

Charm Physics at LHCb

Liang Sun Wuhan University

HFCPV 2021

Nov. 12 2021, Guangzhou (Virtual), China

Outline

- Recent LHCb results on charm CPV:
 - Mixing and time-dependent CPV in $D^0 o K_S^0 \pi^+ \pi^-$ (06.2021)
 - Time-dependent CPV in $D^0 o K^+K^-$, $\pi^+\pi^-$ (05.2021)
 - Time-integrated CPV in $D^0 o K^0_S K^0_S$ (05.2021)
 - Time-integrated CPV in $D_{(s)}^+ o h^+\pi^0$ and $D_{(s)}^+ o h^+\eta$ (03.2021)
 - Time-integrated CPV in $\Xi_c^+ o pK^-\pi^+$ (06.2020)
- Recent results on rare charm decays:
 - Search for 25 decays of $D_{(s)}^+ o h^\pm \ell^+ \ell^{(\prime)\mp}$ (10.2020)
 - CPV and angular analysis in $D^0 o hh\mu^+\mu^-$ (11.2021)
- Run3 and beyond
- Summary and discussions

CP violation in charm

- Only way to probe CP violation in uptype quark
- Complementary to K and B mesons with observed CPV
- Difficult to calculate SM predictions, but small (10⁻³ – 10⁻⁴) CP asymmetry is expected → hints of NP if higher values are observed
- CPV in charm sector eventually observed in 2019

PRL 122 (2019) 211803

$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$

- Observation of CP violation with **5.3σ** significance!

Unitarity triangle for charm

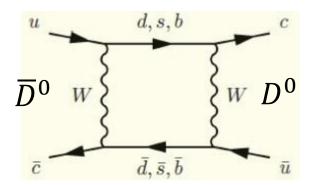
$$V_{ud}V_{cd}^* + V_{us}V_{cs}^* + V_{ub}V_{cb}^* = 0$$

$$\sim \lambda \qquad \sim \lambda \qquad \sim \lambda^5$$

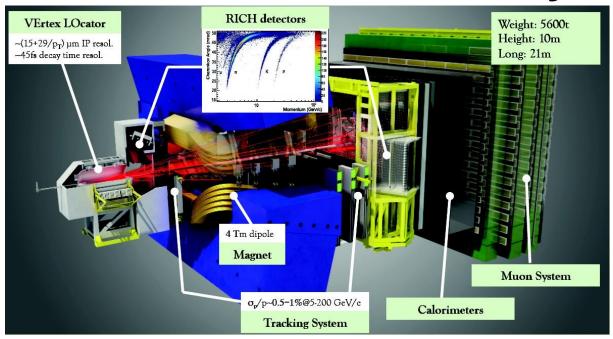
$$\lambda = \sin(\theta_c) \sim 0.23$$

Expected CPV very small in charm

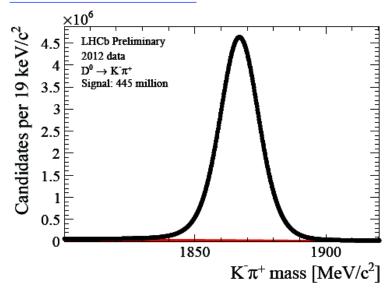
- Effectively 2-generation system
- Third generation and CPV enter through loops


Mixing and CPV in $D^0 - \overline{D}^0$

- Charm mixing a well established fact
 - Mass eigenstates are related to their flavor eigenstates via $|D_{12}\rangle \equiv p|D^0\rangle \pm q|D^0\rangle$, with $|q|^2 + |p|^2 \equiv 1$
 - Mixing parameters based on the mass and width differences:


$$x \equiv (m_2 - m_1)/\Gamma$$
, $y \equiv (\Gamma_2 - \Gamma_1)/2\Gamma$, with $\Gamma \equiv (\Gamma_2 + \Gamma_1)/2$

- CP violation contributions
 - In decays, amplitudes for a process and its conjugate differ Direct CP violation $\left| \frac{\overline{A}_f}{A_f} \right|^{\pm 2} \approx 1 \pm A_d \rightarrow a_{CP}^{dir} \approx -\frac{1}{2} A_d$
 - In mixing: rates of $D^0 \to \overline{D}{}^0$ and $\overline{D}{}^0 \to D^0$ differ Indirect CP violation $\left| \frac{q}{p} \right|^{\pm 2} \approx 1 \pm A_m \implies a_{CP}^{ind} = -\frac{A_m}{2} y \cos \phi + x \sin \phi$ ϕ : weak phase, A_m : CPV from mixing

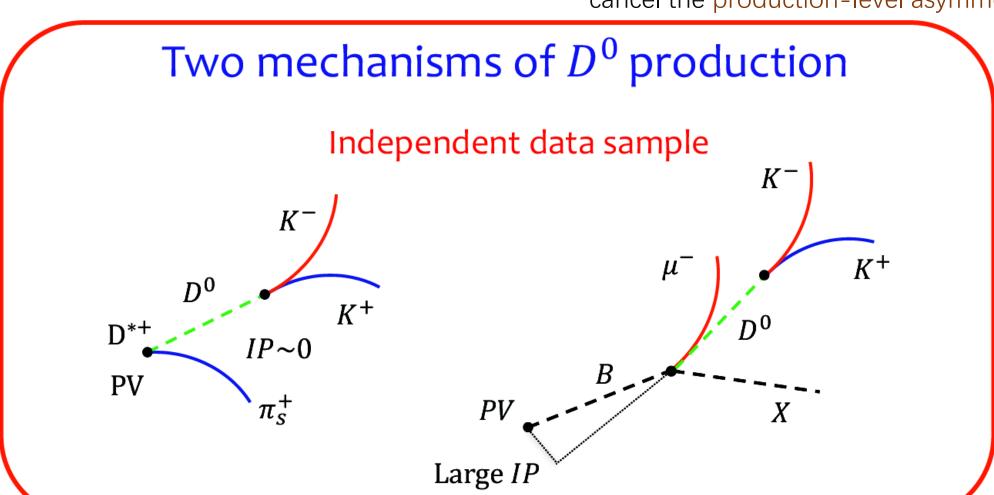

In interference between mixing and decays diagrams

LHCb as a Charm factory

LHCb-CONF-2016-005

- LHCb acceptance: $2 < \eta < 5$ (forward region)
- Large $c\bar{c}$ production cross-section

[JHEP 03 (2016) 159]


$$\sigma(pp \rightarrow c\bar{c}) = (2369 \pm 3 \pm 152 \pm 118) \mu b @ 13 TeV$$

- More than 1 billion $D^0 \rightarrow K^-\pi^+$ collected by LHCb between 2011 and 2018
- Run2: Turbo stream from online reconstruction

D⁰ production at LHCb

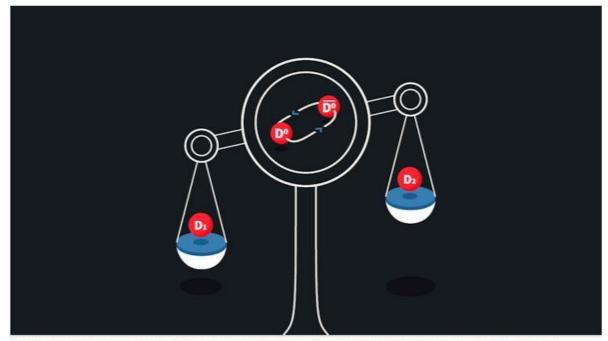
$$egin{align} \mathcal{A}^{raw} &\equiv rac{N_{D^0} - N_{ar{D}^0}}{N_{D^0} + N_{ar{D}^0}} \ \mathcal{A}^{raw} &pprox \mathcal{A}^{CP} + \widehat{\mathcal{A}}^{prod} + \mathcal{A}^{det} \ \end{pmatrix}$$

NB: For A_{CP} in D^0 , control channel needed to cancel the production-level asymmetry $\mathcal{O}(1\%)$

D⁰ flavor tagging at LHCb

$$egin{align} \mathcal{A}^{raw} &\equiv rac{N_{D^0} - N_{ar{D}^0}}{N_{D^0} + N_{ar{D}^0}} \ \mathcal{A}^{raw} &pprox \mathcal{A}^{CP} + \mathcal{A}^{prod} + \widehat{\mathcal{A}^{det}} \ \end{pmatrix}$$

NB: For A_{CP} in D^0 , control channel needed to cancel the tagging asymmetry $\mathcal{O}(1\%)$

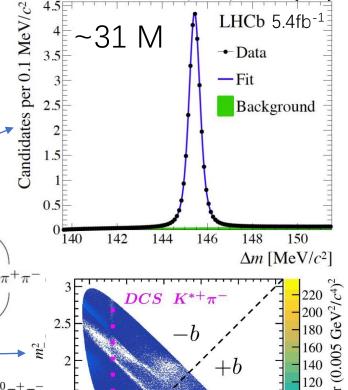

Experimentally we can tag D^0 flavour at production by means of the charge of the muon and the soft pion D^{*+} $IP\sim0$ PV PVLarge IP

$D^0 - \overline{D}{}^0$ oscillation in $D^0 \to K_S^0 \pi^+ \pi^-$

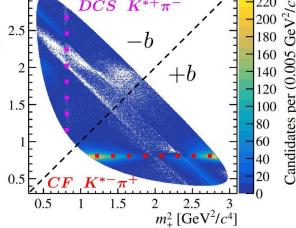
LHCb measures tiny mass difference between particles

The result is a milestone in the study of how a particle known as a D0 meson changes from matter into antimatter and back

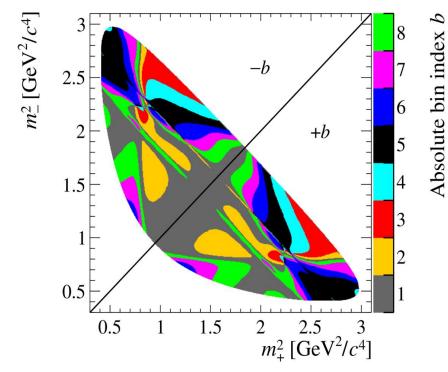
8 JUNE, 2021 | By Ana Lopes



The LHCb collaboration has measured the tiny mass difference between the D1 and D2 mesons, which are a manifestation of the quantum superposition of the D0 particle and its antiparticle. This mass difference controls the speed of the D0 oscillation into its antiparticle and back. (Image: CERN)

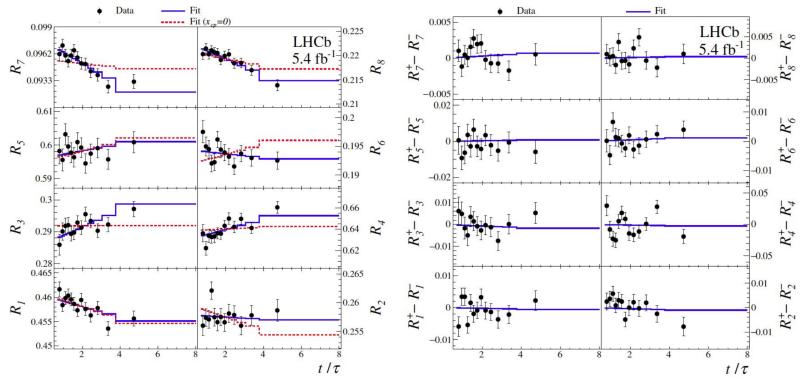

$D^0 - \overline{D}{}^0$ oscillation in $D^0 \to K_S^0 \pi^+ \pi^-$

$$\left|D_{1,2}\right\rangle = p\left|D^{0}\right\rangle \pm q\left|\overline{D^{0}}\right\rangle \quad \text{ x} \equiv \frac{m_{1}-m_{2}}{\Gamma} \text{; y} \equiv \frac{\Gamma_{1}-\Gamma_{2}}{2\Gamma}$$


- x determines the oscillation rate
 - Very tiny for D^0 , but x and CPV can be enhanced by NP
 - CPV can occur in the mixing \rightarrow oscillation rates differ for D^0 and \overline{D}^0
- Run2 π -tagged dataset
- Self-conjugate $D^0 \to K_S^0 \pi^+ \pi^-$ has rich resonance structure
- Model-independent approach (binflip method) [PRD 99 (2019) 012007]
 - To avoid modeling of efficiency variation

DCS

Model-independent bin-flip method


- Use strong-phase info c_b , s_b from CLEO-c and BESIII [PRD 101 (2020) 112002]
- Bin Dalitz-plot into $\pm b$ about $m_+^2=m_+^2$ with almost constant $\Delta\delta(m_-^2,m_+^2)$
- Measure ratio of signal in -b and +b in D^0 decay time bin j (13 in total)

 R^{\pm} changes with time \Rightarrow Mixing $R^{+} \neq R^{-} \Rightarrow$ Indirect CPV

$$R_{bj}^{\pm} = \frac{r_b \left[1 + \frac{1}{4} t_j^2 Re(z_{CP}^2 - \Delta z^2) \right] + \frac{1}{4} t_j^2 |z_{CP} \pm \Delta z|^2 + \sqrt{r_b} t_j Re\left[\mathbf{X}_{\mathbf{b}}^* (z_{CP} \pm \Delta z) \right]}{\left[1 + \frac{1}{4} t_i^2 Re(z_{CP}^2 - \Delta z^2) \right] + r_b \frac{1}{4} t_i^2 |z_{CP} \pm \Delta z|^2 + \sqrt{r_b} t_j Re\left[\mathbf{X}_{\mathbf{b}}^* (z_{CP} \pm \Delta z) \right]},$$

where $z_{CP} \pm \Delta z = -(\frac{q}{p})^{\pm}(y+ix)$ and r_b is ratio without mixing $\mathbf{X_b} = \mathbf{c_b} - \mathbf{is_b}$

$D^0 \to K_S^0 \pi^+ \pi^-$ bin-flip results

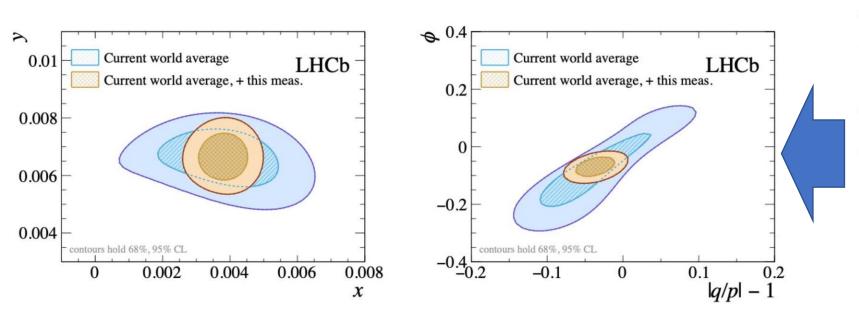
Uncertainties statistically dominated!

$$x_{CP} = (3.97 \pm 0.46 \pm 0.29) \times 10^{-3}$$

 $y_{CP} = (4.59 \pm 1.20 \pm 0.85) \times 10^{-3}$
 $\Delta x = (-0.27 \pm 0.18 \pm 0.01) \times 10^{-3}$
 $\Delta y = (0.20 \pm 0.36 \pm 0.13) \times 10^{-3}$

$$x = (3.98^{+0.56}_{-0.54}) \times 10^{-3},$$

$$y = (4.6^{+1.5}_{-1.4}) \times 10^{-3},$$


$$|q/p| = 0.996 \pm 0.052,$$

$$\phi = 0.056^{+0.047}_{-0.051}.$$

$$R_{bj}^{\pm} = \frac{r_b \left[1 + \frac{1}{4} t_j^2 Re(z_{CP}^2 - \Delta z^2) \right] + \frac{1}{4} t_j^2 |z_{CP} \pm \Delta z|^2 + \sqrt{r_b} t_j Re\left[\mathbf{X}_{\mathbf{b}}^* (z_{CP} \pm \Delta z) \right]}{\left[1 + \frac{1}{4} t_j^2 Re(z_{CP}^2 - \Delta z^2) \right] + r_b \frac{1}{4} t_j^2 |z_{CP} \pm \Delta z|^2 + \sqrt{r_b} t_j Re\left[\mathbf{X}_{\mathbf{b}}^* (z_{CP} \pm \Delta z) \right]},$$

where $z_{CP} \pm \Delta z = -(\frac{q}{p})^{\pm}(y+ix)$ and r_b is ratio without mixing $\mathbf{X_b} = \mathbf{c_b} - \mathbf{is_b}$

$D^0 \to K_S^0 \pi^+ \pi^-$ bin-flip results

World Averages significantly improved!

$$x_{CP} = (3.97 \pm 0.46 \pm 0.29) \times 10^{-3}$$

$$y_{CP} = (4.59 \pm 1.20 \pm 0.85) \times 10^{-3}$$

$$\Delta x = (-0.27 \pm 0.18 \pm 0.01) \times 10^{-3}$$

$$\Delta y = (0.20 \pm 0.36 \pm 0.13) \times 10^{-3}$$

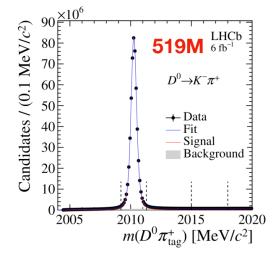
$$x = (3.98^{+0.56}_{-0.54}) \times 10^{-3},$$

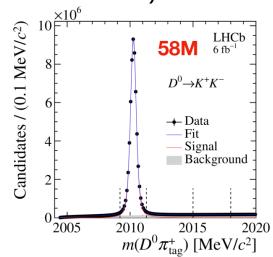
$$y = (4.6^{+1.5}_{-1.4}) \times 10^{-3},$$

$$|q/p| = 0.996 \pm 0.052,$$

$$\phi = 0.056^{+0.047}_{-0.051}.$$

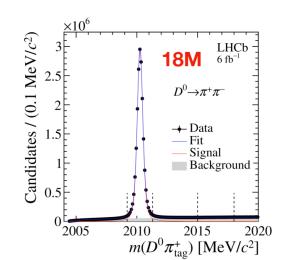
First observation of non-zero x (>7 σ)

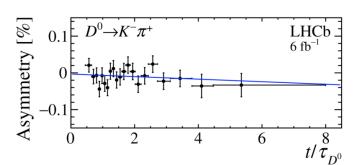

Time-dependent CPV in SCS $D^0 \rightarrow h^+h^-$


• A_{CP} of SCS as one of the most sensitive CPV test:

$$A_{CP}(f,t) \equiv \frac{\Gamma(D^0 \to f,t) - \Gamma(\bar{D}^0 \to f,t)}{\Gamma(D^0 \to f,t) + \Gamma(\bar{D}^0 \to f,t)} \approx a_f^d + \frac{\Delta Y_f}{\tau_{D^0}}$$

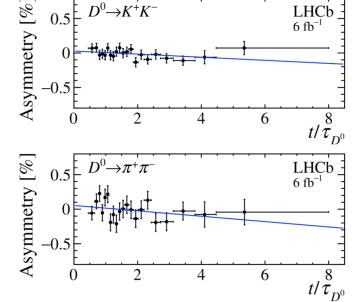
$$\Delta Y_f \approx -A_\Gamma \approx x \phi_{\lambda_f} - y(\left|\frac{q}{p}\right| - 1)$$


- SM expectation for $f = K^+K^-, \pi^+\pi^-$: $\Delta Y_f \sim \mathcal{O}(10^{-5} 10^{-4})$
- Run2 π -tagged dataset
- Binned ML mass fits in 21 bins of decay time


Kagan & Silvestrini, PRD 103 (2021) 053008 Li & Umeeda, PLB 810 (2020) 135802

DO CP-eigen. K+K-, n+n-

Time-dependent CPV in SCS $D^0 \rightarrow h^+h^-$


Control channel:

$$\Delta Y_K - \pi + = (-0.4 \pm 0.5 \pm 0.2) \times 10^{-4}$$

Compatible with being zero

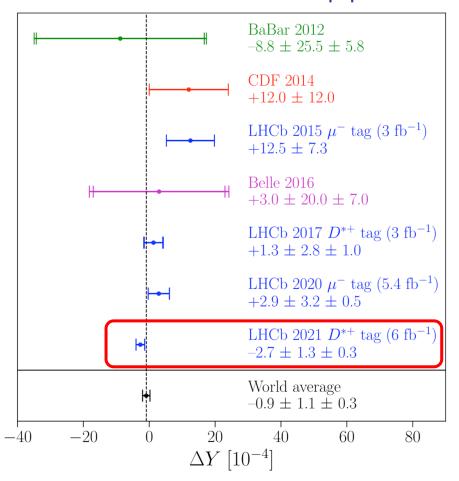
Signal channels:

$$A_{raw}(t) \approx a_f^d + \Delta Y_f \frac{t}{\tau_{D^0}} + A_D^{\pi_s^+}(t) + A_P^{D^{*+}}(t)$$

 $\Delta Y_K + K = (-2.3 \pm 1.5 \pm 0.3) \times 10^{-4}$

Mutually compatible

$$\Delta Y_{\pi} + \pi - = (-4.0 \pm 2.8 \pm 0.4) \times 10^{-4}$$

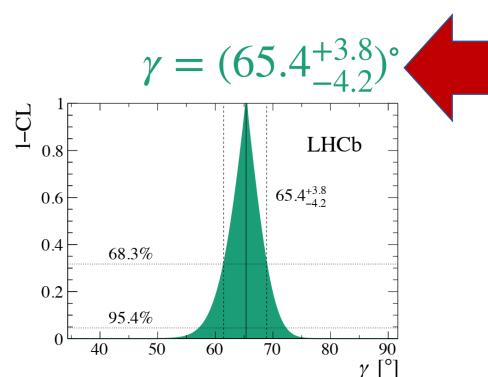

- Time-dependent detector/production effects are corrected for \rightarrow will slightly dilute ΔY_f
- Linear fits to extract ΔY_f as slope parameters
- Statistically dominated uncertainty

 $\Delta Y_{comb} = (-2.7 \pm 1.3 \pm 0.3) \times 10^{-4}$

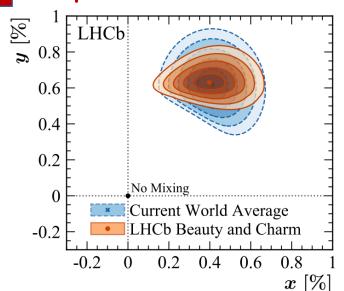
Neglecting final-state dependent contributions

Time-dependent CPV in SCS $D^0 \rightarrow h^+h^-$

$$\Delta Y_f \approx -A_{\Gamma} \approx x \phi_{\lambda_f} - y(\left|\frac{q}{p}\right| - 1)$$



- Time-dependent detector/production effects are corrected for \rightarrow will slightly dilute ΔY_f
- Linear fits to extract ΔY_f as slope parameters
- Statistically dominated uncertainty


 $\Delta Y_{comb} = (-2.7 \pm 1.3 \pm 0.3) \times 10^{-4}$

Neglecting final-state dependent contributions

LHCb \(\gamma\)+charm combination

Most precise determination from a <u>single</u> experiment

$$x_D = (4.00^{+0.52}_{-0.53}) \times 10^{-3}$$

$$y_D = (6.30^{+0.33}_{-0.30}) \times 10^{-3}$$

$$\delta_D^{K\pi} = (190.0^{+4.2}_{-4.1})^{\circ}$$

$$r_D^{K\pi} = (58.67 \pm 0.15) \times 10^{-3}$$

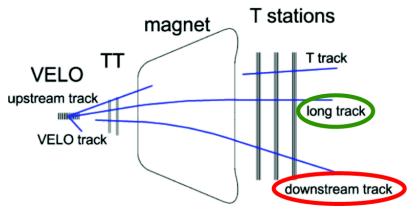
- Inclusion of most recent LHCb beauty & charm measurements
- Auxiliary inputs from experiments near charm threshold including BESIII

Also mentioned in Wenbin's talk yesterday

A_{CP} in $D^0 \rightarrow K_S^0 K_S^0$

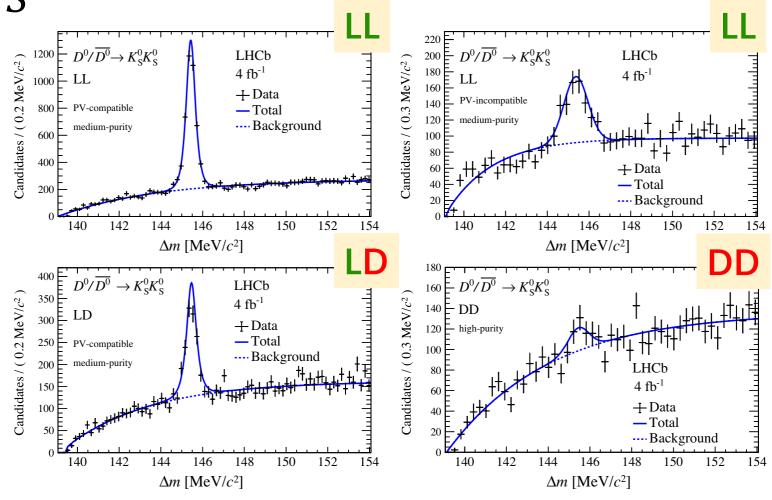
- Contributions of penguin annihilation diagrams, CPV could be greatly enhanced ($\mathcal{O}(1\%)$) [PRD 92 (2015) 054036]
- Run2 data, π -tagged + μ -tagged
- Raw asymmetry:

$$A_{\text{raw}}(K_{s}^{0}K_{s}^{0}) = A_{CP}(K_{s}^{0}K_{s}^{0}) + A_{P}(D^{*+}) + A_{\text{tag}}(\pi^{+})$$


• Control channel $D^0 \to K^+K^-$ to remove production & tagging asymmetries:

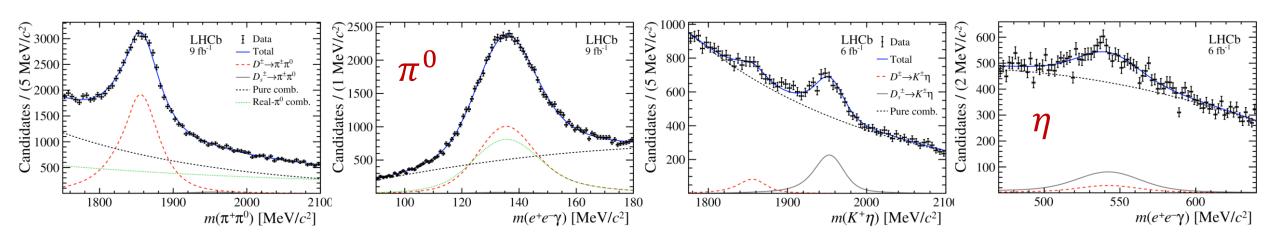
$$\Delta A_{CP} = A_{\text{raw}}(K_{s}^{0}K_{s}^{0}) - A_{\text{raw}}(K^{+}K^{-})$$
$$= A_{CP}(K_{s}^{0}K_{s}^{0}) - A_{CP}(K^{+}K^{-})$$

 $A_{CP}(K^+K^-) = (0.04 \pm 0.12 \pm 0.10)\%$ measured by LHCb PLB 767 (2017) 177


A_{CP} in $D^0 \to K_S^0 K_S^0$

K_s^0 reconstruction types

$$\mathcal{A}^{CP}(D^0 \to K_{\rm S}^0 K_{\rm S}^0) = (-3.1 \pm 1.2 \pm 0.4 \pm 0.2)\%$$


compatible with no CP asymmetry at the level of 2.4 standard deviations.

Separation of data also based on compatibility with originating in the Interaction Point or not

$$A_{CP}$$
 in $D_{(s)}^+ \to h^+ \pi^0$ and $D_{(s)}^+ \to h^+ \eta$

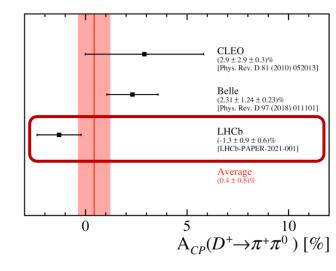
- SCS decays w/ loop: $D^+ \to \pi^+ \eta$, $D_s^+ \to K^+(\pi^0, \eta)$ (A_{CP} ~10⁻⁴ 10⁻³) and w/o loop: $D^+ \to \pi^+ \pi^0$ (no CPV in SM!)
- Neutral hadrons difficult in hadron colliders, reco'ed via $e^+e^-\gamma$
- Runs 1+2 for π^0 modes and only Run2 for η modes
- Nuisances asymmetries removed using $D_{(s)}^+ \to K_S^0 h^+$

A_{CP} in $D_{(s)}^+ \to h^+ \pi^0$ and $D_{(s)}^+ \to h^+ \eta$

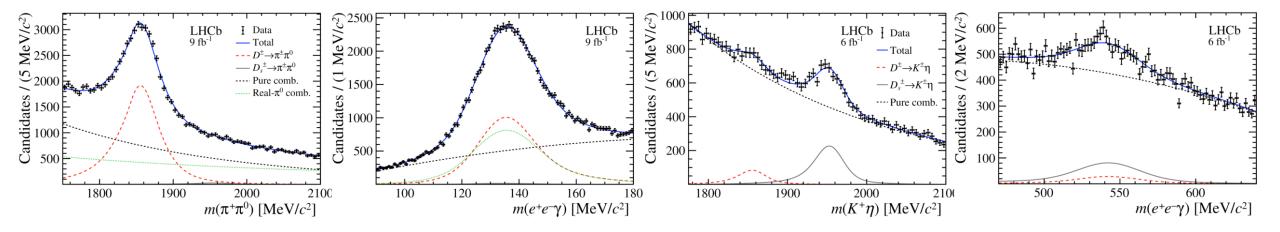
$$\mathcal{A}_{CP}(D^{+} \to \pi^{+} \pi^{0}) = (-1.3 \pm 0.9 \pm 0.6)\%$$

$$\mathcal{A}_{CP}(D^{+} \to K^{+} \pi^{0}) = (-3.2 \pm 4.7 \pm 2.1)\%$$

$$\mathcal{A}_{CP}(D^{+} \to \pi^{+} \eta) = (-0.2 \pm 0.8 \pm 0.4)\%$$

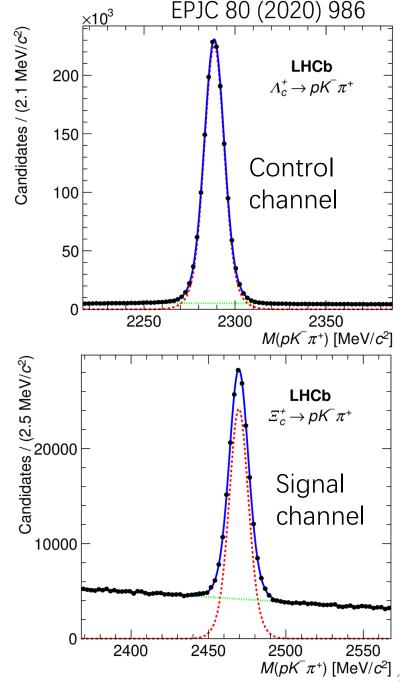

$$\mathcal{A}_{CP}(D^{+} \to K^{+} \eta) = (-6 \pm 10 \pm 4)\%$$

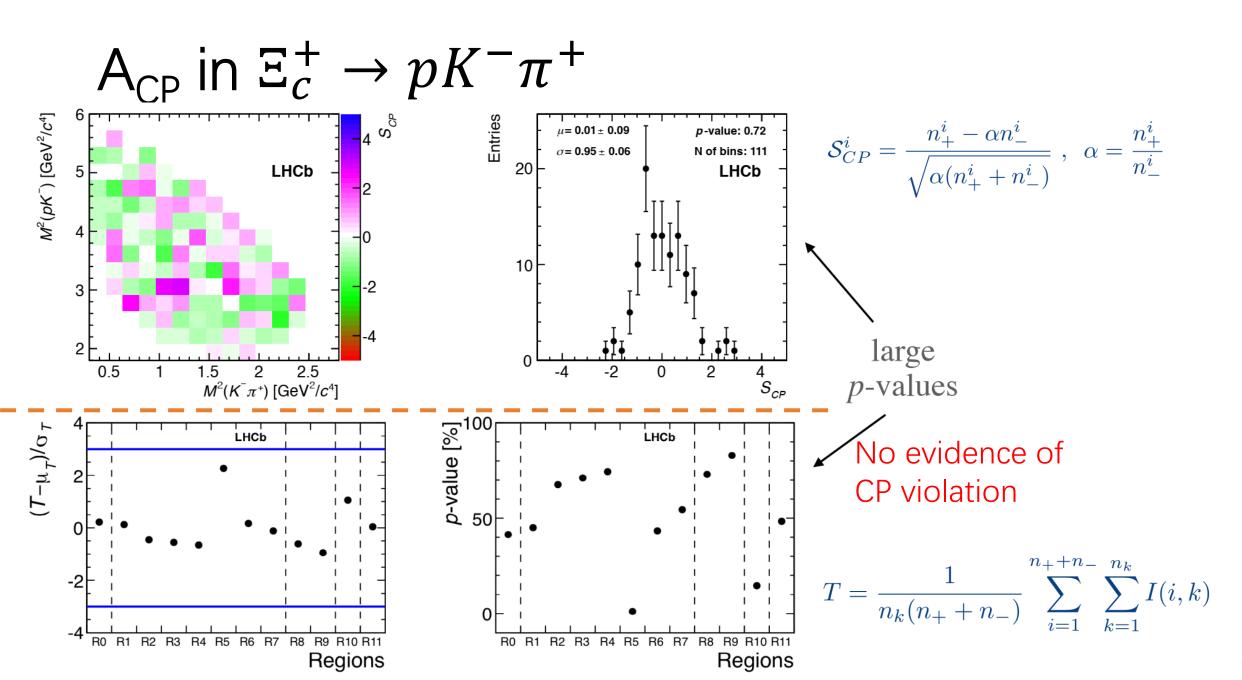
$$\mathcal{A}_{CP}(D_{s}^{+} \to K^{+} \pi^{0}) = (-0.8 \pm 3.9 \pm 1.2)\%$$


$$\mathcal{A}_{CP}(D_{s}^{+} \to \pi^{+} \eta) = (-0.8 \pm 0.7 \pm 0.5)\%$$

 $\mathcal{A}_{CP}(D_s^+ \to K^+ \eta) = (0.9 \pm 3.7 \pm 1.1)\%$

most precise measurements to date

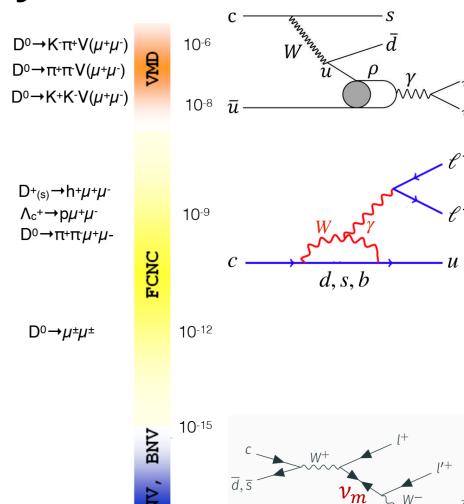



All results compatible with zero

A_{CP} in $\Xi_c^+ \to pK^-\pi^+$

- Based on Run1 3 fb⁻¹ data
- Direct comparison for compatibility between Ξ_c^+ and Ξ_c^- Dalitz plots (total yield \sim 190k) using two model-independent techniques
 - Divided into bins
 - Divided into regions around expected resonances
- Procedures tested on control channel $\Lambda_c^+ \to p K^- \pi^+$ (total yield ~ 1.9M) before applied to the signal

Overview of rare charm decays @ LHCb

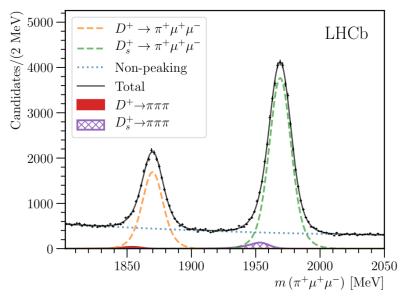

branching ratios, especially regions away from the resonances

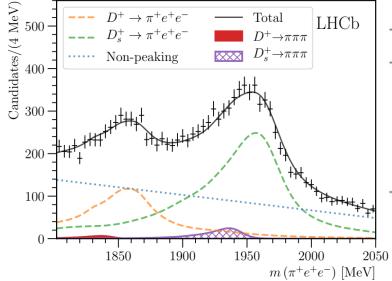
- search for D⁰→µ+µ- [PLB 725 15-24 (2013)]
- search for $D^+(s) \rightarrow h^+l^+l^-$ [PLB 724 203-212 (2013)] [JHEP 06 44 (2021)]
- search for $\Lambda_c^+ \to p \mu^+ \mu^-$ [PRD 97 091101 (2018)]
- search for $D^0 \to \pi^+\pi^-\mu^+\mu^-$ [PLB 728 234-243 (2014)]
- observation of $D^0 \rightarrow h^-h^{(')} + V(\mu^+\mu^-)$ [PLB 757 558-567 (2016)], [PRL 119, 181805 (2017)]

null tests based on (approximate) symmetries

- lepton-flavor/number-violation
- search for $D^0 \rightarrow \mu^+e^-$ [PLB 754 167 (2016)]
- search for $D^+(s) \to h^-l^+l^{(')+}$, $D^+(s) \to h^+\mu^\pm e^\mp$ [JHEP 06 44 (2021)]
- angular observables and CP asymmetries
- angular analysis and search for CPV in D⁰ → h+h-μ+μ-

[PRL 121 091801 (2018)], [LHCb-PAPER-2021-035]

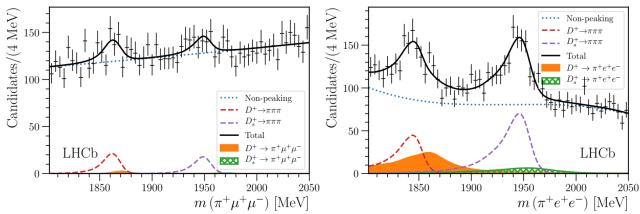


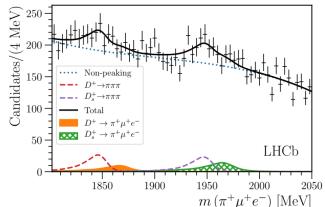

 $D^+(s) \rightarrow h^-\mu^+\mu^+$

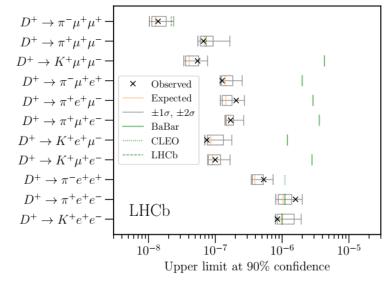
D⁰→e±µ∓

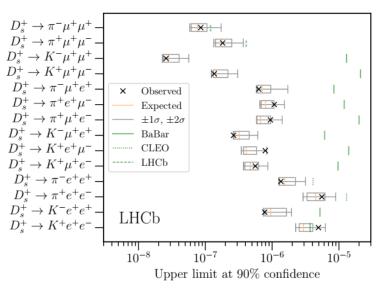
Search for $D_{(s)}^+ \to h^{\pm} \ell^+ \ell^{(\prime)^{\mp}}$ decays

- 25 decays
 LFV & LNV included
- Normalized with $D_{(s)}^+ \to \phi(\ell\ell)\pi^+$
- Allowed in the SM, Forbidden in the SM
- Analysis based on 2016 dataset (1.7 fb⁻¹)

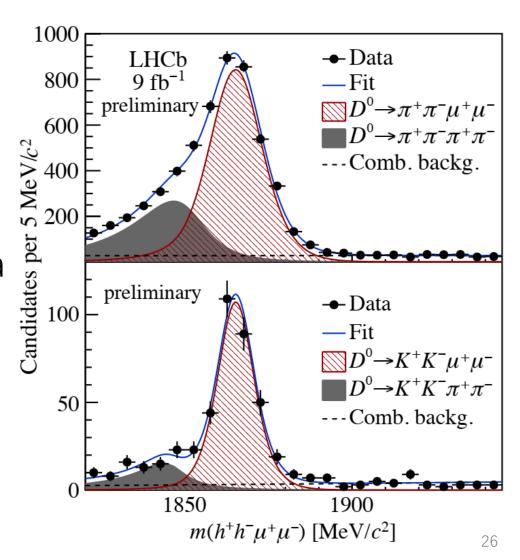



Channel	Fitted yield
$D^+ \rightarrow (\phi \rightarrow \mu^- \mu^+) \pi^+$	18100 ± 340
$D^+ \rightarrow (\phi \rightarrow e^- e^+) \pi^+$	2160 ± 180
$D_s^+ \to (\phi \to \mu^- \mu^+) \pi^+$	$42000{\pm}400$
$D_s^+ \to (\phi \to e^- e^+) \pi^+$	5320 ± 180


Search for $D_{(s)}^+ \to h^{\pm} \ell^+ \ell^{(\prime)^{\mp}}$ decays


- No signal observed, BF limits are set down to $\mathcal{O}(10^{-8})$
- Results improve the prior world's best by up to a factor of 500

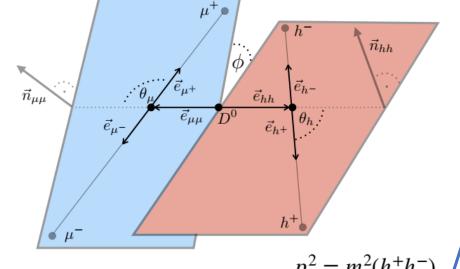
Regions dominated by resonances in dilepton mass spectrum are vetoed


CPV and angular analysis in $D^0 \to hh\mu^+\mu^-$

 Rarest charm meson decays observed, dominated by resonant contributions

$$\mathcal{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) \sim 9.6 \times 10^{-7}$$

 $\mathcal{B}(D^0 \to K^+ K^- \mu^+ \mu^-) \sim 1.5 \times 10^{-7}$

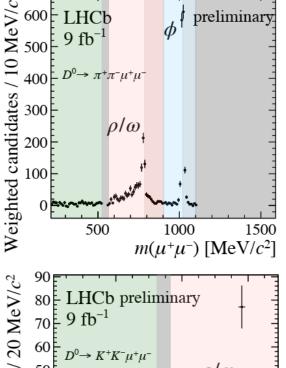

- First full angular analysis with 9 fb⁻¹ data
- D^0 selected from flavor specific $D^{*+} \rightarrow D^0\pi^+$

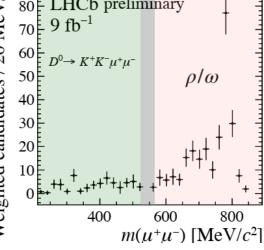
$$N(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) \sim 3500$$

 $N(D^0 \to K^+ K^- \mu^+ \mu^-) \sim 300$

Differential decay rate in $D^0 \rightarrow hh\mu^+\mu^-$

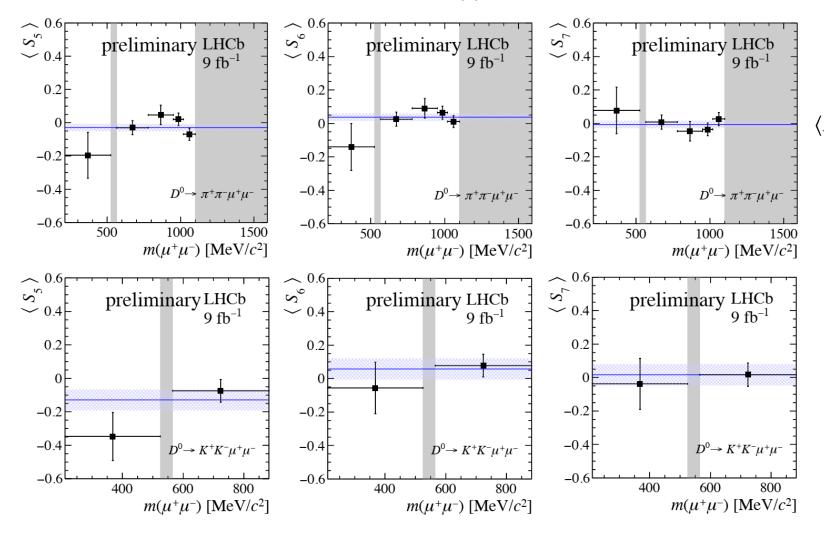
$$\frac{d\Gamma}{d\cos\theta_{\mu}d\cos\theta_{h}d\phi} = I_{1} + \\ I_{2} \cdot \cos2\theta_{\mu} + \\ I_{3} \cdot \sin^{2}2\theta_{\mu}\cos2\phi + \\ I_{4} \cdot \sin2\theta_{\mu}\cos\phi + \\ I_{5} \cdot \sin\theta_{\mu}\cos\phi + \\ I_{6} \cdot \cos\theta_{\mu} + \\ I_{7} \cdot \sin\theta_{\mu}\sin\phi + \\ I_{8} \cdot \sin2\theta_{\mu}\sin\phi + \\ I_{9} \cdot \sin^{2}\theta_{\mu}\sin2\phi$$


 $p^{2} = m^{2}(h^{+}h^{-})$ $q^{2} = m^{2}(\mu^{+}\mu^{-})$


• Measure p^2 , $\cos \theta_h$ integrated $\langle I_i \rangle$ separately for D^0/\overline{D}^0 in \mathbf{q}^2 bins

$$\langle I_{2,3,6,9} \rangle (q^2) = \frac{1}{\Gamma} \int_{4m_h}^{p_{max}^2} dp^2 \int_{-1}^{1} d\cos\theta_h \ I_{2,3,6,9}$$

$$\langle I_{4,5,7,8} \rangle (q^2) = \frac{1}{\Gamma} \int_{4m_h}^{p_{max}^2} dp^2 \left[\int_{-1}^{0} d\cos\theta_h - \int_{0}^{1} d\cos\theta_h \right] \ I_{4,5,7,8}$$


$$\langle S_i \rangle = \frac{1}{2} \left[\langle I_i \rangle + (-) \langle \overline{I_i} \rangle \right] \qquad \langle S_{5,6,7} \rangle \stackrel{\text{SM}}{=} 0$$

$$\langle A_i \rangle = \frac{1}{2} \left[\langle I_i \rangle - (+) \langle \overline{I_i} \rangle \right] \qquad \langle A_i \rangle \stackrel{\text{SM}}{=} 0$$
 in the sum of the contraction of the contr

Flavor-averaged observables $\langle S_i \rangle$

• Shown examples: SM null tests $\langle S_{5,6,7} \rangle$ [$\langle S_6 \rangle \sim A_{FB}$]

$$\langle S_i \rangle = \frac{1}{2} \left[\langle I_i \rangle + (-) \langle \overline{I_i} \rangle \right]$$

$$\langle A_i \rangle = \frac{1}{2} \left[\langle I_i \rangle - (+) \langle \overline{I_i} \rangle \right]$$

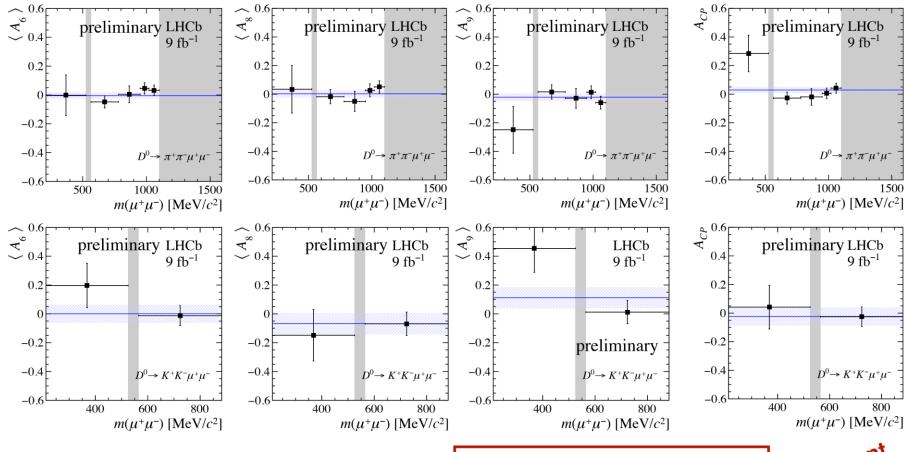
$$\langle I_6 \rangle = \frac{1}{\Gamma} \left[\int_0^1 d\cos\theta_\mu - \int_{-1}^0 d\cos\theta_\mu \right] \frac{d\Gamma}{d\cos\theta_\mu}$$

$$\langle I_6 \rangle = \frac{N(\cos\theta_\mu > 0) - N(\cos\theta_\mu < 0)}{N(\cos\theta_\mu > 0) + N(\cos\theta_\mu < 0)}$$

Angular observables measured via yield asymmetries

agreement with SM predictions

predictions

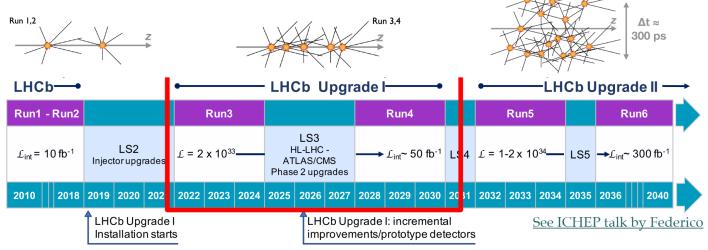

[JHEP 04 135 (2013), PRD 98, 035041(2018)]

CP asymmetries $\langle A_i \rangle$

• Shown: $\langle A_6 \rangle$ [$\langle A_6 \rangle \sim A_{FB}^{CP}$], $\langle A_{8,9} \rangle$ [triple-product-asym.] & A_{CP}

$$A_{CP} = \frac{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) - \Gamma(\overline{D}{}^0 \to h^+ h^- \mu^+ \mu^-)}{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) + \Gamma(\overline{D}{}^0 \to h^+ h^- \mu^+ \mu^-)}$$

From D. Mitzel's talk @ 11th workshop on "Implications of LHCb measurements and future prospects"


• overall agreement wrt. to SM hypothesis considering A_{CP} , $\langle A_{2-9} \rangle$ & $\langle S_{5,6,7} \rangle$:

$$D^{0} \to \pi^{+}\pi^{-}\mu^{+}\mu^{-}$$
 p = 79% (0.3 σ)
 $D^{0} \to K^{+}K^{-}\mu^{+}\mu^{-}$ p = 0.8% (2.7 σ)
preliminary

consistent with SM

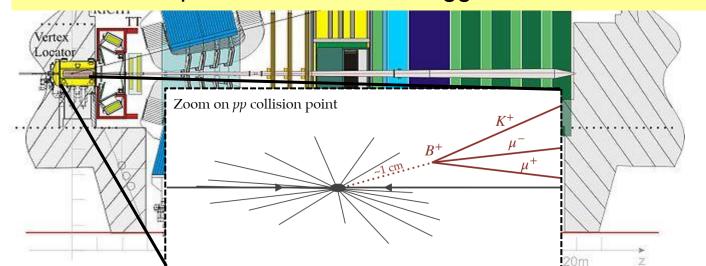
Run3 and beyond for LHCb

- A new LHCb detector for Run3 with much higher instantaneous luminosity
- Real time trigger with GPUs
- Goals for Runs 3-4: collect 10x in hadronic channels
- Reaching for sub-10⁻⁴ precision

Ready for HL-LHC

Observable	Current LHCb (up to 9 fb ⁻¹)	$\frac{\mathrm{Upgr}}{(23\mathrm{fb}^{-1})}$	rade I (50fb^{-1})	Upgrade II $(300\mathrm{fb}^{-1})$
Charm				
$\Delta A_{CP} \ (D^0 \to K^+K^-, \pi^+\pi^-)$	29×10^{-5} [5]	17×10^{-5}	_	3.0×10^{-5} 1.0×10^{-5}
$A_{\Gamma} (D^0 \rightarrow K^+K^-, \pi^+\pi^-)$	13×10^{-5} [38]	4.3×10^{-5}	_	1.0×10^{-5}
$\Delta x \; (D^0 o K_{\scriptscriptstyle \mathrm{S}}^0 \pi^+ \pi^-)$	$18 \times 10^{-5} \ [37]$	6.3×10^{-5}	4.1×10^{-5}	

Summary

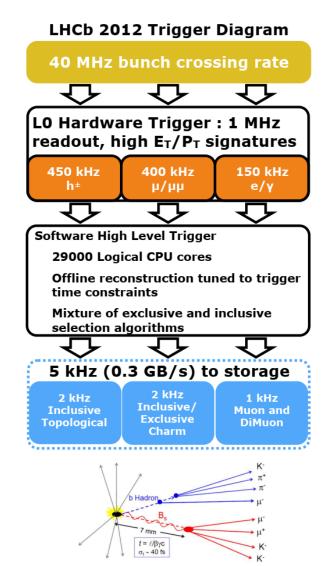

- LHCb is in fact a charm factory and has the world's largest sample of charm decays
- High statistics and superb detector performance allow for high precision measurements on charm CP, rare decays, etc.
 - Observations of charm CPV, difference in D⁰ mass eigenstates, etc.
- Still more charm results in the pipeline with full Run1+2 data, stay tuned!
 - For example, semileptonic D decays (D⁰ \rightarrow h(hh)lv), CF charm decays involving a K_S, charm baryons, ...
- Longer term: LHCb will start taking data next year
- Synergy with BESIII important for CPV searches in the charm sector

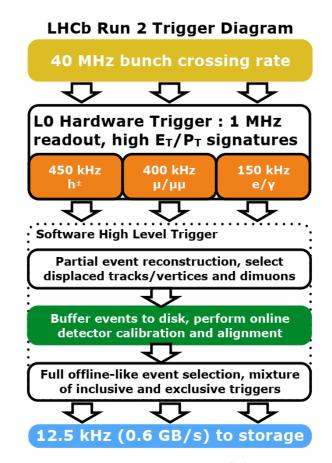
Backup Slides

LHCb detector in a nutshell

By design: study CP-violating processes and rare b-hadron decays

- Particle detection in the forward region (down to the beam-pipe)
- Excellent resolution for localization of decay vertices (Vertex Locator) \to Excellent time resolution, enough to resolve B_s-B_s oscillation
- Excellent momentum resolution ($\sigma(m_B) \sim 25$ MeV for 2-body decays)
- Excellent particle identification to distinguish p, K[±], π[±], μ[±]
- Excellent leptonic and hadronic triggers

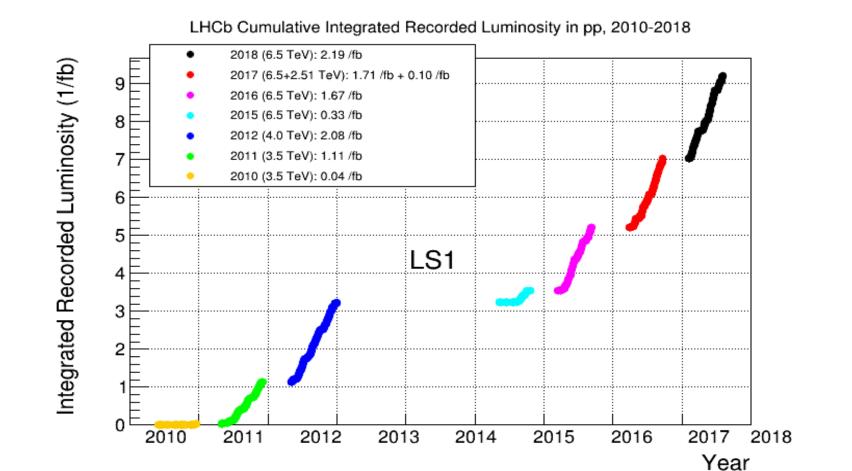



m the large $b\bar{b}$ and ons and from the tion at high

 $)=144\pm1\pm21\,\mu{
m b}$ at 15 TeV III the LHCb acceptance $\Rightarrow\sim25\%$ of the total inside LHCb [Phys.Rev.Lett. 118, 052002]

• $\sigma(pp \to c\bar{c}X) \sim 2.5 \text{ mb} \Rightarrow 1 \text{ MHz}$ $c\bar{c}$ pairs in the LHCb acceptance [JHEP 05 (2017) 074]

LHCb trigger scheme



trigger efficiency: $\sim 90\%$ on muons, $\sim 30\%$ for multi-body hadronic final states

LHCb data samples

- levelled instantaneous luminosity of $\mathcal{L}=4\times10^{32}\,\mathrm{cm}^{-2}\mathrm{s}^{-1}$
- Run 1: $\sim 3\,\mathrm{fb}^{-1}$ of pp collisions at $\sqrt{s}=7\text{-}8\,\mathrm{TeV}$
- Run 2: $\sim 6\,\mathrm{fb}^{-1}$ of pp collisions at $\sqrt{s}=13\,\mathrm{TeV}$
- $\sigma(pp \to Q\bar{Q}X) \propto \sqrt{s} \Rightarrow 4x$ b- and c-hadrons in Run 2

Current experimental status on SCS decays

Observable	Current precision $\times 10^4$	Experiments (ordered by precision)	Perspectives
$\Delta A_{CP}^{dir} = A_{CP}(KK) - A_{CP}(\pi\pi)$	-15.4 ± 2.9	LHCb, CDF, BaBar, Belle	Run1+Run2
$A_{CP}(D^0 \to K^-K^+)$	-9 ± 11	LHCb, CDF, Cleo, Focus, BaBar, Belle	update expected soon full Run1+Run2
$A_{CP}(D^0\to\pi^-\pi^+)$	-1 ± 14	LHCb, CDF, Cleo, Focus, BaBar, Belle	update expected soon Run1+Run2
$A_{CP}(D^0\to\pi^0\pi^0)$	-3 ± 64	Cleo, Belle	
$A_{CP}(D^0 \to K_S^0 K_S^0)$	-150 ± 110	LHCb, Belle, Cleo	recently updated Run2
$A_{CP}(D^+\to\pi^+\pi^0)$	40 ± 80	LHCb, Belle, Cleo	recently updated Run2
$A_{CP}(D^+ \to K_S^0 K^+)$	1 ± 7	LHCb, Belle, BaBar	missing 30% of data Run2
$A_{CP}(D^+ \to \phi \pi^+)$	0.1 ± 5	LHCb, Belle, BaBar	missing 30% of data Run2
$A_{CP}(D_s^+ \to K_s^0 \pi^+)$	16 ± 18	LHCb, BaBar	missing 30% of data Run2
$A_{CP}(D_s^+\to K^+\pi^0)$	200 ± 300	LHCb, Belle, Cleo	recently updated

Prospects for rare charm sensitivity

Mode	Upgrade ($50\mathrm{fb}^{-1}$)	Upgrade II $(300\mathrm{fb}^{-1})$
$D^0 o \mu^+ \mu^-$	4.2×10^{-10}	1.3×10^{-10}
$D^+ \to \pi^+ \mu^+ \mu^-$	10^{-8}	3×10^{-9}
$D_s^+ o K^+ \mu^+ \mu^-$	10^{-8}	3×10^{-9}
$\Lambda o p \mu \mu$	$1.1 imes 10^{-8}$	4.4×10^{-9}
$D^0 o e\mu$	10^{-9}	4.1×10^{-9}

Mode	Upgrade ($50\mathrm{fb}^{-1}$)	Upgrade II $(300\mathrm{fb}^{-1})$
$D^+ o \pi^+ \mu^+ \mu^-$	0.2%	0.08%
$D^0 o \pi^+\pi^-\mu^+\mu^-$	1%	0.4%
$D^0 o K^- \pi^+ \mu^+ \mu^-$	0.3%	0.13%
$D^0 o K^+\pi^-\mu^+\mu^-$	12%	5%
$D^0 ightarrow K^+ K^- \mu^+ \mu^-$	4%	1.7%