

Overview of LHCb status and recent highlights

Wenbin Qian(钱文斌) University of Chinese Academy of Sciences

(中国科学院大学)

HFCPV 2021

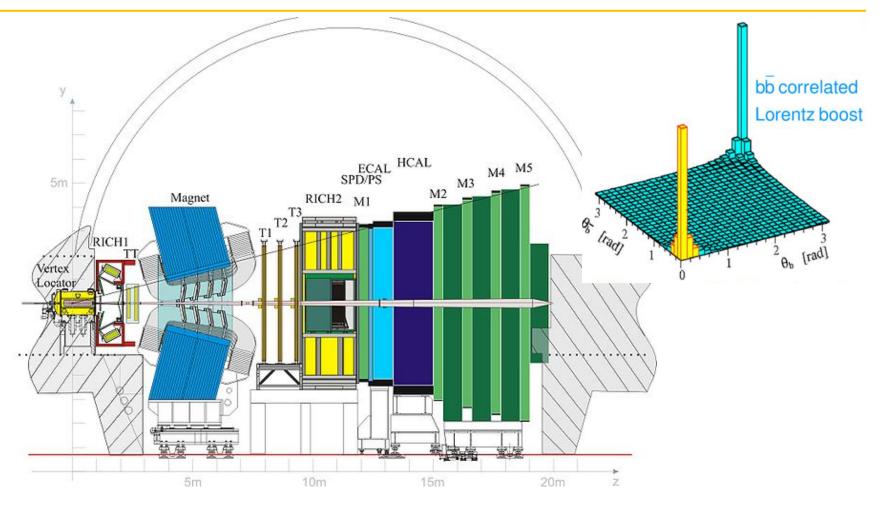
Jinan University, Guangzhou, China

(暨南大学,广州)

Disclaimer

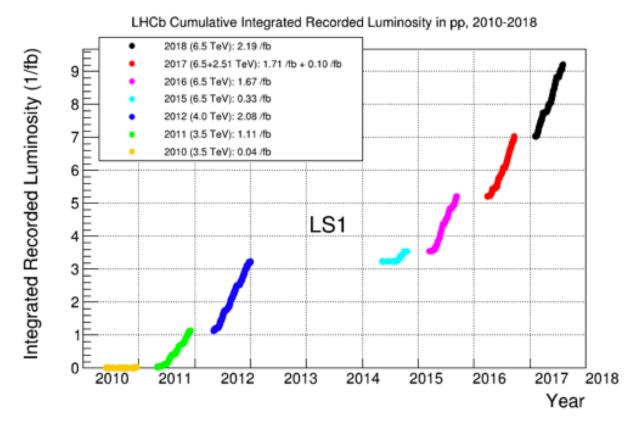
• Only highlights from LHCb in this talk, details can be found in:

- 味物理中的反常 (Jibo He)
- Hadron spectroscopy and exotics at LHCb (Jinlin Fu)
- LHCb上b强子非粲重子衰变模式的研究 (Jiesheng Yu)
- Charm physics at LHCb (Liang Sun)
- Recent CPV results at LHCb (Yanxi Zhang)
- LHCb future (Hang Yin)
- A global picture of all experimental status can be found in Liming Zhang's talk


Fundamental questions (flavor)

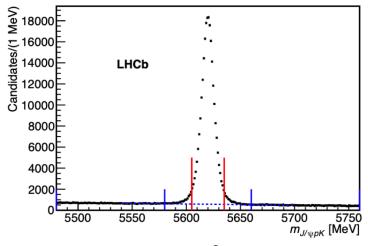
- Structure of particles
- New particles or forces
- Matter vs anti-matter
- Dark matter (not discussed in this talk)

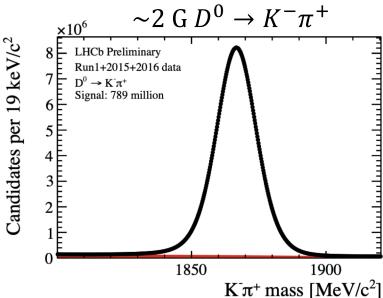
•


Key players: LHCb, BESIII, BelleII + CMS, ATLAS

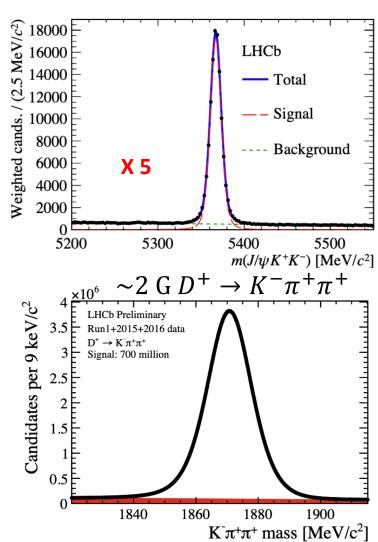
A machine emeritus

- Running from 2010 to 2018
- Key for flavor program: excellent vertexing, PID, good momentum resolution, tagging of B flavor


A flavorful machine

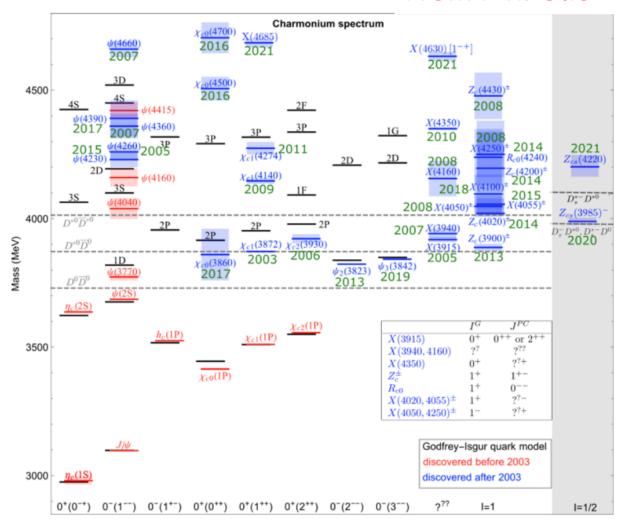


- Collected around 9 fb-1 pp collision data
- Around 10¹¹ b produced in LHCb and 10¹² c at the same time
- Trigger and selection efficiencies around 1% level ⇒ access to very rare decays and measure precisely CP violation


Examples

$600K B_S \rightarrow J/\psi \phi$

Fundamental questions (flavor)


- Structure of particles
- New particles or forces
- Matter vs anti-matter
- Dark matter (not discussed in this talk)

•

2021/11/11 7

An era similar to 1880s

From F-K. Guo

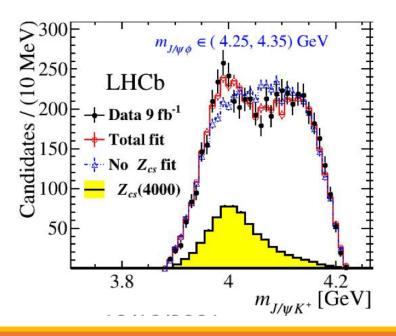
visible 10 000 nm

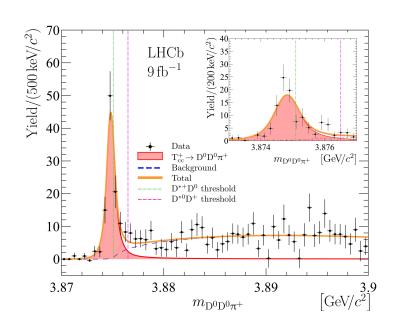
Era of 1880s Who will be J. Balmer or J. R. Rydberg?

M. Gell-Mann?

Towards understanding structures

- Searching for new states in new/old channels
- Properties better measured
- Confirm/deny previously observed states
- Better identify observed states: same state or conventional $\overline{c}c$
- Link to other studies in proton etc.

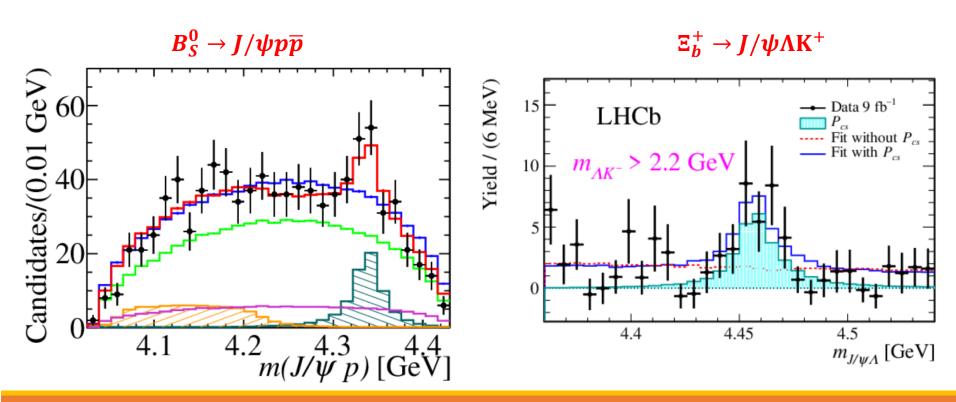

•


2021/11/11 9

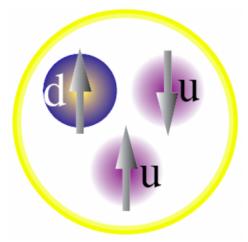
arXiv:2109.01038

Families of exotic mesons extend further

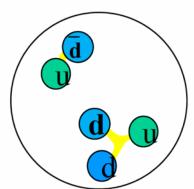
- SU(3) partners $Z_{cs}(4000)^+$ ($J^P = 1^+$) found in $B^+ \to J/\psi \phi K^+$ decays (similar story in BESIII)
- An even striking one: very narrow peak at $D^{*+}D^{0}$ threshold $(cc\bar{d}\bar{u})$

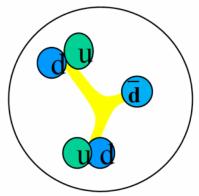


Science Bulletin 66 (2021) 1278


• Families of exotic mesons extend further

- Pentaquarks currently only seen in $\Lambda_b \to J/\psi p K$
- Looking elsewhere, and evidence found




Proton!!!

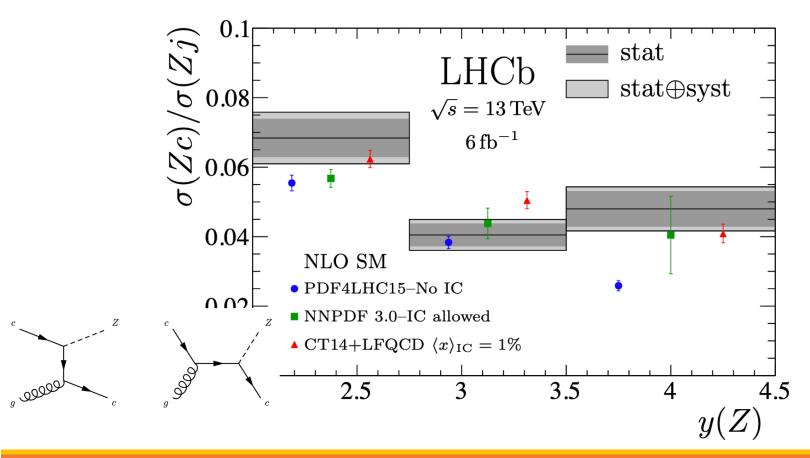
Constituent quarks

30% of 5-quark component in proton

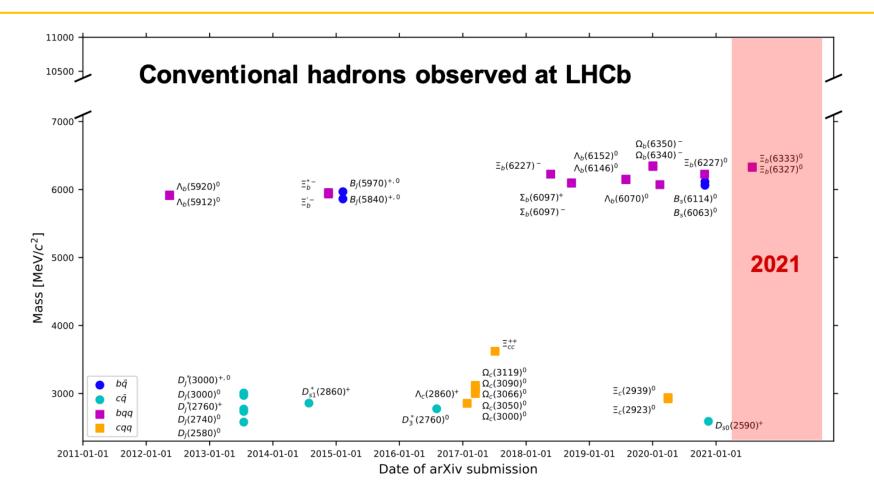
Garvey & Peng, Prog. Part. Nucl. Phys. 47, 203 (2001)

- Deep inelastic scattering and Drell-Yan process
- Spin crisis of proton

```
\label{eq:meson_cloud_picture:} \begin{tabular}{ll} Meson_{cloud} picture: & Thomas, Speth, Henley, Meissner, Miller, Weise, Oset, & Brodsky, Ma, ... & \\ & | p > \sim | uud > + \epsilon_1 | n (udd) \pi^+(\bar{d}u) > \\ & + \epsilon_2 | \Delta^{++}(uuu) \pi^-(\bar{u}d) > + \epsilon' | \Lambda (uds) K^+(\bar{s}u) > ... \\ \end{tabular} \begin{tabular}{ll} Penta-quark picture: & Riska, Zou, Zhu, ... & Zhu, ..
```


 $|p>\sim |uud> +\epsilon_1|[ud][ud]\overline{d}> +\epsilon'|[ud][us]\overline{s}> +...$

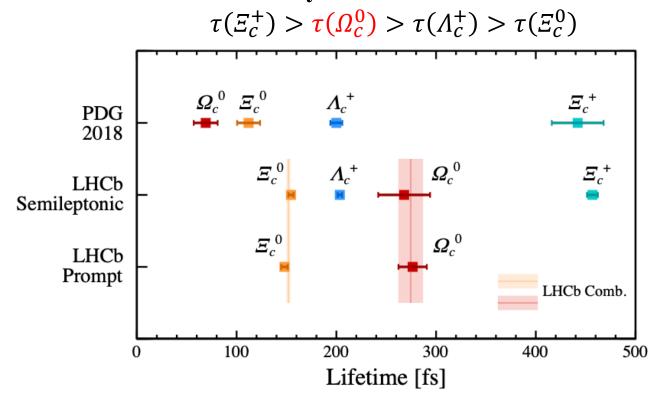
From B. Zou


New insights on particle structures

arXiv:2109.08084

- (Valence-like) Intrinsic charm: $|uudc\bar{c}|$
- Study via Z boson + c jet in forward region: $R_j^c = \sigma(Zc)/\sigma(Zj)$

Harvest of LHCb

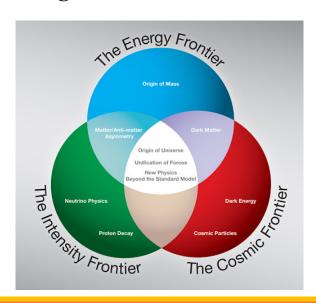


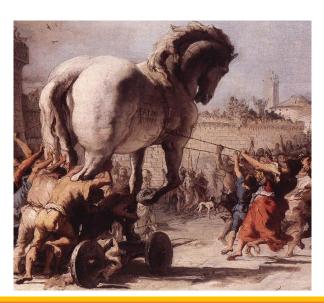
© Patrick Koppenburg

 Many searches on other doubly heavy flavor baryons, though null yet, but high possibilities with Run3 data

New picture of lifetime hierarchy

- LHCb results from semileptonic b decays quite different from known values and lifetime hierarchy changed dramatically
- Our new measurements with **prompt** production confirm **semileptonic** results and new lifetime hierarchy cast in stone

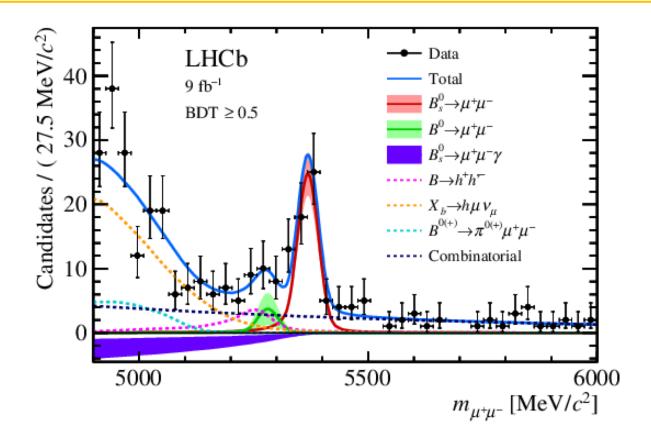

Fundamental questions (flavor)


- Structure of particles
- New particles or forces
- Matter vs anti-matter
- Dark matter (not discussed in this talk)

•

New Physics search

- All SM particles, including Higgs, have been found;
- However new mechanism needed for DM, matter-antimatter asymmetry, hierarchy problems etc.;
- Two ways to search for New Physics: direct search and indirect search through precision measurements;
- Examples in history: many beyond "current" model New Physics first found through indirect search



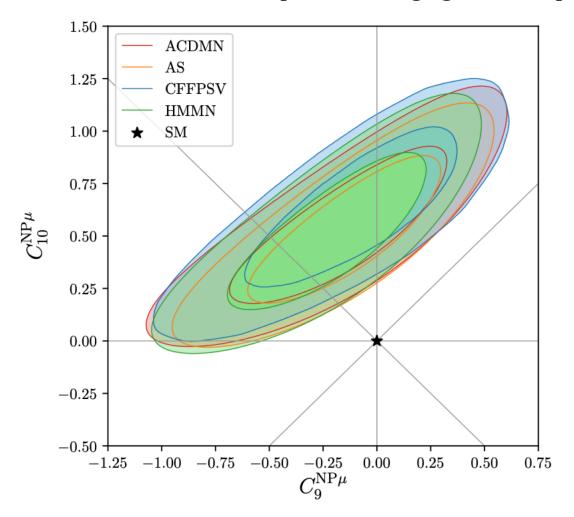
New Physics search at flavor sector

Sensitive to New Physics scale much higher than direct search: 1-10⁴ TeV

- Also "tasteful", not only can tell there is New Physics, but also tell properties of New Physics based on flavor it couples to
- Statistics or precision is key for flavor program: New Physics scale, i.e. Dim = 6, proportional to $\sqrt[4]{\text{statistics}}$ or $1/\sqrt{\text{Uncertainty}}$,

• Legacy LHCb measurements with full Run1+2 data:

branching fractions of $B^0_s o \mu^+\mu^-(\gamma)$, $B^0 o \mu^+\mu^-$, + lifetime of $B^0_s o \mu^+\mu^-$


2021/11/11 19

New violation of symmetry?

- Symmetries at low energy could be violated at higher energy
- Three identical replica of leptons at gauge (however already broken when interact with Higgs)
- Current anomalies from $b \rightarrow sl^+l^-$ and $b \rightarrow cl\nu$
- $b \rightarrow cl\nu$: anomalies found between τ and μ
- $b \rightarrow s l^+ l^-$: anomalies found between μ and e (driven by μ) + μ channel alone on angular variables, Br. etc.
- Possible new physics explanations: leptoquark, Z' etc.

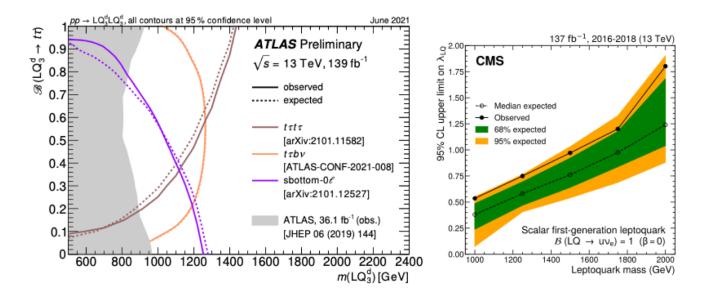
SMEFT fits

B. Capdevila, M. Fedele, S. Neshatpour, P. Stangl @LHCb implication workshop

fit to LFU observables + $B_s \rightarrow \mu\mu$

Highlights on new LU test results

arXiv:2110.09501


$$R_{K^{(*)}}^{-1} = \frac{\mathcal{B}(B \to K^{(*)}e^+e^-)}{\mathcal{B}(B \to J/\psi \, (e^+e^-) \, K^{(*)})} / \frac{\mathcal{B}(B \to K^{(*)}\mu^+\mu^-)}{\mathcal{B}(B \to J/\psi \, (\mu^+\mu^-) \, K^{(*)})}$$

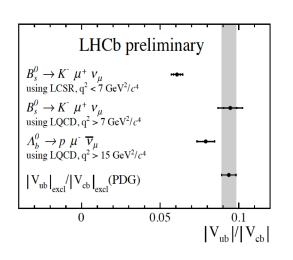
- Results on $R_{K_S^0}$, $R_{K^{*-}}$ recently released
- Same pattern as R_{K^+} , $R_{K^{*0}}$

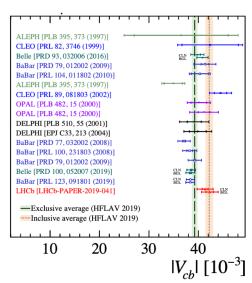

Interplay with other measurements

• If leptoquark or Z', would be interesting to search directly in ATLAS or CMS

- Currently null results from direct search
- May be interesting to look for symmetry breaking at flavor sector, i.e. B-L processes

Precision measurements of CKM


- Long saga of V_{ub} and V_{cb} puzzles from inclusive and exclusive measurements
- Disaster for new physics searches if we don't understand CKM elements precisely


Changing
$$|V_{cb}|$$
: $39 \cdot 10^{-3} \Rightarrow 42 \cdot 10^{-3}$ changes $|V_{cb}|^2$: by 16% $(B_{s,d} \rightarrow \mu^+ \mu^-, \Delta M_{s,d})$ $|V_{cb}|^3$: by 25% $(K^+ \rightarrow \pi^+ \nu \overline{\nu}, \epsilon_K)$ $|V_{cb}|^4$: by 35% $(K_L \rightarrow \pi^0 \nu \overline{\nu}, K_S \rightarrow \mu^+ \mu^-)$ From A. Buras

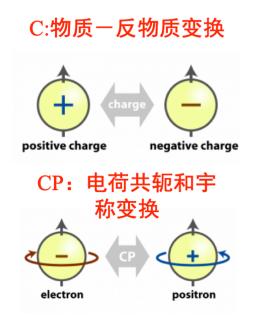
Highlights on V_{ub} , V_{cb}

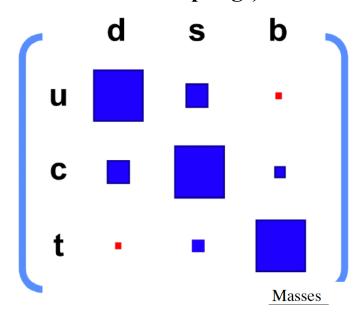
• Two new measurements, one $|V_{ub}|/|V_{cb}|$ from $B_s \to K \mu \nu_\mu$ vs $B_s \to D_s^- \mu^+ \nu_\mu$

$$|V_{
m ub}|/|V_{
m cb}|({
m low}) = 0.0607 \pm 0.0015({
m stat}) \pm 0.0013({
m syst}) \pm 0.0008({
m D_s}) \pm 0.0030(FF)$$
 LQCD $|V_{
m ub}|/|V_{
m cb}|({
m high}) = 0.0946 \pm 0.0030({
m stat})^{+0.0024}_{-0.0025}({
m syst}) \pm 0.0013({
m D_s}) \pm 0.0068(FF)$ **LCSR**

- Discrepancy found in high and low q² region with different form factors, further investigation from both experimental and theoretical parts needed
- The other one, $|V_{cb}|$ from $B_s \to D_s^{(*)-} \mu \nu_{\mu}$ using branching fraction information from $B^0 \to D^{(*)-} \mu^+ \nu_{\mu}$ (set scale)

Fundamental questions (flavor)

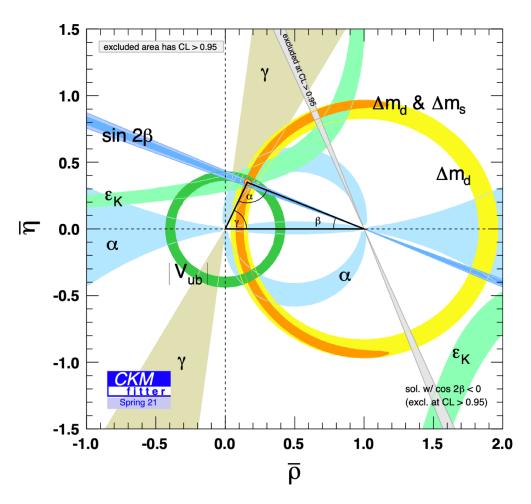

- Structure of particles
- New particles or forces
- Matter vs anti-matter
- Dark matter (not discussed in this talk)


•

2021/11/11 26

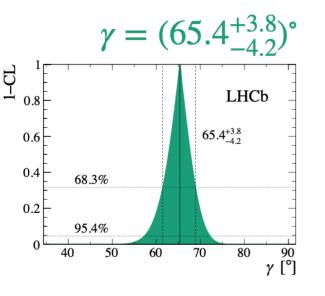
CP violation and CKM matrix

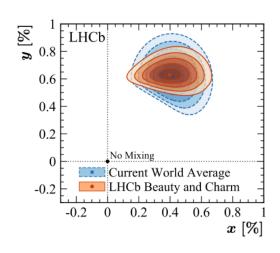
- Predicted matter antimatter difference much smaller than observed in Universe
- Need new CPV mechanism needed to explain
- CPV in SM from CKM matrix (closely linked to Yukawa couplings)



- Though successful, still many puzzles with CKM matrix
- Large hierarchy between elements, similar to hierarchy of masses
- Very different from neutrino sector

u d s


Ways towards discovery

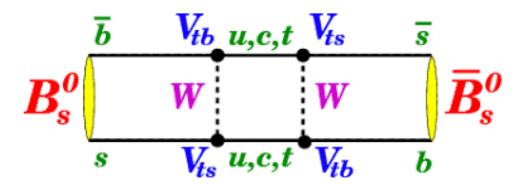


- Probe new physics by over constraining CKM triangles
- Key elements, $|V_{cb}|$, $|V_{ub}|$, angles etc.

New y combination

- Using all LHCb measurements on γ
- Charm contributions important, also including results from charm factories and LHCb (CP violation in charm, w. wang, PRL 110 (2013) 061802)
- Not only constraining γ , but also on charm mixing parameters

$$x_D = (4.00^{+0.52}_{-0.53}) \times 10^{-3}$$

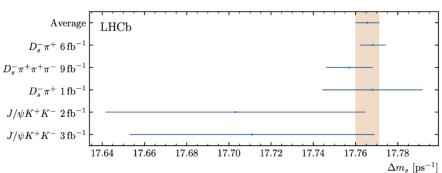

$$y_D = (6.30^{+0.33}_{-0.30}) \times 10^{-3}$$

$$\delta_D^{K\pi} = (190.0^{+4.2}_{-4.1})^{\circ}$$

$$r_D^{K\pi} = (58.67 \pm 0.15) \times 10^{-3}$$

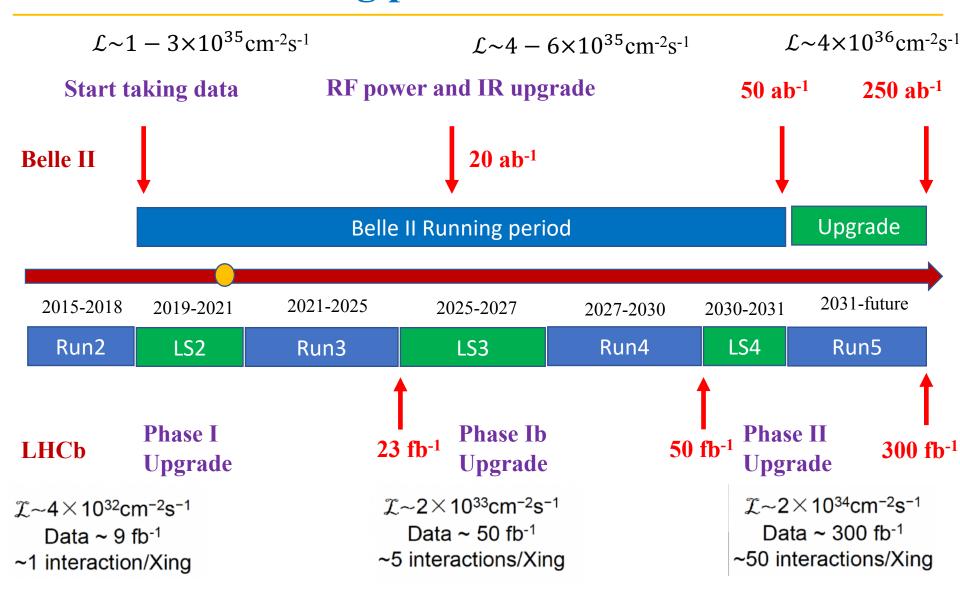
- Uncertainties still twice larger than obtained from indirect measurements
- Need more channels to further constraining it

Mixing parameter



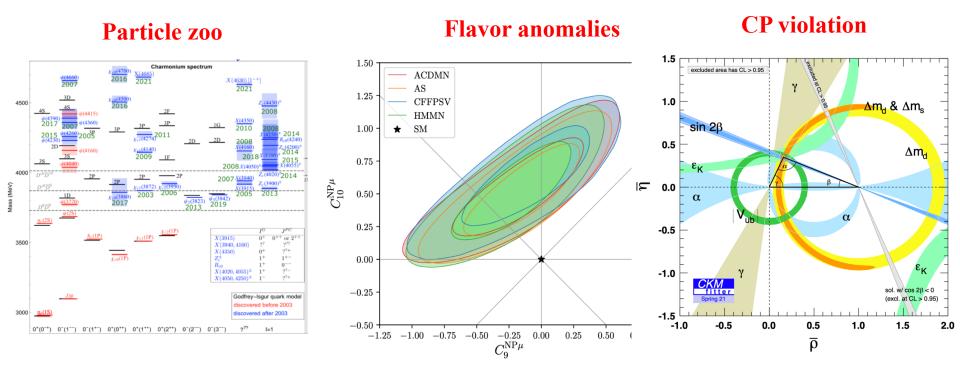
Together with $B_s^0 \to D_s^- \pi^+$, yields the most precise determination of oscillation frequency!!!

Better precision from lattice needed


• Mass eigenstates different from flavor eigenstates: Δm_s

 $17.7656 \pm 0.0057 \,\mathrm{ps^{-1}}$

Future data taking plans



LHCb potential in near future

Observable	Current LHCb	Upgrade I	
	(up to $9\mathrm{fb}^{-1}$)	$(23{\rm fb}^{-1})$	$(50{\rm fb}^{-1})$
CKM tests			
$\gamma (B o DK, etc.)$	$4^{\circ} \qquad [9,10]$	1.5°	1°
$\phi_s \left(B_s^0 o J\!/\!\psi \phi ight)$	$49\mathrm{mrad}$ [8]	$14\mathrm{mrad}$	$10\mathrm{mrad}$
$ V_{ub} / V_{cb} ~(\Lambda_b^0 o p\mu^-\overline{ u}_\mu,~etc.)$	6% [29, 30]	3%	_
$a_{ m sl}^d~(B^0 o D^-\mu^+ u_\mu)$	$36 \times 10^{-4} [34]$	8×10^{-4}	5×10^{-4}
$a_{ m sl}^s \left(B_s^0 o D_s^- \mu^+ u_\mu ight)$	$33 \times 10^{-4} \ [35]$	10×10^{-4}	7×10^{-4}
<u>Charm</u>			
$\Delta A_{CP} \; \left(D^0 ightarrow K^+ K^-, \pi^+ \pi^- ight)$	$29 \times 10^{-5} \ [5]$	17×10^{-5}	_
$A_{\Gamma} \; \left(D^0 ightarrow K^+ K^-, \pi^+ \pi^- ight)$	$13 \times 10^{-5} \ [38]$	4.3×10^{-5}	_
$\Delta x \; (D^0 o K_{\scriptscriptstyle \mathrm{S}}^0 \pi^+ \pi^-)$	$18 \times 10^{-5} \ [37]$	6.3×10^{-5}	4.1×10^{-5}
Rare Decays			
$\mathcal{B}(B^0 o \mu^+ \mu^-)/\mathcal{B}(B^0_s o \mu^+ \mu^-)$	(-) 71% [40,41]	34%	_
$S_{\mu\mu} \left(B_s^0 ightarrow \mu^+ \mu^- ight)$	_	_	_
$A_{ m T}^{(2)} \; (B^0 o K^{*0} e^+ e^-)$	$0.10 ext{ [52]}$	0.060	0.043
$A_{ m T}^{ m Im}~(B^0 o K^{*0}e^+e^-)$	0.10 [52]	0.060	0.043
${\cal A}_{\phi\gamma}^{ar\Delta\Gamma}(B^0_s o\phi\gamma)$	$^{+0.41}_{-0.44}$ [51]	0.124	0.083
$S_{\phi\gamma}^{\prime\prime}(B_s^0 o \phi\gamma)$	0.32 [51]	0.093	0.062
$lpha_{\gamma}(arLambda_{h}^{0} ightarrow arLambda\gamma)$	$^{+0.17}_{-0.29}$ [53]	0.148	0.097
Lepton Universality Tests	0.20		
$R_K (B^+ \to K^+ \ell^+ \ell^-)$	0.044 [12]	0.025	0.017
$R_{K^*} (B^0 o K^{*0} \ell^+ \ell^-)$	$0.10 \overline{[61]}$	0.031	0.021
$R(D^*) (B^0 \to D^{*-}\ell^+\nu_\ell)$	0.026 [62, 64]	0.007	

Conclusion

A flavorful era of particle physics

Thank you for your attention