

b→sll angular analyses on CMS

Chuqiao Jiang on behalf of CMS collaboration

Outline

- Introduction
- b→sll angular analyses on CMS Run1
 - $B^+ \rightarrow K^+ \mu^+ \mu^-$
 - $B^0 \rightarrow K^{*0} \mu^+ \mu^-$
 - $B^+ \rightarrow K^{*+} \mu^+ \mu^-$
- b→sll angular analyses on CMS Run2
 - $B^+ \rightarrow K^+ \mu^+ \mu^-$
 - $B^0 \rightarrow K^{*0} \mu^+ \mu^-$
 - $B_s \rightarrow \Phi \mu^+ \mu^-$
- Prospect of HL-LHC
- Summary

Introduction: theoretical motivation

- New physics can be discovered by two ways:
 - 1. by producing new particles
 - 2. by searching discrepancies between measured observables and SM predictions.
- In SM, $b \rightarrow sll$ is a flavor-changing neutral current (FCNC) process forbidden at tree level.

 New physics can contribute to the loop diagrams and make pronounced modifications.

Introduction: effective hamiltonian

 $b \rightarrow sll$ porcess can be described using effective theory[1], the effective Hamiltonian is:

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i(\mu) O_i(\mu)$$

Where $O_i(\mu)$ indicate operator, $C_i(\mu)$ is Wilson coefficients, μ is the scale

❖ For SM, i=1,...,10. Terms 7, 9, 10 dominate in $b \rightarrow sl\bar{l}$

$$\mathcal{O}_{7} = \frac{e}{(4\pi)^{2}} \overline{m}_{b} [\bar{s}\sigma^{\mu\nu}P_{R}b] F_{\mu\nu}, \, \mathcal{O}_{9} = \frac{e^{2}}{(4\pi)^{2}} [\bar{s}\gamma_{\mu}P_{L}b] [\bar{l}\gamma^{\mu}l], \, \mathcal{O}_{10} = \frac{e^{2}}{(4\pi)^{2}} [\bar{s}\gamma_{\mu}P_{L}b] [\bar{l}\gamma^{\mu}\gamma_{5}l],$$

 \bullet To describe new physics in $b \to sll$. Following terms are taken into consideration.

$$\mathcal{O}_{S}^{l} = \frac{e^{2}}{(4\pi)^{2}} [\bar{s}P_{R}b][\bar{l}l],$$

$$\mathcal{O}_{P}^{l} = \frac{e^{2}}{(4\pi)^{2}} [\bar{s}P_{R}b][\bar{l}\gamma_{5}l],$$

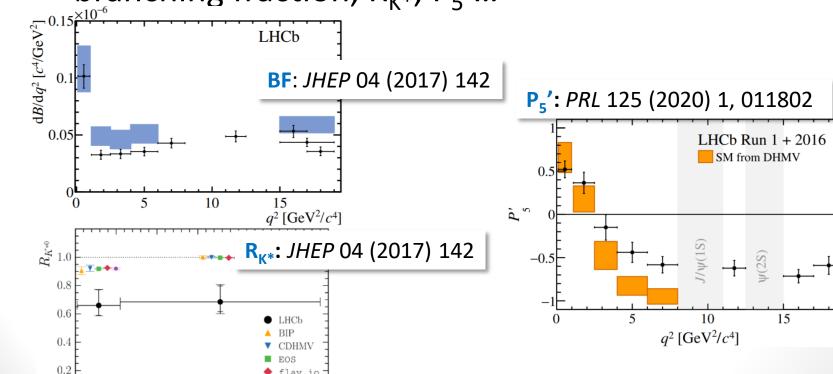
$$\mathcal{O}_{T}^{l} = \frac{e^{2}}{(4\pi)^{2}} [\bar{s}\sigma_{\mu\nu}b][\bar{l}\sigma^{\mu\nu}l],$$

$$\mathcal{O}_S^{l\prime} = \frac{e^2}{(4\pi)^2} [\bar{s}P_L b][\bar{l}l],$$

$$\mathcal{O}_P^{l\prime} = \frac{e^2}{(4\pi)^2} [\bar{s}P_L b] [\bar{l}\gamma_5 l],$$

$$\mathcal{O}_{T5}^{l} = \frac{e^2}{(4\pi)^2} [\bar{s}\sigma_{\mu\nu}b] [\bar{l}\sigma^{\mu\nu}\gamma_5 l],$$

[1] C. Bobeth, G. Hiller and G. Piranishvili, JHEP, 2007, 12: 040.


[2] K.G. Chetyrkin, M. Misiak and M. Munz, Phys. Lett. B 400 (1997) 206.

Introduction: $b \rightarrow sII$ anomaly

3

 $q^2 \, [\text{GeV}^2/c^4]$

• Some observables of $b \rightarrow sll$ process are found deviating from SM predictions by 2-3 σ , e.g. branching fraction, $R_{\kappa*}$, P_5' ...

Introduction: **b** \rightarrow sll anomaly

 Global fit of many observables from various measurements presents a result in tension with SM prediction by $>4\sigma$.

Introduction: angular analyses

 Investigate the angular distribution of the final state particles.

• Pros:

- More utilizable observables than branching fraction measurement.
 More information.
- Some observables can be constructed to reduce the hadronic uncertainty.

Cons:

- Low statistics. More dimensions to be investigate than branching fraction measurement
- Difficult to determine the angular distribution of background

Introduction: CMS

- ❖COM energy 13 TeV
- ♣Lumi ~ 10³⁴ cm⁻²s⁻¹
- $\Delta p_T/p_T \sim 1\%$ when $p_T < 100 GeV$
- ❖ Vertex resolution O(20 — 100µm)
- *Covering most of the 4π solid angle

$b \rightarrow sll$ angular analyses on CMS Run1

- Several $b \rightarrow sll$ angular analyses have been studied on CMS, such as $B^0 \rightarrow K^{*0}\mu^+\mu^-$, $B^+ \rightarrow K^+\mu^+\mu^-$, $B^+ \rightarrow K^*\mu^+\mu^-$
- Run1 analyses based on 20fb⁻¹ 8TeV data have been completed.

Publications:

- Angular analysis of $B^+ \rightarrow K^+ \mu^+ \mu^-$: Physical Review D, 98(2018), 112011
- Angular analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ (A_{FB}): Physics Letters B, 753(2016), 424-448
- Angular analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ (P_5): Physics Letters B, 781(2018), 517-541
- Angular analysis of B⁺→K^{*+}µ⁺µ⁻: Journal of High Energy Physics, 04(2021), 124

Run1 angular analysis: $B^+ \rightarrow K^+ \mu^+ \mu^-$

- The decay for the process $B^+ \to K^+ \mu^+ \mu^-$ can be described by $\cos \vartheta_e$ and q^2
- Differential decay rate formula:

$$\frac{1}{\Gamma} \frac{d\Gamma[B^{+} \to K^{+}\mu^{+}\mu^{-}]}{d\cos\theta_{l}} = \frac{3}{4} (1 - F_{H}) (1 - \cos^{2}\theta_{l}) + \frac{1}{2} F_{H} + A_{FB} \cos\theta_{l}$$

$$0 \le F_{H} \le 3, A_{FB} \le \min(1, F_{H}/2)$$

 θ_l : the angle between the $\mu^+(\mu^-)$ and the $K^-(K^+)$ in the rest frame of the dimuon system.

 A_{FB} : μ + μ - forward-backward asymmetry. F_H : a measure of the contribution from pseudoscalar, scalar and tensor amplitudes to the decay width Γ.

Run1 result: $B^+ \rightarrow K^+ \mu^+ \mu^-$

Physical Review D, 98(2018), 112011

The events are measured in seven q² bins ranging from 1 to 22 GeV², 2286 signal events in total.

The measured A_{FB} and F_{H} are in agreement with the SM predictions within the uncertainties.

Run1 angular analysis: $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

- Final state: $K^+\pi^-\mu^+\mu^-$
- Fully described by the three angles $(\vartheta_{\ell}, \vartheta_{\kappa}, \phi)$ and q^2 .
- Robust SM predictions of several angular parameters, A_{FB}, F_L, P₁ and P₅', are available.
- Angular observables are measured in q²
 bins from 1 to 19 GeV².

Differential decay rate :

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4 \Gamma}{\mathrm{d}q^2 \mathrm{d}\cos\theta_I \mathrm{d}\cos\theta_K \mathrm{d}\phi} = \frac{9}{8\pi} \left\{ \frac{2}{3} \left[F_{\mathrm{S}} + F_{\mathrm{S}} \cos\theta_K \right] \left(1 - \cos^2\theta_I \right) + F_{\mathrm{S}} \sqrt{1 - \cos^2\theta_K} \right\} \right\}$$

$$\begin{split} \frac{1}{\Gamma} \frac{d^3 \Gamma}{d\cos\theta_K \, d\cos\theta_l \, dq^2} &= \frac{9}{16} \left\{ \frac{2}{3} \Big[F_S + A_S \cos\theta_K \Big] \left(1 - \cos^2\theta_l \right) \right. \\ &+ \left. \left(1 - F_S \right) \left[2 F_L \cos^2\theta_K \left(1 - \cos^2\theta_l \right) \right. \\ &+ \left. \frac{1}{2} \left(1 - F_L \right) \left(1 - \cos^2\theta_K \right) \left(1 + \cos^2\theta_l \right) \right. \\ &+ \left. \frac{4}{3} A_{FB} \left(1 - \cos^2\theta_K \right) \cos\theta_l \Big] \right\}. \end{split}$$

Run1 result: $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Physics Letters B, 753(2016), 424-448

The events are fit in seven q² bins ranging from 1 to 19 GeV²

Physics Letters B, 781(2018), 517-541

The measured (A_{FB}, F_H) and (P_1, P_5') are in agreement with the SM predictions within the uncertainties.

Run1 angular analysis: $B^+ \rightarrow K^{*+} \mu^+ \mu^-$

- Final state: $\pi^+\pi^+\pi^-\mu^+\mu^-$
- The decay can be fully described by the three angles $(\vartheta_{\ell}, \vartheta_{\kappa}, \phi)$ and q^2

• Differential decay rate (integrate out ϕ):

$$\begin{split} \frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^3\Gamma}{\mathrm{d}q^2\mathrm{d}\cos\theta_I\mathrm{d}\cos\theta_K} &= \frac{9}{16} \left[\frac{1}{2} \left(1 - F_\mathrm{L} \right) \left(1 - \cos^2\theta_\mathrm{K} \right) \left(1 + \cos^2\theta_I \right) \right. \\ &\left. + 2F_\mathrm{L} \cos^2\theta_\mathrm{K} \left(1 - \cos^2\theta_I \right) + \frac{4}{3} A_{FB} (1 - \cos^2\theta_\mathrm{K}) \cos\theta_I \right] \end{split}$$

• Two observables, the forward-backward asymmetry of the muon (A_{FB}) and the longitudinal polarization fraction of the K^{*+} (F_L), are measured as a function of q^2

Run1 result: $B^+ \rightarrow K^{*+} \mu^+ \mu^-$

Journal of High Energy Physics, 04(2021), 124

$q^2 (\text{GeV}^2)$	Y_S	$A_{ m FB}$	$F_{ m L}$
1 - 8.68	22.1 ± 8.1	$-0.14^{+0.32}_{-0.35}\pm0.17$	$0.60^{+0.31}_{-0.25} \pm 0.13$
10.09-12.86	25.9 ± 6.3	$0.09^{+0.16}_{-0.11} \pm 0.04$	$0.88^{+0.10}_{-0.13} \pm 0.05$
14.18–19	45.1 ± 8.0	$0.33^{+0.11}_{-0.07} \pm 0.05$	$0.55^{+0.13}_{-0.10} \pm 0.06$

 A_{FB} and F_L in bins of q^2 are found to be consistent with a standard model prediction.

$b \rightarrow s II$ angular analyses on CMS Run2

- Based on 137fb⁻¹ 13TeV data collected in CMS Run2, new $b \rightarrow sll$ angular analyses are being studied.
- The new angular analyses are: $B^0 \rightarrow K^{*0} \mu^+ \mu^-$, $B^+ \rightarrow K^+ \mu^+ \mu^-$, $B_s \rightarrow \Phi \mu^+ \mu^-$ based on Run2 data.
- The three analyses are ongoing.

Updates of Run2 angular analyses

Luminosity

• From 20 fb⁻¹ to 137 fb⁻¹, 7 times improvement

Selection

 Using new offline selection, improving the signal efficiency and the background rejection

Fitting

Using new fitting PDF, stability improved

Statistic error

Using new statistic error evaluation method

Example: $B^+ \rightarrow K^+ \mu^+ \mu^-$

Selection

Pre-selection;

Offline-selection (using AdaBoost BDT);

PDF components detemination

Signal mass shape (using signal MC); Bkg mass shape (using data sideband);

Bkg angular shape (using data sideband);

Fitting

2 dimensional fitting;

Statistic uncertainty (using 2D F-C method);

Fitting bias;

MC mismodelling;

PDF function forms ...

Run2 angular analysis: $B_s \rightarrow \Phi \mu^+ \mu^-$

- Final state: $K^+K^-\mu^+\mu^-$
- The decay can be described by the three angles $(\vartheta_{\ell}, \vartheta_{\kappa}, \phi)$ and q^2

 \blacktriangleright Differential decay rate (integrate out ϕ):

$$\begin{split} \frac{1}{d\Gamma/dq^2} \frac{d^2\Gamma}{d\cos\theta_k d\cos\theta_l} &= \frac{9}{16} \left(\frac{1}{2} (1 - F_L) \cdot (1 - \cos^2\theta_K) \cdot (1 + \cos^2\theta_l) \right. \\ &+ 2F_L \cdot \cos^2\theta_K \cdot (1 - \cos^2\theta_l) + A_6 \cdot (1 - \cos^2\theta_K) \cdot \cos\theta_l \right) \end{split}$$

Two observables, the muon CP asymmetry (A_6) and the longitudinal polarization fraction (F_L) , are measured as a function of q^2

Prospect of HL-LHC

- Motivation: P_5' discrepancy between experimental measurement and SM
- Run 1 results used as base line, the expected sensitivity of P_5' with HL-LHC statistics at 3000 fb⁻¹ was studied
 - Improved mass resolution with upgraded tracker detector
 - No changes in trigger performances and analysis strategy have been considered
 - > Expected signal yield: ~700k in full q² bin in 200 pileup scenario

Prospective uncertainties on P_5'

- Statistical uncertainty: scaled according to simulation yield
- Systematic uncertainty
 - Based on data control channel: scaled according to statistics
 - Others: scaled by factor of
- Total uncertainty: improve by up to a factor of 15 compared with Run 1 results
- Allow to split q² range in finer bins

- The angular analyses of FCNC B rare decays are important ways to search BSM phenomena.
- The three measurements done on CMS, $B^+ \rightarrow K^+ \mu^+ \mu^-$, $B^0 \rightarrow K^{*0} \mu^+ \mu^-$, and $B^+ \rightarrow K^{*+} \mu^+ \mu^-$, presented results consistent with standard model predictions.
- New angular analyses are ongoing, with larger amount of CMS datasets and updated procedure.
- More sensitive results can be expected on HL-LHC

END Thank you!

Backup

Definition of observables $P_i^{(\prime)}$

$$\frac{\mathrm{d}^{4}\Gamma[\overline{B}^{0} \to \overline{K}^{*0}\mu^{+}\mu^{-}]}{\mathrm{d}q^{2}\,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \sum_{i} I_{i}(q^{2})f_{i}(\vec{\Omega}) \text{ and}$$

$$\frac{\mathrm{d}^{4}\bar{\Gamma}[B^{0} \to K^{*0}\mu^{+}\mu^{-}]}{\mathrm{d}q^{2}\,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \sum_{i} \bar{I}_{i}(q^{2})f_{i}(\vec{\Omega}),$$

$$S_{i} = \left(I_{i} + \bar{I}_{i}\right) / \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^{2}} + \frac{\mathrm{d}\bar{\Gamma}}{\mathrm{d}q^{2}}\right) \text{ and}$$

$$A_{i} = \left(I_{i} - \bar{I}_{i}\right) / \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^{2}} + \frac{\mathrm{d}\bar{\Gamma}}{\mathrm{d}q^{2}}\right).$$

$$P_{1} = \frac{2 S_{3}}{(1 - F_{L})} = A_{T}^{(2)},$$

$$P_{2} = \frac{2}{3} \frac{A_{FB}}{(1 - F_{L})},$$

$$P_{3} = \frac{-S_{9}}{(1 - F_{L})},$$

$$P'_{4,5,8} = \frac{S_{4,5,8}}{\sqrt{F_{L}(1 - F_{L})}},$$

$$P'_{6} = \frac{S_{7}}{\sqrt{F_{L}(1 - F_{L})}}.$$

 S_i : CP averages; A_i : CP asymmetries; $P_i^{(\prime)}$: constructed observables for $B^0 \rightarrow K^{*0}$ leading form-factor uncertainty cancel

