





#### **Recent XYZ results at BESIII**

#### Pei-Rong Li (李培荣) (Lanzhou University) On behalf of the BESIII Collaboration

2021.11.12

### Conventional and exotic Hadrons



Lots of states with heavy quarks are observed since 2003 when X(3872) was discovered.

### **BESIII data Samples for XYZ study**



- BESIII can directly generate  $Y(1^{-})$  states by  $e^+e^-$  annihilation.
- Study X and Z by radiative decay or hadronic transition from Y.
- BESIII accumulate ~23fb<sup>-1</sup>  $e^+e^-$  collision data events from 3.8-4.92GeV.
- Data sample taken above 4.6GeV has been finished in 2020=>make Y(4660) study accessible.
- Search for more XYZ states, study their properties and new decays modes.
- Look for transitions between different states.

X(3872)

- $B^{\pm} \rightarrow K^{\pm}X(3872) \rightarrow K^{\pm}\pi^{+}\pi^{-}J/\psi$ 
  - first evidence from Belle: PRL 91, 262001 (2003)
  - confirmed by CDF and D0 PRL 93, 072001 (2004); PRL 93, 162002 (2004)
- X(3872)
  - mass:
    - $M = (3871.65 \pm 0.06)$  MeV PDG2020, dominated by JHEP08, 123 (2020) [LHCb]
    - very close to  $D^0 \overline{D}^{*0}$  mass threshold [(3871.69  $\pm$  0.01) MeV]
  - width:
    - $\Gamma_{BW} = (1.19 \pm 0.21) \text{ MeV}$  PRD 102, 092005 (2020)
  - J<sup>PC</sup>: 1<sup>++</sup> PRL 110, 222001 (2013)
  - produced in:
    - *B* decays,  $B_s$  decays,  $\Lambda_b$  decays,  $p\overline{p}$  collision, pp collision, PbPb collision,  $e^+e^-$  radiative transition,  $\gamma\gamma^*$  processes
  - decay modes:
    - $D^0\overline{D}^{*0}$ ,  $\pi^+\pi^- J/\psi$ ,  $\pi^+\pi^-\pi^0 J/\psi$ ,  $\pi^0\chi_{cJ}$ ,  $\gamma J/\psi$ ,  $\gamma \psi(2S)$ [?]

Explanations of the nature

- Bound molecule of D<sup>0</sup> and anti-D<sup>0\*</sup>
- Tetra-quark binding a diquark and a di-antiquark
- Hybrid of charmonium and molecule





#### Production of X(3872) at BESIII

#### PRL 122, 232002 (2019)





| Production                               | experiments             |
|------------------------------------------|-------------------------|
| B decays                                 | BaBar, Belle, CMS, LHCb |
| B <sub>s</sub> decays                    | CMS, LHCb               |
| $\Lambda_{\rm b}$ decays                 | LHCb                    |
| pp collision                             | CDF, D0                 |
| pp collision                             | ATLAS, CMS, LHCb        |
| PbPb collision                           | CMS                     |
| e <sup>+</sup> e <sup>-</sup> → γX(3872) | BESIII                  |
| γγ <b>* →</b> X(3872)                    | Belle                   |

- $e^+e^- \rightarrow \gamma X(3872)$  is the only observed way to produce X(3872) at BESIII so far.
- Cross section Line shape is measured.
- X(3872) at BESIII: low background, low production.

#### Decay of X(3872)



#### Radiative transition of $X(3872) \rightarrow \gamma J/\psi, \gamma \psi(2S)$

PRL124.242001(2020)



- Study the process of  $X(3872) \rightarrow \gamma J/\psi$ ,  $\gamma \psi(2S)$  with data sample between 4.178 and 4.278GeV.
- Find the evidence of  $X(3872) \rightarrow \gamma J/\psi$  with 3.5 $\sigma$ .
- No evident signal for  $X(3872) \rightarrow \gamma \psi(2S)$  decay at BESIII.

- R= $\frac{\mathcal{B}(X (3872) \rightarrow \gamma \psi(2S))}{\mathcal{B}(X (3872) \rightarrow \gamma J/\psi)}$ <0.59 at 90% C.L. [A puzzle for X(3872) decay]
  - Agree with Belle measurements <2.1. PRL107.09803
  - In tension with the LHCb measurement[2.46±0.64±0.29,NPB 886.665] and BaBar results [3.4±1.4, PRL102,132001].
- Not likely conventional charmonium(1.2~15), but rather a molecule(3~4)\*10<sup>-3</sup> or a molecule-charmonium mixture(0.5~5).

#### Study of $X(3872) \rightarrow D^0 \overline{D}^{*0}$ and $\gamma D^+ D^-$

PRL124.242001(2020)



- BESIII observed  $X(3872) \rightarrow D^{*0}\overline{D}^0$  with statistical significances of 7.4 $\sigma$ .
- No evident signal for  $\gamma D^+ D^- / \gamma D^0 \overline{D}^0$ .
- BF ratio relative to  $\pi^+\pi^- J/\psi$  is measured.

#### The Y states

# Measurements of more final states for the Y and $\psi$ states







# The Y states

- The Y states discovered via initial states radiation(ISR) in  $e^+e^-$  annihilation have  $J^{PC} = 1^{--}$
- Direct e<sup>+</sup>e<sup>-</sup> annihilation experiment BESIII can measure cross section with higher precision at different energy points.





#### • Improved knowledges from BESIII





• While not seen yet in B deca

 $B^{\pm,0} \to K^{\pm,0} \pi^+ \pi^- J/\psi$ 



# Y(4220)









#### Y(4220) appeared in above processes. Mass:4220MeV, Width~60 MeV!



- Y(4260) has been discovered by BaBar experiment in the mass spectrum  $m(\pi^+\pi^- J/\psi)$  and confirmed by Belle.
- BESIII measured the cross section of different processes.
- The mass and width of Y(4220) and Y(4360) from the different processes are measured.
- Two resonances describe the data with high significance than the fit with single peak.
- The intrinsic scenario for the difference on width is still unknown.
- Strategy: Search in many possible decay channels.

# Cross section of $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$ and $e^+e^- \rightarrow \pi^0 Z_c(3900)^0$ , $Z_c(3900)^0 \rightarrow \pi^0 J/\psi$



- Cross section of  $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$  is measured with 12.4fb<sup>-1</sup> dataset between 3.808 to 4.6 GeV.
- Confirms the existence of the charmonium-like state Y(4220).
- Mass and width of Y(4320) are fixed at the reported value in PRL118.092001(2017).
- Mass and width of Y(4220) is consistent with  $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ .
  - $M(Y(4220)) = (4220.4 \pm 2.4 \pm 2.3) \text{ MeV/c}^2$ ,
  - $\Gamma(Y(4220)) = (46.2 \pm 4.7 \pm 2.1)$  MeV.
- Strong correlation between the production of the Y(4220) and  $Z_c(3900)$ .

#### **Cross section of** $e^+e^- \rightarrow \eta J/\psi$



• The decays of the Y(4220) and Y(4360) into  $\eta J/\psi$  final states are observed first time.

• No significant structure in  $\eta \psi(2S) =>$  more data expected.

 $e^+e^- \rightarrow \eta_c \pi^+\pi^-\pi^0$ 



The Born cross section is fitted with a Breit-Wigner function, shown as blue line in the plot.

- Using data taken at center-of-mass energies  $\sqrt{s}$  from 4.18 to 4.6GeV.
- Significant  $e^+e^- \rightarrow \eta_c \pi^+\pi^-\pi^0$ production at  $\sqrt{s}$ =4.23GeV and 4.26GeV(>3.0 $\sigma$ ), and larger than 5.0 $\sigma$  summing up different  $\sqrt{s}$ points.
- Observe a significant energydependent Born cross section measured to be consistent with the production via the intermediate Y(4260) resonance.

# Y(4630) ? Y(4660)



Taken from Prof. Yuan's Slides

#### Recent BESIII measurement

arXiv:2107.09210





- BESIII data confirmed Belle&BaBar's results with much higher precision.
- BESIII will provide more precise  $e^+e^- \rightarrow \Lambda_c^+\Lambda_c^-$  cross section results using the data from threshold to 4.95 GeV.
  - Considering the cross section results of  $e^+e^- \rightarrow D_s D_{s1}$ ,  $D_s D_{s2}$ , tension between open charm and charmonium modes are noticed.

# The $Z_{c(s)}$ states

#### Charmonium-like states **carrying** electric charge; must contain at least $c\bar{c}$ and a light $q\bar{q}$ pair



# $Z_c$ states from $e^+e^-$ annihilation



- Zc states observed at BESIII.
- Both in charged and neutral modes .
- Searching for more Zc/Zcs structures are important to identify their nature. <sub>18</sub>

#### Search for $Z_c$ in $e^+e^- \rightarrow \chi_{cl}\pi^+\pi^-$

- ✓ Belle reported the results of  $Z_c(4050)^+$  and  $Z_c(4025)^+$  in  $\overline{B}^0 \to K^- Z_c^+, Z_c^+ \to \pi^+ \chi_{cJ}$ [PRD 78, 072004(2008)], while BaBar did not confirm them.
- ✓ BESIII studies  $e^+e^- \rightarrow \pi^+\pi^-\chi_{cJ}, \chi_{cJ} \rightarrow \gamma J/\psi(l^+l^-)$  from 4.178 GeV to 4.600 GeV
- None of the process are observed and upper limits of the production cross sections are determined.
- $\checkmark$  Hence, they can be the upper limits of the product cross sections of



$$e^+e^- \rightarrow \pi^- Z_c(4050)^+ + c.c., Z_c(4050)^+ \rightarrow \pi^+ \chi_{cJ}$$

PRD 103, 052010 (2021)

#### Search for $Z_c$ state in $e^+e^- \rightarrow \eta_c \pi^+\pi^-\pi^0$

- ✓ LHCb reported an evidence of  $Z_c(4100)^+ \to \pi^+ \eta_c$  in  $\overline{B}^0 \to K^- Z_c(4100)^+$  with  $3\sigma$ . with  $M = 4096 \pm 20^{+18}_{-22}$  MeV/c<sup>2</sup>,  $\Gamma = 152 \pm 58^{+60}_{-35}$  MeV and J<sup>P</sup> = 0<sup>+</sup>/1<sup>-</sup>. [EPJC 78, 1019 (2018)]
- ✓ Studies of  $e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta_c$ ,  $\pi^+\pi^-\eta_c$ ,  $\gamma\pi^0\eta_c$  at 6 energy points from 4.178 GeV to 4.600 GeV.  $\eta_c$  is reconstructed in 16 decay modes.
- ✓ Only evidence of  $e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta_c$  @ 4.226 GeV (4.1 $\sigma$ ).
- ✓ Different mass and width assumptions in the vicinity of  $D\overline{D}$  mass are tested for  $Z_c^+ \to \pi^+ \eta_c$ and  $Z_c^0 \to \pi^0 \eta_c$  in  $e^+e^- \to \pi^+ \pi^- \pi^0 \eta_c$  @ 4.226 GeV and found to be not significant.



#### Observation of $Z_{cs}(3985)^{-}$



- $3.7 \text{fb}^{-1}$  data between 4.62 and 4.7 GeV.
- Partial reconstruction of the process, tag  $K^+$  and  $D_s^-$ .
- Study the mass spectrum of **recoil mass of K^+**.







### Observation of $Z_{cs}(3985)^-$



- A structure next to threshold raging from 3.96 to 4.02GeV/c<sup>2</sup>.
- The enhancement cannot be attributed to the non-resonant (NR) signal process  $e^+e^- \rightarrow K^+(D_s^-D^{*0} + D_s^{*-}D^0).$
- Cannot be described by any processes involved excited D\*(s) and even the interference between any two open-charm processes.

## Observation of $Z_{cs}(3985)^{-}$



- The J<sup>P</sup> of  $Z_{cs}(3985)^-$  is assumed as  $1^+$ ; =>(S,S) is the most promising configuration.
- Simultaneous unbinned maximum likelihood fit to five data samples.
  - $Z_{cs}(3985)^{-}$  signal shape: S-wave Breit-Wigner with mass dependent width with phase-space factor.

$$\mathcal{F}_j(M) \propto \left| \frac{\sqrt{q \cdot p_j}}{M^2 - m_0^2 + im_0(f\Gamma_1(M) + (1-f)\Gamma_2(M))} \right|^2$$

$$\Gamma_j(M) = \Gamma_0 \cdot \frac{p_j}{p_j^*} \cdot \frac{m_0}{M}$$

$$\begin{split} m_0(Z_{cs}(3985)^-) &= 3985.2^{+2.1}_{-2.0}(stat.) \pm 1.7(sys.) \ \mathrm{MeV/c^2} \\ \Gamma_0(Z_{cs}(3985)^-) &= 13.8^{+8.1}_{-5.2}(stat.) \pm 4.9(sys.) \ \mathrm{MeV}. \end{split}$$

- The significance with systematic uncertainties and lookelsewhere effect considered is evaluated to  $5.3\sigma$ .
- At least four quark state ( $c\overline{c}s\overline{u}$ ).
- Only a few MeV higher than the threshold of  $D_s^- D^{*0}/D_s^{*-} D^0$  (3975.2/3977.0)MeV.

## $Z_{cs}(3985)^{-}$ and $Z_{cs}(4000)^{-}$



$$\begin{split} m_0(Z_{cs}(3985)^-) &= 3985.2^{+2.1}_{-2.0}(stat.) \pm 1.7(sys.) \ MeV/c^2 \\ \Gamma_0(Z_{cs}(3985)^-) &= 13.8^{+8.1}_{-5.2}(stat.) \pm 4.9(sys.) \ MeV. \end{split}$$

$$\begin{split} m_0(Z_{cs}(4000)^-) &= 4003 \pm 6(stat.)^{+4}_{-14} (sys.) \text{ MeV/c}^2 \\ \Gamma_0(Z_{cs}(4000)^-) &= 131 \pm 15(stat.) \pm 26(sys.) \text{MeV}. \end{split}$$

- Could Z<sub>cs</sub>(3985)<sup>-</sup> and Z<sub>cs</sub>(4000)<sup>-</sup> are the same state? =>Mass consistent within 1σ while width differs significantly.
- A tetraquark state or a molecule-like? Or threshold kinematic effects ? Or other scenario?
- Study  $D_s^- D^{*0}/D_s^{*-} D^0/K^+ J/\psi$  system from *B* decay in  $e^+e^-$  annihilation are needed. =>No clear structure from Belle study in  $e^+e^- \rightarrow K^+K^- J/\psi$ PRD89, 072015 (2014).
- BESIII will release  $K^+K^-J/\psi$  result with same data sample.

#### Summary

- Lots of progress in the study charmonium like states at BESIII.
- Unique data samples from 4.0 to 4.9GeV at BESIII provide good opportunity to study XYZ.
- New decay modes observed for X(3872).
- More final states for the Y and  $\psi$  study are measured.
- $Z_{cs}(3985)^-$  was observed in  $e^+e^- \rightarrow K^+(D_s^-D^{*0} + D_s^{*-}D^0)$ . • Strangeness-partner of  $Z_c(3900)$ ?
- More analysis results on XYZ are in progress.

### **Thanks for your attention!**

# Beijing Electron and Positron Collider(BEPCII)

Beam Energy: 1~2.3 GeV(upgrade 2.45 GeV)

Crossing angle: ±11 mrad

Design luminosity:  $10^{33}$  cm<sup>-2</sup>s<sup>-1</sup> at  $\sqrt{s} = 3.78$ GeV(achieved in 2016)





#### **The BESIII Detector**

<u>NIM A614, 345 (2010)</u>



The new BESIII detector is hermetic for neutral and charged particle with excellent resolution, PID, and large coverage.



Taken from Prof. Yuan's Slides