with: Δmk =mk − dk p,δθi( )

‣ modification of the χ2 function

q
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‣ in reality the particle gets deflected by material 
- multiple coulomb scattering 

material

‣ every layer is a material layer 
- creates a computational problem:  

matrix inversion of huge matrix to find the 
χ2  minimum

χ 2 = Δmk
TGK

−1

k
∑ Δmk + δθi

TQi
−1

i
∑ δθi

with: Δmk =mk − dk p,δθi( )

‣ modification of the χ2 function

q
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4The Kalman Filter

18

‣ offers an alternative solution to the large matrix inversion 
- initially developed by I. Kalman to track missiles 

- for HEP pioneered by Billoir and R. Fruehwirth 

‣ performs a progressive way of least square 
estimation  
- equivalent to a χ2 fit (if run with a smoother) 

- start with transport of track parameters  
(and covariances) to measurement surface, 
create predicted parameters (“predicted state”)


- combine/update predicted parameters with 
measurement to updated parameters 
(“filtered state”)
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‣ when crossing a material layer  
- increase covariance by “noise” term according to the amount of material crossed 

(scattering has expected mean of 0) 

- energy loss is applied deterministically  
(additional noise term for straggling added) 

! material
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‣ when crossing a material layer  
- increase covariance by “noise” term according to the amount of material crossed 

(scattering has expected mean of 0) 

- energy loss is applied deterministically  
(additional noise term for straggling added) 
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Introduction
Track finding
Track fitting

Vertex reconstruction
Conclusions and Outlook

Traditional approach
Adaptive approach

Track fitting: Traditional approach

Prediction and filter step
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filtered state
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predicted state xk|k�1

filtered state xk|k

measurement mk

ACAT 2010 R. Frühwirth Track and vertex reconstruction 37



A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x 

Re
co

ns
tru

ct
io

n 
 - 

Pa
rt 

2 
- H

C
PS

S 
Au

g 
11

-2
2,

 2
01

4The Kalman Filter in maths

20

‣ let’s assume the k-th filter step 
- propagate parameters and covariances from k-1 to k adding noise Qk if present 

!
!

- update the prediction with measurement


!
!
!
!

‣ run the smoother from  k+1 to k

k+1
k

k-1

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks

z

x

z = zk−1 z = zk

surface k − 1 surface k

filtered state
qk−1|k−1

scattering matter

predicted state qk|k−1

filtered state qk|k

measurement mk

FIG. 4. Prediction and filter step of the Kalman filter. The
propagation proceeds in the z direction, while the x coordinate
is measured. Adapted from Regler et al., 1996.
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tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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with gain matrix Kk :

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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  mapping measurement covariances

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks

z

x

z = zk−1 z = zk

surface k − 1 surface k

filtered state
qk−1|k−1

scattering matter

predicted state qk|k−1

filtered state qk|k

measurement mk

FIG. 4. Prediction and filter step of the Kalman filter. The
propagation proceeds in the z direction, while the x coordinate
is measured. Adapted from Regler et al., 1996.
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with smoother gain matrix Ak :

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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surface k − 1 surface k

filtered state
qk−1|k−1

scattering matter
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filtered state qk|k
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FIG. 4. Prediction and filter step of the Kalman filter. The
propagation proceeds in the z direction, while the x coordinate
is measured. Adapted from Regler et al., 1996.
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4Wait a second … 
‣ Global χ2  fitter and Kalman filter are least squares estimators that rely on 

gaussian errors:

21

Gk the covariance of measurement mk 

Qk the noise addition due to material effects (Kalman filter)

χ 2 = Δmk
TGK

−1

k
∑ Δmk + δθi

TQi
−1

i
∑ δθi  χ2  contribution from scattering angles (χ2  fitter)
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4Outliers
‣ What is a compatible measurement ? 

- first of all: that’s a definition, usually bound to a χ2 compatibility cut 

- assuming a perfect gaussian  
system: 
there is a probability of hits being  
outside any range, usually defined  
as outliers if found by pattern  
recognition by rejected by fit 

- non-gaussian tails increase the  
outlier probability 
non-gaussian measurement p.d.f. 
or non-gaussian noise effects  
increase the risk of outliers 

‣ Outliers do not contribute to the track fit  
- they are a good quality measure of the track though 

22
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‣ Track fit yields  

- fit quality measure, usually χ2 over number of degrees of freedom  

- fitted parameters (e.g. expressed at perigee) and associated error matrix
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off-diagonal elements: include the correlations between the parameters

cov(qi,qk) = 𝜚ikσiσk 

correlation coefficient

diagonal elements: errors on the parameters
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4Understanding the track fit output: parameters
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‣ What do large impact parameters mean ? 
- imagine a neutral particle decaying somewhere in the detector
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‣ What do large impact parameters mean ? 
- imagine some significant energy loss

trajectory w/o 
material effects
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‣ What do large impact parameters mean ? 
- imagine some significant energy loss

trajectory w/o 
material effects
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‣ What do large impact parameters mean ? 
- imagine an unfortunate scattering chain

trajectory w/o 
material effects
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‣ What do large impact parameters mean ? 
- imagine an unfortunate scattering chain

trajectory w/o 
material effects
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‣ What’s the difference to the former examples?

‣ What do large impact parameters mean ? 
- imagine an unfortunate scattering chain

trajectory w/o 
material effects
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‣ What’s the difference to the former examples?

‣ What do large impact parameters mean ? 
- imagine an unfortunate scattering chain

trajectory w/o 
material effects

This is actually a large ∆d0, ∆z0
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solved by templating the private propagation methods to the di↵erent surfaces by the actual charged
or neutral parameters type. The HelixPropagator simply uses the StraightLinePropagator for any
parameters transport of neutral parameters or in case of a no-field environment. The transport of the
neutral parameters classes is fully supported with ATLAS release 13.1.0.

2.3 Numerical propagation: the RungeKuttaPropagator and STEP Propagator

Most of the track parameter propagations to be performed in the ATLAS event reconstruction are
within a highly inhomogeneous magnetic field where a global track model can not be used for solv-
ing the transport equations. Hence, a fast numerical solution for calculating the intersection of the
trajectory with the destination surface is needed. In ATLAS this is realised by two implementa-
tions of the IPropagator interface, the RungeKuttaPropagator and STEP Propagator. Both rely on
a fourth order Runge-Kutta-Nystrøm formalism with an integrated adaptive step estimation. The
main di↵erence between the two realisations is that the STEP Propagator includes energy loss in the
equation of motion and applies corrections to the covariance matrices continuously during the param-
eter transport along the track. It is designed for the description of a particle that traverses a dense
block of material, while the RungeKuttaPropagator complies with the classical model of point-like
material update on detector layers that is carried out by dedicated AlgTool classes in the ATLAS
track extrapolation engine. Both IPropagator implementations perform the propagation in global
coordinates and use common Jacobian matrices for the transformations between the global frame
and local surface-attached coordinate systems5. The equation of motion of a charged particle with
momentum p and mass m through a magnetic field B(r) can be expressed in many di↵erent ways that
mostly di↵er through the parameterisation and choice of the free parameter. For collider experiments
a helix-based parameterisation along the arc length s is a good choice since it is not restricting nor
favoring any specific particle direction6. The equation of motion of a particle with charge q, defined
by the Lorentz force, can then — when omitting multiple scattering and energy loss e↵ects — be
written as the second order di↵erential equation

d2
r

ds2
=

q

p


dr

ds
⇥B(r)

�
, (5)

and, when including an energy loss function g(p, r), as

d2
r

ds2
=

q

p


dr

ds
⇥B(r)

�
+ g(p, r)

dr

ds
. (6)

Equation (5) and Eq. (6) are the fundamental transport equation used by the RungeKuttaPropagator
and STEP Propagator, respectively. The calculations are in both cases performed using the Runge-
Kutta-Nystrøm method, which is well suited to solve second order di↵erential equations. The basic
principle of the Runge-Kutta method can be found in may textbooks [9], an exhaustive review of
the used Runge-Kutta-Nystrøm method and the description of error matrix transport (carried out by
the Bugge-Myrheim method) for both propagators of the ATLAS track reconstruction is in addition
presented in [12].
Both the RungeKuttaPropagator and the STEP Propagator stop the numerical iteration when the
distance to the surface drops below a certain cut value. For the last step starting at the position r

f�1,
a simple Taylor expansion to second order is used:

r

final

= r

f�1 + h
dr

ds
|rf�1 +

1
2
h2 d2

r

ds2
|rf�1

, (7)

with h denoting the distance to the destination surface at the approach point f � 1.

Straight and Helical Track Model The RungeKuttaPropagator and STEP Propagator are clearly
the most flexible propagation techniques in the ATLAS track reconstruction software. It is inert to the
Runge-Kutta formalism that in case of a homogenous magnetic field setup, the propagation is carried

5The common data classes are located in the shared TrkExUtils package.
6In fix target experiments, however, a di↵erent choice representing the main particle direction may be taken.
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‣ Assume homogenous magnetic field B
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h = R-s s

‣ transverse momentum  
measurement 
is a sagitta measurement 
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solved by templating the private propagation methods to the di↵erent surfaces by the actual charged
or neutral parameters type. The HelixPropagator simply uses the StraightLinePropagator for any
parameters transport of neutral parameters or in case of a no-field environment. The transport of the
neutral parameters classes is fully supported with ATLAS release 13.1.0.

2.3 Numerical propagation: the RungeKuttaPropagator and STEP Propagator

Most of the track parameter propagations to be performed in the ATLAS event reconstruction are
within a highly inhomogeneous magnetic field where a global track model can not be used for solv-
ing the transport equations. Hence, a fast numerical solution for calculating the intersection of the
trajectory with the destination surface is needed. In ATLAS this is realised by two implementa-
tions of the IPropagator interface, the RungeKuttaPropagator and STEP Propagator. Both rely on
a fourth order Runge-Kutta-Nystrøm formalism with an integrated adaptive step estimation. The
main di↵erence between the two realisations is that the STEP Propagator includes energy loss in the
equation of motion and applies corrections to the covariance matrices continuously during the param-
eter transport along the track. It is designed for the description of a particle that traverses a dense
block of material, while the RungeKuttaPropagator complies with the classical model of point-like
material update on detector layers that is carried out by dedicated AlgTool classes in the ATLAS
track extrapolation engine. Both IPropagator implementations perform the propagation in global
coordinates and use common Jacobian matrices for the transformations between the global frame
and local surface-attached coordinate systems5. The equation of motion of a charged particle with
momentum p and mass m through a magnetic field B(r) can be expressed in many di↵erent ways that
mostly di↵er through the parameterisation and choice of the free parameter. For collider experiments
a helix-based parameterisation along the arc length s is a good choice since it is not restricting nor
favoring any specific particle direction6. The equation of motion of a particle with charge q, defined
by the Lorentz force, can then — when omitting multiple scattering and energy loss e↵ects — be
written as the second order di↵erential equation

d2
r

ds2
=

q

p


dr

ds
⇥B(r)

�
, (5)

and, when including an energy loss function g(p, r), as

d2
r

ds2
=

q

p


dr

ds
⇥B(r)

�
+ g(p, r)

dr

ds
. (6)

Equation (5) and Eq. (6) are the fundamental transport equation used by the RungeKuttaPropagator
and STEP Propagator, respectively. The calculations are in both cases performed using the Runge-
Kutta-Nystrøm method, which is well suited to solve second order di↵erential equations. The basic
principle of the Runge-Kutta method can be found in may textbooks [9], an exhaustive review of
the used Runge-Kutta-Nystrøm method and the description of error matrix transport (carried out by
the Bugge-Myrheim method) for both propagators of the ATLAS track reconstruction is in addition
presented in [12].
Both the RungeKuttaPropagator and the STEP Propagator stop the numerical iteration when the
distance to the surface drops below a certain cut value. For the last step starting at the position r

f�1,
a simple Taylor expansion to second order is used:

r

final

= r

f�1 + h
dr

ds
|rf�1 +

1
2
h2 d2

r

ds2
|rf�1

, (7)

with h denoting the distance to the destination surface at the approach point f � 1.

Straight and Helical Track Model The RungeKuttaPropagator and STEP Propagator are clearly
the most flexible propagation techniques in the ATLAS track reconstruction software. It is inert to the
Runge-Kutta formalism that in case of a homogenous magnetic field setup, the propagation is carried

5The common data classes are located in the shared TrkExUtils package.
6In fix target experiments, however, a di↵erent choice representing the main particle direction may be taken.
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‣ Transverse momentum & sagitta
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‣ Transverse momentum & sagitta
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‣ Transverse momentum & sagitta
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‣ With a sagitta uncertainty from N 
measurements with resolution 𝜎T

 with AN = 720 (Gluckstern factor), NIM, 24, P381, 1963
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4Understanding the track fit output: correlations
‣ Assuming a helical track model (solenoidal magnetic field)
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‣ Assuming a helical track model (solenoidal magnetic field)
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‣ What can we say about the correlations ? 

- d0 correlates strongly with ϕ 

- z0 correlates strongly with 𝜃 

- q/p correlates with d0 and ϕ  
via the transverse component pT 

- q/p correlates with z0 and 𝜃  
via the longitudinal component pL
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Understanding the track fit output: correlations
‣ What can we say about the correlations ? 

- d0 correlates strongly with ϕ 

- z0 correlates strongly with 𝜃 

- q/p correlates with d0 and ϕ  
via the transverse component pT 

- q/p correlates with z0 and 𝜃  
via the longitudinal component pL
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‣ Non-gaussian measurement errors can be kept under control 

- after all: we build the detector  

‣ Non-gaussian material effects are a real problem 
- multiple scattering has only small gaussian tails 

- energy loss is non-gaussian: 
-> ionization loss is Landau distributed, but fortunately ΔE << E   
-> remember: bremsstrahlung is a dramatic effect
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Highly non-gaussian systems

z

‣ Large energy loss leads to an effective deflection of the particle  
- dramatic change of curvature 

‣ It is a stochastic effect 
- how to estimate a compatibility  

of a hit with the track model ? 
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Highly non-gaussian systems
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(1)

(1)

‣ Large energy loss leads to an effective deflection of the particle  
- dramatic change of curvature 

‣ It is a stochastic effect 
- how to estimate a compatibility  

of a hit with the track model ? 
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Highly non-gaussian systems
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(2)

(2)

‣ Large energy loss leads to an effective deflection of the particle  
- dramatic change of curvature 

‣ It is a stochastic effect 
- how to estimate a compatibility  

of a hit with the track model ? 
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Highly non-gaussian systems
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(1)

(2)

(2)

(3)

(3)

‣ Large energy loss leads to an effective deflection of the particle  
- dramatic change of curvature 

‣ It is a stochastic effect 
- how to estimate a compatibility  

of a hit with the track model ? 
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Highly non-gaussian systems

z

‣ Trying a naive global χ2 fit 
- needs a large scattering angle / energy loss  

to compensate this change of curvature 
is it a change of curvature ?  
is it a deflection ?  
are hits from one particle ?
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Highly non-gaussian systems

z

‣ Trying a naive global χ2 fit 
- needs a large scattering angle / energy loss  

to compensate this change of curvature 
is it a change of curvature ?  
is it a deflection ?  
are hits from one particle ?

additional measurements help
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‣ Trying a naive global χ2 fit 
- needs a large energy loss  

to compensate this change of curvature 
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‣ Trying a naive global χ2 fit 
- needs a large energy loss  

to compensate this change of curvature 

χ 2 = Δmk
TGK

−1

k
∑ Δmk + δθi

TQi
−1

i
∑ δθi

with: Δmk =mk − dk p,δθi( )

‣ modification of the χ2 function

q
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‣ Trying a naive global χ2 fit 
- needs a large energy loss  

to compensate this change of curvature 

χ 2 = Δmk
TGK

−1

k
∑ Δmk + δθi

TQi
−1

i
∑ δθi

with: Δmk =mk − dk p,δθi( )

‣ modification of the χ2 function

q

+ 𝜹(q/p) Qr 𝜹(q/p) T -1

,𝜹(q/p))
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‣ Trying a naive global χ2 fit 
- needs a large energy loss  

to compensate this change of curvature 

χ 2 = Δmk
TGK

−1

k
∑ Δmk + δθi

TQi
−1

i
∑ δθi

with: Δmk =mk − dk p,δθi( )

‣ modification of the χ2 function

q

+ 𝜹(q/p) Qr 𝜹(q/p) T -1

,𝜹(q/p))

what’s the  
associated error ? 

how not to bias 
the fit ?
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‣ Kalman filter formalism offers a very elegant solution to this problem
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The Gaussian Sum Filter
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‣ Kalman filter formalism offers a very elegant solution to this problem
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The Gaussian Sum Filter

z

w
ei

gh
t

- fork the Kalman filter at the material layer  
into multiple components with weights  
and propagate them individually

(0)

(2)

(5) (4)
(3)

(1)

q0

q5 q4

q3 q2 q1

modelled with 6 gaussians
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‣ Kalman filter formalism offers a very elegant solution to this problem
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The Gaussian Sum Filter

z

- modelling of non-gaussian noise 
through multivariant (gaussian) approximation

w
ei

gh
t

- fork the Kalman filter at the material layer  
into multiple components with weights  
and propagate them individually

(0)

(2)

(5) (4)
(3)

(1)

q0

q5 q4

q3 q2 q1

modelled with 6 gaussians
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The Gaussian Sum Filter

z

material

- modelling of non-gaussian noise 
through multivariant (gaussian) approximation

w
ei

gh
t

- fork the Kalman filter at the material layer  
into multiple components with weights  
and propagate them individually

(0)

(2)

(5) (4)
(3)

(1)

q5 q4

- update each component and re-evaluate  
the weight depending on compatibility  
kill components with too  
low weight

‣ Kalman filter formalism offers a very elegant solution to this problem
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SUMMARY

‣ offers an alternative solution to the large matrix inversion 
- initially developed by I. Kalman to track missiles 

- for HEP pioneered by Billoir and R. Fruehwirth 

‣ performs a progressive way of least square 
estimation  
- equivalent to a χ2 fit (if run with a smoother) 

- start with transport of track parameters  
(and covariances) to measurement surface, 
create predicted parameters (“predicted state”)


- combine/update predicted parameters with 
measurement to updated parameters 
(“filtered state”) q0

‣ We’ve found tracks 
- global and local pattern recognition algorithms 

‣ We’ve fitted those tracks 
- least squares estimator fit, 

e.g. global χ2 minimazation, Kalman filter 

‣ Discussed the fit output 

‣ Touched upon “ghost tracks” 
- we will hear a bit more about that though 

‣ Dedicated electron fitting 
!


