

Form Factors of $\Lambda_b \rightarrow p$ in PQCD

Jia-Jie Han (韩佳杰) 南京师范大学&兰州大学 @HFCPV2021

In collaboration with Ya Li, Yue-Long Shen, Zhen-Jun Xiao and Fu-Sheng Yu

- **≻** Motivation
- > Framework
- Form factors at $q^2 = 0$
- **≻**Observables
- **>** Summary

Predict CPV in b-baryon decay

Matter-antimatter asymmetry in universe

```
实验值: Y_B^{obs} = 8.59 \times 10^{-11} 理论值: Y_B^{SM} \simeq 7 \times 10^{-20} > Planck Collaboration (2016)
```

- Sakharov three requirements:
 - baryon number violation
 - C and CP violation
 - Out of thermal equilibrium

➤ Sakharov (1967)

- > CP violation in K-, B-, D-meson have been confirmed by B-factories and LHCb.
- However, CPV in baryons is not found experimentally by now. Evidence was reported by LHCb

PQCD to predict CPV in B meson

➤ Direct CPV requires two kinds of decay amplitudes with different weak phases and *different strong phases*.

$$A_{CP} = \frac{2r\sin\delta\sin\phi}{1 + r^2 + 2r\cos\delta\cos\phi}$$

Direct CPV(%)	FA	BBNS	PQCD	exp.
$B \to \pi^+\pi^-$	-5 ± 3	-6 ± 12	$+30 \pm 20$	+32 ± 4
$B \to K^+\pi^-$	+10 ± 3	+5 ± 9	-17 ± 5	-8.3 ± 0.4

Annihilation diagrams can be evaluated well in PQCD.

W-exchange/annihilation diagrams in $\Lambda_b \to p\pi$

➤ W-exchange diagrams (E) *40

Cai-Dian Lu, Yu-Ming Wang, Hao zou (2009)

➤ Bow-tie diagrams (B) *40

➤ Penguin annihilation (P) *40

 \triangleright There are many W-exchange/annihilation diagrams of Λ_b two-body decay.

- \triangleright Current situation of PQCD calculation for Λ_h decay:
 - > [1] Nsiang-Nan Li, (1993), Sudakov suppression and the proton form factors
 - > [2] B.Kundu, Nsiang-Nan Li, et,al. (1999), The perturbative proton form-factor reexamined
 - \succ [3] H.H.Shih, S.C.Lee, Hsiang-Nan Li, (1998), The $\Lambda_b \to p l \nu$ decay in PQCD
 - \succ [4] Cai-Dian Lv, Yu-Ming Wang, Hao Zou, (2009), $\Lambda_b \to p\pi, \; pK$ decays in PQCD

	1 \ 11	
	Factorizable	Nonfactorizable
$f_1(\Lambda_b \to p \pi)$	$1.47 \times 10^{-11} - i1.97 \times 10^{-11}$	$-2.43 \times 10^{-9} - i2.05 \times 10^{-9}$
$f_2(\Lambda_b \to p \pi)$	$1.26 \times 10^{-11} - i1.94 \times 10^{-11}$	$-1.75 \times 10^{-9} - i1.20 \times 10^{-9}$
$f_1(\Lambda_b \to pK)$	$-1.52 \times 10^{-11} - i0.62 \times 10^{-11}$	$-0.88 \times 10^{-9} + i0.54 \times 10^{-10}$
$f_2(\Lambda_b \to pK)$	$0.17 \times 10^{-11} - i0.60 \times 10^{-11}$	$-1.06 \times 10^{-9} + i1.67 \times 10^{-9}$

	LCSR[5]	Lattice[6]	PQCD[3]	PQCD[4]
Form factor $f_1(q^2 = 0)$	0.14 ± 0.03	0.22 ± 0.08	2.3×10^{-3}	$2.2^{+0.8}_{-0.5} \times 10^{-3}$

[5] A.Khodjamirian, C.Klein, T.Mannel, Yu-Ming Wang (2011)

[6] W.Detmold, C.Lehner, S.Meinel (2015)

Factorization of Heavy-to-Light Baryonic Transitions in SCET

Wei Wang *

Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg, Germany

Abstract

In the framework of the soft-collinear effective theory, we demonstrate that the leading-power heavy-tolight baryonic form factors at large recoil obey the heavy quark and large energy symmetries. Symmetry breaking effects are suppressed by Λ/m_b or Λ/E , where Λ is the hadronic scale, m_b is the b quark mass and $E \sim m_b$ is the energy of light baryon in the final state. At leading order, the leading power baryonic form factor $\xi_{\Lambda,p}(E)$, in which two hard-collinear gluons are exchanged in the baryon constituents, can factorize into the soft and collinear matrix elements convoluted with a hard-kernel of order α_s^2 . Including the energy release dependence, we derive the scaling law $\xi_{\Lambda,p}E) \sim \Lambda^2/E^2$. We also find that this form factor $\xi_{\Lambda}(E)$ is numerically smaller than the form factor governed by soft processes, although the latter is formally power-suppressed.

Leading power is smaller than the results from sum rules.

Leading power $\xi_{\Lambda}(q^2=0)$	$-0.012^{+0.009}_{-0.023}$
Sum rules (Feldman, Yip, 2011)	0.38

Including high twist light-cone distribution amplitudes.

- **≻** Motivation
- **≻**Framework
- Form factors at $q^2 = 0$
- **≻**Observables
- **>** Summary

Framework

Parameterization of this hadronic matrix

$$\langle P(p',s')|\bar{u}\gamma_{\mu}(1-\gamma_{5})b|\Lambda_{b}(p,s)\rangle = \overline{P}(p',s')(f_{1}\gamma_{\mu}-if_{2}\sigma_{\mu\nu}q^{\nu}+f_{3}q_{\mu})\Lambda_{b}(p,s) -\overline{P}(p',s')(g_{1}\gamma_{\mu}-ig_{2}\sigma_{\mu\nu}q^{\nu}+g_{3}q_{\mu})\gamma_{5}\Lambda_{b}(p,s).$$

ightharpoonup Transition form factor can be expressed as the convolution of hadronic wave functions ψ_{Λ_h} , ψ_p and the hard-scattering amplitude T_H

$$F = \int_0^1 [dx][dx'] \int [d^2\mathbf{k}_T] \int [d^2\mathbf{k}_T'] \psi_p(x', \mathbf{k}_T', p', \mu]$$

$$\times T_H(x, x', M_{\Lambda_b}, \mathbf{k}_T, \mathbf{k}_T', \mu) \psi_{\Lambda_b}(x, \mathbf{k}_T, p, \mu),$$

$$u$$

$$u$$

$$d$$

$$d$$

Framework

Diagrams for $\Lambda_b \to p$ under PQCD

Λ_b wave function

$$(Y_{\Lambda_b})_{\alpha\beta\gamma}(k_i,\mu) = \frac{1}{2\sqrt{2}} \int \prod_{l=2}^3 \frac{dw_l^- d\mathbf{w}_l}{(2\pi)^3} e^{ik_l \cdot w_l} \epsilon^{ijk} \langle 0|T[b_\alpha^i(0)u_\beta^j(w_2)d_\gamma^k(w_3)]|\Lambda_b(p)\rangle$$

By using Bargmann-Wigner equation in the heavy quark limit

$$\Phi_{\Lambda_b}^{\alpha\beta\gamma} \equiv \langle 0|T[b_{\alpha}^i(0)u_{\beta}^j(z_2)d_{\gamma}^k(z_3)]|\Lambda_b(p)\rangle = \frac{f_{\Lambda_b}}{4}[(\not p + M_{\Lambda_b})\gamma_5C]_{\beta\gamma}[\Lambda_b(p)]_{\alpha}\Psi(k_i,\mu)$$

$$\Psi(k_i,\mu) = Nx_1x_2x_3exp\left(-\frac{M_{\Lambda_b}^2}{2\beta^2x_1} - \frac{m_l^2}{2\beta^2x_2} - \frac{m_l^2}{2\beta^2x_3}\right)$$

F.Hussain, J.G.Korner, M.Kramer, G.Thompson (1991) & F.Schlumpf (1992)

General light-cone hadronic matrix element of Λ_h baryon

$$\begin{split} \Phi_{\Lambda_{b}}^{\alpha\beta\delta}(t_{1},t_{2}) &\equiv \epsilon_{ijk} \langle 0 | [u_{i}^{T}(t_{1}\bar{n})]_{\alpha}[0,t_{1}\bar{n}][d_{j}(t_{2}\bar{n})]_{\beta}[0,t_{2}\bar{n}][b_{k}(0)]_{\delta} | \Lambda_{b}(v) \rangle \\ &= \frac{1}{4} \Big\{ f_{\Lambda_{b}}^{(1)}(\mu) [\tilde{M}_{1}(v,t_{1},t_{2})\gamma_{5}C^{T}]_{\beta\alpha} + f_{\Lambda_{b}}^{(2)}(\mu) [\tilde{M}_{2}(v,t_{1},t_{2})\gamma_{5}C^{T}]_{\beta\alpha} \Big\} [\Lambda_{b}(v)]_{\delta} \quad (23) \\ M_{1}(\omega_{1},\omega_{2}) &= \frac{\hbar \mu}{4} \psi_{3}^{+-}(\omega_{1},\omega_{2}) + \frac{\hbar \bar{\mu}}{4} \psi_{3}^{-+}(\omega_{1},\omega_{2}) & M_{2}(\omega_{1},\omega_{2}) = \frac{\hbar}{\sqrt{2}} \psi_{2}(\omega_{1},\omega_{2}) + \frac{\bar{\mu}}{\sqrt{2}} \psi_{4}(\omega_{1},\omega_{2}) \end{split}$$

G.Bell, T.Feldmann, Yu-Ming Wang, M.W.Y.Yip (2013) > G.Bell, T.Feldmann, Yu-Ming Wang, M.W.Y.Yip (2013) (Exponential model) (Free parton model)

$$\psi_{2}(\omega_{1},\omega_{2}) = \frac{\omega_{1}\omega_{2}}{\omega_{0}^{4}} e^{-(\omega_{1}+\omega_{2})/\omega_{0}}, \qquad \psi_{2}(\omega_{1},\omega_{2}) = \frac{15\omega_{1}\omega_{2}(2\bar{\Lambda}-\omega_{1}-\omega_{2})}{4\bar{\Lambda}^{5}} \Theta(2\bar{\Lambda}-\omega_{1}-\omega_{2}),$$

$$\psi_{3}^{+-}(\omega_{1},\omega_{2}) = \frac{2\omega_{1}}{\omega_{0}^{3}} e^{-(\omega_{1}+\omega_{2})/\omega_{0}}, \qquad \psi_{3}^{+-}(\omega_{1},\omega_{2}) = \frac{15\omega_{1}(2\bar{\Lambda}-\omega_{1}-\omega_{2})^{2}}{4\bar{\Lambda}^{5}} \Theta(2\bar{\Lambda}-\omega_{1}-\omega_{2}),$$

$$\psi_{3}^{+-}(\omega_{1},\omega_{2}) = \frac{15\omega_{2}(2\bar{\Lambda}-\omega_{1}-\omega_{2})^{2}}{4\bar{\Lambda}^{5}} \Theta(2\bar{\Lambda}-\omega_{1}-\omega_{2}),$$

$$\psi_{3}^{++}(\omega_{1},\omega_{2}) = \frac{15\omega_{2}(2\bar{\Lambda}-\omega_{1}-\omega_{2})^{2}}{4\bar{\Lambda}^{5}} \Theta(2\bar{\Lambda}-\omega_{1}-\omega_{2}),$$

$$\psi_{4}(\omega_{1},\omega_{2}) = \frac{15\omega_{2}(2\bar{\Lambda}-\omega_{1}-\omega_{2})^{2}}{8\bar{\Lambda}^{5}} \Theta(2\bar{\Lambda}-\omega_{1}-\omega_{2}).$$

$$\psi_{4}(\omega_{1},\omega_{2}) = \frac{5(2\bar{\Lambda}-\omega_{1}-\omega_{2})^{3}}{8\bar{\Lambda}^{5}} \Theta(2\bar{\Lambda}-\omega_{1}-\omega_{2}).$$

$$\psi_{4}(\omega_{1},\omega_{2}) = \frac{5(2\bar{\Lambda}-\omega_{1}-\omega_{2})^{3}}{8\bar{\Lambda}^{5}} \Theta(2\bar{\Lambda}-\omega_{1}-\omega_{2}).$$

 $\psi_4(\omega_1, \omega_2) = \frac{1}{\omega_0^2} e^{-(\omega_1 + \omega_2)/\omega_0}.$

LCDAs of baryons

Proton wave function

V.M.Braun, R.J.Fries, N.Mahnke, E.Stein (2001)

$$(Y_{proton})_{\alpha\beta\gamma}(k_i',\mu) = \frac{1}{2\sqrt{2}N_c} \int \prod_{l=2}^{3} \frac{dz_l^+ d\mathbf{z}_l}{(2\pi)^3} e^{ik_l' \cdot z_l} \epsilon^{ijk} \langle 0|T[u_\alpha^i(0)u_\beta^j(z_2)d_\gamma^k(z_3)]|\mathcal{P}(p')\rangle$$

$$\begin{split} \bar{\Phi}_{proton}^{\alpha\beta\gamma} &\equiv \langle \mathcal{P}(p') | \bar{u}_{\alpha}^{i}(0) \bar{u}_{\beta}^{i}(z_{1}) \bar{d}_{\gamma}^{k}(z_{2}) | 0 \rangle \\ &= \frac{1}{4} \{ S_{1} m_{p} C_{\beta\alpha} (\bar{N}^{+} \gamma_{5})_{\gamma} + S_{2} m_{p} C_{\beta\alpha} (\bar{N}^{-} \gamma_{5})_{\gamma} + P_{1} m_{p} (C \gamma_{5})_{\beta\alpha} \bar{N}_{\gamma}^{+} + P_{2} m_{p} (C \gamma_{5})_{\beta\alpha} \bar{N}_{\gamma}^{-} + V_{1} (C P)_{\beta\alpha} (\bar{N}^{+} \gamma_{5})_{\gamma} \\ &+ V_{2} (C P)_{\beta\alpha} (\bar{N}^{-} \gamma_{5})_{\gamma} + V_{3} \frac{m_{p}}{2} (C \gamma_{\perp})_{\beta\alpha} (\bar{N}^{+} \gamma_{5} \gamma^{\perp})_{\gamma} + V_{4} \frac{m_{p}}{2} (C \gamma_{\perp})_{\beta\alpha} (\bar{N}^{-} \gamma_{5} \gamma^{\perp})_{\gamma} + V_{5} \frac{m_{p}^{2}}{2 P_{z}} (C z)_{\beta\alpha} (\bar{N}^{+} \gamma_{5})_{\gamma} \\ &+ V_{6} \frac{m_{p}^{2}}{2 P_{z}} (C z)_{\beta\alpha} (\bar{N}^{-} \gamma_{5})_{\gamma} + A_{1} (C \gamma_{5} P)_{\beta\alpha} (\bar{N}^{+})_{\gamma} + A_{2} (C \gamma_{5} P)_{\beta\alpha} (\bar{N}^{-})_{\gamma} + A_{3} \frac{m_{p}}{2} (C \gamma_{5} \gamma_{\perp})_{\beta\alpha} (\bar{N}^{+} \gamma^{\perp})_{\gamma} \\ &+ A_{4} \frac{m_{p}}{2} (C \gamma_{5} \gamma_{\perp})_{\beta\alpha} (\bar{N}^{-} \gamma^{\perp})_{\gamma} + A_{5} \frac{m_{p}^{2}}{2 P_{z}} (C \gamma_{5} z)_{\beta\alpha} (\bar{N}^{+})_{\gamma} + A_{6} \frac{m_{p}^{2}}{2 P_{z}} (C \gamma_{5} z)_{\beta\alpha} (\bar{N}^{-})_{\gamma} - T_{1} (iC \sigma_{\perp P})_{\beta\alpha} (\bar{N}^{+} \gamma_{5} \gamma^{\perp})_{\gamma} \\ &- T_{2} (iC \sigma_{\perp P})_{\beta\alpha} (\bar{N}^{-} \gamma_{5} \gamma^{\perp})_{\gamma} - T_{3} \frac{m_{p}}{P_{z}} (iC \sigma_{Pz})_{\beta\alpha} (\bar{N}^{+} \gamma_{5})_{\gamma} - T_{4} \frac{m_{p}}{P_{z}} (iC \sigma_{zP})_{\beta\alpha} (\bar{N}^{-} \gamma_{5})_{\gamma} - T_{5} \frac{m_{p}^{2}}{2 P_{z}} (iC \sigma_{\perp z})_{\beta\alpha} (\bar{N}^{+} \gamma_{5} \gamma^{\perp})_{\gamma} \\ &- T_{6} \frac{m_{p}^{2}}{2 P_{z}} (iC \sigma_{\perp z})_{\beta\alpha} (\bar{N}^{-} \gamma_{5} \gamma^{\perp})_{\gamma} + T_{7} \frac{m_{p}}{2} (C \sigma_{\perp \perp'})_{\beta\alpha} (\bar{N}^{+} \gamma_{5} \sigma^{\perp \perp'})_{\gamma} + T_{8} \frac{m_{p}}{2} (C \sigma_{\perp \perp'})_{\beta\alpha} (\bar{N}^{-} \gamma_{5} \sigma^{\perp \perp'})_{\gamma} \} \end{split}$$

TABLE I: Twist classification of proton distribution am

	twist-3	twist-4	twist-5	twist-6
Vector	V_1	V_2, V_3	V_4, V_5	V_6
Pseudo-Vector	A_1	A_2, A_3	A_4, A_5	A_6
Tensor	T_1	T_2, T_3, T_7	T_4, T_5, T_8	T_6
Scalar		S_{1}	S_2	
Pesudo-Scalar		P_1	P_2	

- **≻** Motivation
- > Framework
- Form factors at $q^2 = 0$
- **≻**Observables
- **>** Summary

Form factors at $q^2 = 0$

Simplified Λ_b wave function + general proton wave function

	Twist-3	Twist-4	Twist-5	Twist-6	Total
f_1	0.0025	0.021	0.043	0.03×10^{-3}	0.067

General Λ_b + general proton

Table 3: Form factor f_1 at $q^2 = 0$.

	twist-3	twist-4	twist-5	twist-6	total
$Exponential\ mod$	el				
twist-2	0.00043	0.00005	0.00045	0.00001	0.0009
$twist-3^{+-}$	0.00007	0.0081	0.0012	0.00022	0.0070
$twist-3^{-+}$	0.00012	0.0063	0.00026	0.00071	0.0073
twist-4	0.019	0.0011	0.10	0.00005	0.12
total	0.019	0.015	0.10	0.00091	$0.13 \pm 0.04 \pm 0.03 \pm 0.03$
Free parton mod	el				
twist-2	0.00060	0.00006	0.00073	0.00002	0.0013
$twist-3^{+-}$	0.00008	0.0080	0.0016	0.0012	0.0082
$twist-3^{-+}$	0.00025	0.0123	0.00035	0.0012	0.0139
twist-4	0.020	0.007	0.13	0.00009	0.15
total	0.020	0.020	0.13	0.0024	$0.17 \pm 0.05 \pm 0.03 \pm 0.03$

Our results agree to PLB 708,119 (Wei Wang, 2012)

	f_1		f_2	g_1	g_2
NRQM [32]	0.043	>	R.Mohanta, A.I	K.Giri, M.P.Khanno	a (2001)
heavy-LCSR [50]	$0.023^{+0.006}_{-0.005}$		Yu-Ming Wang,	, Yue-Long Shen, C	Cai-Dian Lu (2009)
$[light-LCSR-\mathcal{A}][51]$	$0.14^{+0.03}_{-0.03}$		A.Khodjamiriar	n, C.Klein, T.Mann	el, Yu-Ming Wang (2011)
light-LCSR- \mathcal{P} [51]	$0.12^{+0.03}_{-0.04}$				
QCD-light-LCSR [34]	0.018		Ming-Qiu Huan	g, Dao-Wei Wang	(2004)
HQET-light-LCSR [34]	-0.002				
3-point [33]	0.22		Chao-Shang Hu	ang, Cong-Feng C	Qiao, Hua-Gang Yan (1998
Lattice [35]	0.22 ± 0.08		W.Detmold, C.L	ehner, S.Meinel (2	2015)
	$2.2^{+0.8}_{-0.5} \times 10^{-3}$		_	•	zou (2009) & H.H.Shih,
	0.0		S.C.Lee, Hsiang	.	, ,
This work(exponential)	0.13 ± 0.06		y	, (====)	
This work(free parton)	0.17 ± 0.06				

$$\begin{bmatrix} b & & & & u \\ u & & & \ddots & \ddots & u \\ d & & & & \ddots & \ddots & d \end{bmatrix}$$

$$= \int [dx][db] \cdot \phi_{\Lambda_b} \cdot T_H \cdot \phi_p$$

Hard-scattering functions, $r = \frac{m_p}{M_{\Lambda_b}}$, $x_{1,2,3}$: momentum fraction of Λ_b , $x'_{1,2,3}$: momentum fraction of proton

	twist-3	twist-4	twist-5	twist-6
twist-2	$2\sqrt{2}(1-x_2)$	$r \cdot 2\sqrt{2}(1-x_1)x_3$	$r^2 \cdot 2\sqrt{2}x_3$	$r^3 \cdot 4\sqrt{2}(1-x_1)(1-x_2')$
$twist-3^{+-}$	$x_3(1-x_1)$	$r \cdot x_3$	$r^2 \cdot (1-x_1)(1-x_2')$	~ 0
$twist-3^{-+}$	~ 0	$r \cdot x_3$	$r^2 \cdot (1-x_1)(1-x_2')$	$r^3 \cdot (1 - x_2')$
twist-4	$4\sqrt{2}x_3$	$r \cdot 2\sqrt{2}(1-x_1)(1-x_2')$	$r^2 \cdot 2\sqrt{2}(1-x_2')$	~ 0

$$= \int [dx][db] \cdot \phi_{\Lambda_b} \cdot T_H \cdot \phi_p$$

Hard-scattering functions, $r = \frac{m_p}{M_{\Lambda_b}}$, $x_{1,2,3}$: momentum fraction of Λ_b , $x'_{1,2,3}$: momentum fraction of proton

twist-3	twist-4	twist-5	twist-6
twist-2 $2\sqrt{2}(1-x_2)$	$r \cdot 2\sqrt{2}(1-x_1)x_3$	$r^2 \cdot 2\sqrt{2}x_3$	$r^3 \cdot 4\sqrt{2}(1-x_1)(1-x_2')$
twist-3 ⁺⁻ $x_3(1-x_1)$	$r \cdot x_3$	$r^2 \cdot (1-x_1)(1-x_2')$	~ 0
twist-3 ⁻⁺ ~ 0	$r \cdot x_3$	$r^2 \cdot (1-x_1)(1-x_2')$	$r^3 \cdot (1 - x_2')$
twist-4 $\left[4\sqrt{2}x_3\right]$	$r \cdot 2\sqrt{2}(1-x_1)(1-x_2')$	$r^2 \cdot 2\sqrt{2}(1-x_2')$	~ 0

Proton twist-5

$$= \int [dx][db] \cdot \phi_{\Lambda_b} \cdot T_H \cdot \phi_p$$

Hard-scattering functions, $r=\frac{m_p}{M_{\Lambda_b}}$, $x_{1,2,3}$: momentum fraction of Λ_b , $x'_{1,2,3}$: momentum fraction of proton

	twist-3	twist-4	twist-5	twist-6
twist-2 2		$r \cdot 2\sqrt{2}(1-x_1)x_3$	$r^2 \cdot 2\sqrt{2}x_3$	$r^3 \cdot 4\sqrt{2}(1-x_1)(1-x_2')$
twist- 3^{+-} x_3	$\frac{1}{3}(1-x_1)$	$r \cdot x_3$	$r^2 \cdot (1-x_1)(1-x_2')$	~ 0
$twist-3^{-+}$	~ 0	$r \cdot x_3$	$r^2 \cdot (1-x_1)(1-x_2')$	$r^3 \cdot (1 - x_2')$
twist-4	$4\sqrt{2}x_3$	$r \cdot 2\sqrt{2}(1-x_1)(1-x_2')$	$r^2 \cdot 2\sqrt{2}(1-x_2')$	~ 0

- **≻** Motivation
- > Framework
- Form factors at $q^2 = 0$
- **≻**Observables
- **>** Summary

Observables

	$\Lambda_b \to p e \bar{\nu}_e$	$\Lambda_b o p \mu ar{ u}_\mu$	$\Lambda_b o p au ar{ u}_ au$
This work(exponential)	$3.77^{+1.47}_{-1.06} \times 10^{-4}$	$3.77^{+1.47}_{-1.07} \times 10^{-4}$	$2.73^{+1.14}_{-0.85} \times 10^{-4}$
This work(free parton)	$4.89^{+2.07}_{-1.50} \times 10^{-4}$	$4.90^{+2.06}_{-1.52} \times 10^{-4}$	$3.78^{+1.67}_{-1.20} \times 10^{-4}$
LHCb [60]		$4.1 \pm 1.0 \times 10^{-4}$	

$$\Lambda_b \to p\pi^- (\text{exponential})$$
 $2.75^{+3.22}_{-2.0} \times 10^{-6}$ $\Lambda_b \to p\pi^- (\text{free parton})$ $4.26^{+4.07}_{-2.67} \times 10^{-6}$ $\Lambda_b \to p\pi^- (\text{LHCb})$ [45] $4.5 \pm 0.8 \times 10^{-6}$

- **≻** Motivation
- > Framework
- Form factors at $q^2 = 0$
- **≻**Observables
- **≻**Summary

Summary

- > The PQCD approach can be used to calculate baryonic decay.
- \triangleright Contributions from high twist LCDAs are dominant in $\Lambda_b \to p$ form factors.
- More researches of high-twist LCDAs of baryons are urgently needed
- Form factors in this work are consistent with that from other approaches.

Outlook:

- ightharpoonup CPV in b-baryon two-body decay $\Lambda_b \to p\pi$, pK
- > Including TMD LCDAs
- Improve PQCD Framework in baryonic decays