

Highlights from Belle

Sen Jia (Fudan U.) on behalf of the Belle Collaboration

全国第十八届重味物理与CP破坏研讨会(HFCPV2021) 2021年11月10-14日,暨南大学

Content

Recent results of B and B_s decays at Belle (this talk):

- Lepton flavor universality: R(D), R(D*)
- $B \to X_u \ell^+ v_\ell$ inclusive for $|V_{ub}|$ and differential branching fractions
- B and B_s decays: $B^0 \rightarrow K^{*0}\tau^+\tau^-$ and $B^0_s \rightarrow D_s X$

Other topics related to Belle (II)

- Charmed baryons at Belle from Y. B. Li, Nov 12 15:10
- Belle II prospects from X. Y. Zhou, Nov 13 14:30

Belle experiment and data samples

Lepton flavor universality: R(D), R(D*) [PRL124, 161803 (2020)]

R(D^(*)) in semitauonic *B*-decays

- Lepton flavor universality (LFU) enforces the equal coupling of the gauge bosons to the three lepton generations.
- Semitauonic decays such as $B \rightarrow D^{(*)}\tau v_{\tau}$ are more interesting, given the third generation of lepton family are involved in the transition.
- Sensitive to New Physics (NP): Two Higgs doublets, leptoquarks, etc.

• The presence of NP impact the experimentally observed LFU ratios:

$$\mathcal{R}(\mathcal{D}^{(*)}) \equiv rac{\mathcal{B}(B o D^{(*)} au \,
u_{ au})}{\mathcal{B}(B o D^{(*)} \ell \,
u_{\ell})}$$
 , where ℓ = e and μ

- Beyond SM particles can also alter the kinematic distributions of final state: τ lepton/D^(*) meson polarization^[3].
- [1] Front. Phy. 80, 1 (2000) [2] Phys. Lett. B 191, 442 (1987); 448, 320(E) (1999) [3] PRD 97, 012004 (2018)

$\mathcal{R}(D)$ and $\mathcal{R}(D^*)$ overview and status

$$\mathcal{R}(\mathcal{D}^{(*)})\equivrac{\mathcal{B}(B o D^{(*)} au
u_ au)}{\mathcal{B}(B o D^{(*)}\ell
u_\ell)}$$

- Common systematics will cancel out Detection efficiency, theoretical uncertainty of form factor, and uncertainty of $|V_{cb}|$
 - Predictions are theoretically clean

 $R(D) = 0.298 \pm 0.003$ and $R(D^*) = 0.252 \pm 0.005$

-6-

$B \rightarrow D^{(*)}\tau v$ reconstruction at *B* factories

- Challenging with the presence of multiple neutrinos in the final states
- Select the B_{sig} with
 a D(*) meson
- a charged daughter of τ

Tagging methods:

Hadronic Tag:

- Fully reconstructed in $B \rightarrow DX$ modes
- Tagging efficiency ~0.2%
- Low backgrounds

Semileptonic Tag:

- Reconstructed in $B \rightarrow D(*)lv$
- Tagging efficiency ~0.5%
- More backgrounds

Inclusive Tag:

- Reconstruct B tag with all particles except signal side
- Higher efficiency
- Need clean signal side final state

$\mathcal{R}(D^*)$ measurements at Belle with semileptonic tagging

New technique : Using Full Event Interpretation (FEI) tool developed in Belle II software framework.

 $\begin{array}{ccc} & \text{B-Signal} & \text{B-Tag} \\ B^{\pm/0} \rightarrow D^{(*)} \tau^- (\ell^- \bar{\nu} \nu) \nu & & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & & \\$

$$\mathbf{B}^{\pm/0} \to D^{(*)} \ell^- \nu$$

Normalization mode

```
Where, \ell=e \, \, {
m and} \, \, \mu
```

- The B_{tag} is reconstructed using a hierarchical algorithm based on a multivariate analysis with Boosted-Decision Tree (BDT) in the B → D^(*)τν channel
- Better efficiency and enables to use more signal decay modes
- Simultaneous measurements of R(D) and R(D*)
 - $772 \times 10^6 \text{ B}\overline{\text{B}}$ events
 - Four-disjoint data samples: D⁺ℓ⁻, D⁰ℓ⁻, D^{*+}ℓ⁻. D^{*0}ℓ⁻
 - B_{tag} and B_{sig} have opposite flavors

Selection criteria

Separate $B_{tag} \rightarrow D^{(*)}lv$ and $B_{tag} \rightarrow D^{(*)}\tau v$ by cosine of the angle between the momentum of the B meson and D^(*)l under the assumption that only one massless particle is not reconstructed:

$$\cos\theta_{B,D^{(*)}\ell} = \frac{2E_{beam}E_{D^{(*)}\ell} - m_B^2 - m_{D^{(*)}\ell}^2}{2|p_B||p_{D^{(*)}\ell}|}$$

Correct
$$B_{tag}$$
: $-1 < \cos \theta_{B,D^{(*)}\ell} < 1$

$$\begin{bmatrix} D^{(*)}\ell\nu_{\ell} \\ \cos\theta_{B,D^{(*)}\ell} \\ D^{(*)}\tau\nu_{\tau} \\ -15 & -10 & -5 & 0 \end{bmatrix}$$

0

- Separate signal and normalization modes by Boosted-Decision Tree (BDT) classifier output (Based on the XGBoost package) \mathbf{O}_{cls} \rightarrow Input variables: Visible energy, m_{miss}^2 , $\cos\theta_{B,D^{(r)}l}$
- Best candidates are selected in case of multiple B_{tag} (on highest tagging classifier output) and B_{sig} (on highest p-value of vertex fit of the charm daughters)

Fit results: D*& sample

- We extract the yields of signal and normalization modes from a twodimensional extended maximum-likelihood fit to the variables O_{cls} and E_{ECL}.
- The fit is performed simultaneously to the four D^(*) & samples.

E_{ECL}: the sum of the energies of neutral clusters detected in the ECL that are not associated with any reconstructed particles.

-10-

Fit results: Dl sample

[PRL124, 161803 (2020)]

A large fraction of $B \rightarrow D^* \ell v$ and $B \rightarrow D^* \tau v$ decays from both B^0 and B^+ are reconstructed in the Dl samples.

Results

$$\mathcal{R}(\mathcal{D}^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau^+\nu_{\tau})}{\mathcal{B}(B \to D^{(*)}I^+\nu_{I})} = \frac{1}{2\mathcal{B}(\tau^- \to \ell^- \bar{\nu_{\ell}}\nu_{\tau})} \cdot \underbrace{\left(\frac{\epsilon_{\mathrm{sig}}}{\epsilon_{\mathrm{norm}}}\right)}_{N_{\mathrm{norm}}} \cdot \frac{N_{\mathrm{sig}}}{N_{\mathrm{norm}}}$$

 $\mathcal{R}(\mathcal{D}^*) = 0.283 \pm 0.018 \pm 0.014$ | Agrees with SM within 1.1σ

 $\mathcal{R}(\mathcal{D}) = 0.307 \pm 0.037 \pm 0.016$ | Agrees with SM within 0.2σ

- Most precise measurements of R(D) and R(D*) to date
- First R(D) measurement performed with a semileptonic tag
- R(D) R(D*) Belle average is now within 1.6σ of the SM prediction
- Expected precisions at Belle II: (±2.0±2.5)% for R(D) and (±1.0±2.0)% for R(D*) [PTEP2019,123C01 (2019)]

[PRL124, 161803 (2020)]

B → $X_u \ell^+ v_\ell$ inclusive for $|V_{ub}|$ and differential branching fractions [PRD 104, 012008 (2021)] [arXiv:2107.13855 (2021), accepted by PRL]

$B \rightarrow X_u \ell^+ v_\ell$ inclusive for $|V_{ub}|$

- Features of the analysis
- extend the probed $B \to X_u \ell^+ \nu_\ell$ phase space into regions dominated by $B \to X_c \ell^+ \nu_\ell$
- focus on integrated (over phase space) measurement of $\Delta \mathcal{B}$

Can fully assign each final state particle to either the tag or signal side

- \rightarrow Allows to reconstruct X_{μ}
- Main improvements compared previous work [PRL 104, 021801 (2010)]
- Using full Belle dataset of 711 fb⁻¹
- more efficient B tagging using NN → effective increase of statistics (×1.8)
- improved modeling of $B \to X_c \ell^+ v_\ell$ background (e.g. for "gap modes") as well as signal

$B \rightarrow$	X _u ℓ	°⁺ν _ℓ
-----------------	------------------	------------------

B	Value B^+	Value B^0
$B \to X_{\mu} \ell^+ \nu_{\ell}$		
$B ightarrow \pi \ell^+ u_\ell$	$(7.8 \pm 0.3) imes 10^{-5}$	$(1.5\pm 0.06) imes 10^{-4}$
$B o \eta \ell^+ u_\ell$	$(3.9 \pm 0.5) \times 10^{-5}$	
$B o \eta' \ell^+ u_\ell$	$(2.3 \pm 0.8) \times 10^{-5}$	
$B o \omega \ell^+ \nu_\ell$	$(1.2 \pm 0.1) \times 10^{-4}$	
$B \to \rho \ell^+ \nu_\ell$	$(1.6 \pm 0.1) \times 10^{-4}$	$(2.9 \pm 0.2) imes 10^{-4}$
$B\to X_u \mathcal{C}^+ \nu_{\mathcal{C}}$	$(2.2 \pm 0.3) \times 10^{-3}$	$(2.0 \pm 0.3) \times 10^{-3}$

$B \to X_c \ell^+ \nu_\ell$	$B \rightarrow X_{c} \ell V_{\ell}$	
$B \to D\ell^+ \nu_\ell$	$(2.5 \pm 0.1) imes 10^{-2}$	$(2.3 \pm 0.1) imes 10^{-2}$
$B\to D^* {\mathcal C}^+ \nu_{\ell}$	$(5.4 \pm 0.1) \times 10^{-2}$	$(5.1 \pm 0.1) \times 10^{-2}$
$B o D_0^* \ell^+ \nu_\ell$	$(4.2 \pm 0.8) imes 10^{-3}$	$(3.9 \pm 0.7) \times 10^{-3}$
$(\hookrightarrow D\pi)$		
$B o D_1^* \ell^+ u_\ell$	$(4.2\pm 0.8) imes 10^{-3}$	$(3.9\pm 0.8) imes 10^{-3}$
$(\hookrightarrow D^*\pi)$		
$B \to D_1 \ell^+ \nu_\ell$	$(4.2 \pm 0.3) imes 10^{-3}$	$(3.9 \pm 0.3) \times 10^{-3}$
$(\hookrightarrow D^*\pi)$	2	
$B \to D_2^* \ell^+ \nu_\ell$	$(1.2 \pm 0.1) \times 10^{-3}$	$(1.1 \pm 0.1) \times 10^{-3}$
$(\hookrightarrow D^*\pi)$	2	2
$B \to D_2^* \ell^+ \nu_\ell$	$(1.8 \pm 0.2) \times 10^{-3}$	$(1.7 \pm 0.2) \times 10^{-3}$
$(\hookrightarrow D\pi)$		
$B \to D_1 \ell^+ \nu_\ell$	$(2.4 \pm 1.0) \times 10^{-3}$	$(2.3 \pm 0.9) \times 10^{-3}$
$(\hookrightarrow D\pi\pi)$		
$B \to D\pi \pi \ell^+ \nu_\ell$	$(0.6 \pm 0.6) \times 10^{-3}$	$(0.6 \pm 0.6) \times 10^{-3}$
$B \to D^* \pi \pi \ell^+ \nu_\ell$	$(2.2 \pm 1.0) \times 10^{-3}$	$(2.0 \pm 1.0) \times 10^{-3}$
$B \to D\eta \ell^+ \nu_\ell$	$(4.0 \pm 4.0) \times 10^{-3}$	$(4.0 \pm 4.0) \times 10^{-3}$
$B \to D^* \eta \ell^+ \nu_\ell$	$(4.0 \pm 4.0) imes 10^{-3}$	$(4.0 \pm 4.0) \times 10^{-3}$
$B o X_c \ell^+ u_\ell$	$(10.8\pm0.4) imes10^{-2}$	$(10.1\pm 0.4) imes 10^{-2}$

14-

Background suppression using BDT

BDT traning $(B \rightarrow X_u \ell^+ v_\ell \text{ against } B \rightarrow X_c \ell^+ v_\ell)$ using

- MM² (larger multiplicity of X_c → more broadening)
- D* veto use slow-π kinematics
- # of kaons: K^{\pm} , K^0_s
- B_{sig} vertex fit
- Sum (charges)

Selection	$B \to X_u \ell^+ \nu_\ell$	$B \to X_c \ell^+ \nu_\ell$	Data
$M_{\rm bc} > 5.27{\rm GeV}$	84.8%	83.8%	80.2%
$\mathcal{O}_{ m BDT} > 0.85$	18.5%	1.3%	1.6%
$\mathcal{O}_{ m BDT} > 0.83$	21.9%	1.7%	2.1%
$\mathcal{O}_{ m BDT} > 0.87$	14.5%	0.9%	1.1%

Signal & background distributions after BDT:

Partial Branching Fractions of $B \rightarrow X_u \ell^+ \nu_{\ell}$

2D fit on (M_X, q²) with $E_{\ell}^{B} > 1.0$ GeV:

- covers 86% of available signal phase space
- signal yields corrected by efficiency & acceptance

- In good agreement with existing BaBar results [PRD 86, 032004 (2012)]
- Consistent within in 1.7 σ compared to previous Belle results [PRL 104, 021801 (2010)] -16-

Determination of |V_{ub}|

• Using the relation $|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \ell^+ \nu_\ell)}{\tau_B \cdot \Delta \Gamma(B \to X_u \ell^+ \nu_\ell)}}$

[PRD 104, 012008 (2021)]

Based on four calculations of the decay rate

$B \to X_u \ell^+ \nu_\ell \text{ differential BF}$

• Measure kinematic variables in the phase space of $E_{\ell}^{B} > 1.0 \text{ GeV}$

 \mathbf{q}^2 , $\mathbf{E}_{\mathbf{I}}^{\mathbf{B}}$, $\mathbf{M}_{\mathbf{X}}^{\mathbf{A}}$, $\mathbf{M}_{\mathbf{X}}^{\mathbf{2}}$, $\mathbf{P}_{\mathbf{+}}$, $\mathbf{P}_{\mathbf{-}}^{\mathbf{-}}$ (light-cone momenta: $\mathbf{P}_{\pm} = \mathbf{E}_{\mathbf{X}} \mp |\mathbf{p}_{\mathbf{X}}|$)

- Basic selection & reconstruction follows integrated partial BF analysis [PRD 104, 012008 (2021)]
- Additional selections on $|E_{miss} P_{miss}| < 0.1 \text{ GeV}$ and reconstructed $M_X < 2.4 \text{ GeV}$ to improve resolution and reduce background shape uncertainty
- Background subtraction via M_X fit

-18-

Unfolding for differential BF

X: true distribution

- The migration matrix M as a representation of detector response
- M(i, j) = prob(%) to observe an event in bin i if it has a true value in bin j

M: detector response

Y: measured distribution

MX = YDirect solution for X is $X = M^{-1}Y$

Singular-Value-Decomposition (SVD) [NIMA 372:469(1996)] is applied for unfolding in this analysis.

Differential spectra of $B \rightarrow X_u \ell^+ \nu_\ell$

[arXiv:2107.13855 (2021)]

- Convert unfolded yield to ΔB in each bin considering efficiency & acceptance
- All MC shapes are normalized to $\Delta B = 1.59 \times 10^{-3}$
- Differential braching fractions ($E_l^B > 1 \text{ GeV}$) are measured for the first time
- Necessary input for future model-independent determinations of |V_{ub}|

 B^0 → K^{*0}τ⁺τ⁻ and B^0_S → D_SX [arXiv:2110.03871 (2021), submitted to PRD] [arXiv:2106.11265 (2021), submitted to PRD]

Measurement of $B^0 \rightarrow K^{*0} \tau^+ \tau^-$

Motivation:

- The decay of B⁰ → K^{*0}τ⁺τ⁻ is highly suppressed in the SM and can only proceed via a flavor-changing neutral current, with a predicted branching fraction of order O(10⁻⁷).
- Compared with electron and muon modes, the decay is expected to be more sensitive to new physics in a model which has a coupling proportionate to the particle mass [1-5].
- The decay B⁺ → K⁺τ⁺τ⁻ has been conducted by BaBar setting an upper limit Br(B⁺ → K⁺τ⁺τ⁻) < 2.25×10⁻³ at 90% C.L. [6].

Reconstructions:

- B_{tag} : 489 exclusive B meson decays. $\ln(\mathcal{O}_{NB}) > -7$, $|\Delta E| < 0.06$ GeV, and 5.275 < M_{bc} < 5.290 GeV/c² ($\varepsilon = 0.24\%$). $\Delta E = E_{Btag} - E_{cm}/2$
- $B_{sig}: B^0 \rightarrow K^{*0}\tau^+\tau^-$

$$M_{
m bc} = \sqrt{(E_{
m cm}/2)^2/c^4 - |ec{p}_{
m Btag}|^2/c^2}$$

• $K^{*0} \rightarrow K^{+}\pi^{-}; \tau^{-} \rightarrow e^{-}\overline{\nu}_{e}\nu_{\tau}, \tau^{-} \rightarrow \mu^{-}\overline{\nu}_{\mu}\nu_{\tau}, \text{ and } \tau^{-} \rightarrow \pi^{-}\nu_{\mu}$ [1] EPJC 77, 701 (2017) [2] PRL 120, 181802 (2018) [3] JHEP10, 184 (2015)

[4] JHEP 09, 40 (2017) [5] J. Phys. G 28, 307 (2002) [6] PRL 118, 031802 (2017)

Data sample: 711 fb⁻¹, 772 × 10⁶ BB pairs -22-

Control channel $B^0 \rightarrow D^-(\rightarrow K^{*0}\pi^-)\ell^+\nu$

- Dominant backgrounds: such events in B⁰ → D⁻(→ K^{*0}π⁻)ℓ⁺v have the same final-state particles as signal events.
- No requirements of M(K^{*0} π^-) and M²_{miss}

The branching fraction measured by fitting to E_{ECL}^{extra} is (2.26 ± 0.17) % and to M_{miss}^2 is (2.19 ± 0.15) %, respectively, which are in good agreement with the world average of (2.31 ± 0.10) %.

$\mathcal{B}(B^0 \rightarrow K^{*0} \tau^+ \tau^-)$

[arXiv:2110.03871 (2021)]

Optimized by the Punzi figure of merit [arXiv:physics/0308063.]

Signal Mode	$M_{K^{*0}\pi^-}$	$M_{ m miss}^2$
	$({ m GeV}/c^2)$	$({ m GeV}^2/{ m c}^4)$
$K^{*0}e^+e^-$	> 1.4	> 3.2
$K^{*0}e^{\mp}\mu^{\pm}$	> 1.4	> 1.6
$K^{*0}\mu^+\mu^-$	> 1.6	> 1.6
$K^{*0}\pi^{\mp}e^{\pm}$	> 1.4	> 2.0
$K^{*0}\pi^\mp\mu^\pm$	> 1.4	> 2.0
$K^{*0}\pi^+\pi^-$	> 1.5	< 9

- In signal region of E^{extra} < 0.2 GeV: N_{sig} = -4.9 ± 6.0 and N_{bkg} = 122.4 ± 4.9
- The first experimental upper limit at 90% C.L. on B⁰ → K^{*0}τ⁺τ⁻ is 2.0×10⁻³.

Measurement of $B_s^0 \rightarrow D_s X$

Motivation:

- Determine f_s (the fraction of Y(5S) events containing B_s -meson pairs) $\mathcal{B}(\Upsilon(5S) \to D_x X)/2 = f_s \cdot \mathcal{B}(B_s \to D_x X) + f_q \cdot \mathcal{B}(B \to D_x X)$
- B_s properties can provide important information on CKM matrix parameters.

Tag Channel	Signal Channel	Efficiency (%)
	$\phi\{K^+K^-\}\pi$	26.1 ± 0.5
$\phi\pi$	$K^0_S\{\pi^+\pi^-\}K$	38.5 ± 0.6
	$K^{*0}\{K^{\pm}\pi^{\mp}\}K$	24.6 ± 0.5
	$\phi\{K^+K^-\}\pi$	27.6 ± 0.5
$K_S^0 K$	$K^0_S\{\pi^+\pi^-\}K$	37.8 ± 0.6
	$K^{*0}\{K^{\pm}\pi^{\mp}\}K$	24.6 ± 0.4

 $M_{\rm miss}^2 = (\sqrt{s}/2 - \delta E - E_{D\ell}^*)^2 - (p_{D\ell}^*)^2$

Tag side: The number of B⁰ tags is obtained by fitting M_{miss}^2 and M_{Ds} distributions. Three categories: correct tags, incorrect B tags where the tag-lepton is combined with the signal-side D_s (cross-feed), and other incorrect tags (combinatorial backgrounds).

-25-

$\mathcal{B}(B^0_s \rightarrow D_s X) \text{ and } f_s$

[arXiv:2106.11265 (2021)]

Signal side: The number of signal-side D_s obtained by performing a 3-dimensional binned maximum likelihood fit to the M_{miss}^2 , $M_{D_s}^{tag}$, and $M_{D_s}^{sig}$ distributions.

$$\mathcal{B}(B_s^0 \to D_s X) = [61.6 \pm 5.3 (\text{syst.}) \pm 2.1 (\text{syst.})]\%$$
$$f_s = 0.278 \pm 0.028 (\text{stat.}) \pm 0.035 (\text{syst.})$$

- The first direct measurement of the $B_s \rightarrow D_s X$ inclusive branching fraction.
- $\mathcal{B}(B^0_s \to D_s X)$ substantially lower than the world average but consistent within its large uncertainties.

Summary and conclusion

- Belle recently provided the most precise measurements of R(D^(*)), is now within 1.6σ of the SM prediction.
- The first measurement of several differential kinematic distributions in $B \rightarrow X_u \ell^+ v$, which enables a robust determination of $|V_{ub}|$.
- The first experimental upper limit at 90% C.L. on $\mathcal{B}(B^0 \to K^{*0}\tau^+\tau^-)$ and the most precise measurements of $\mathcal{B}(B_s^0 \to D_s X)$ and f_s are given.

Thanks for your attention!

$\mathcal{R}(D)$ and $\mathcal{R}(D^*)$ overview and status

$$\mathcal{R}(\mathcal{D}^{(*)})\equivrac{\mathcal{B}(B
ightarrow D^{(*)} au
u_ au)}{\mathcal{B}(B
ightarrow D^{(*)}\ell
u_\ell)}$$

- Common systematics will cancel out Detection efficiency, theoretical uncertainty of form factor, and uncertainty of $|V_{cb}|$
- Predictions are theoretically clean
 R(D) = 0.298±0.003 and R(D*) = 0.252±0.005

