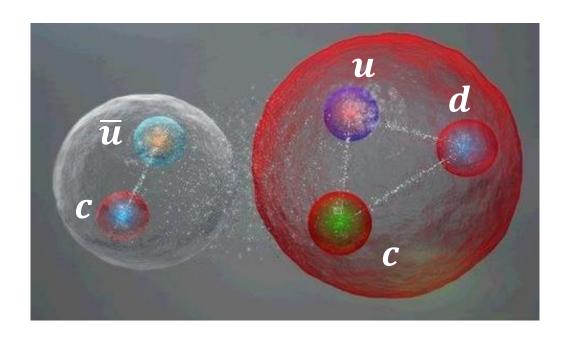


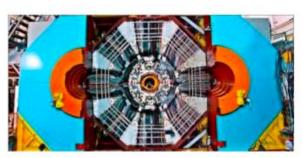
Hadronic decays of charm mesons and baryons at BESIII

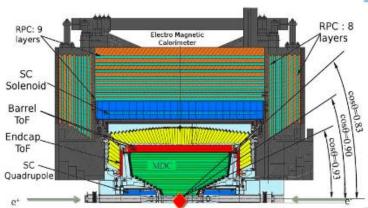
Cong Geng (耿聪)
Sun Yat-sen (Zhongshan) University
On behalf of BESIII Collaboration

Outline


- Charm mesons at BESIII
- Charm baryons at BESIII

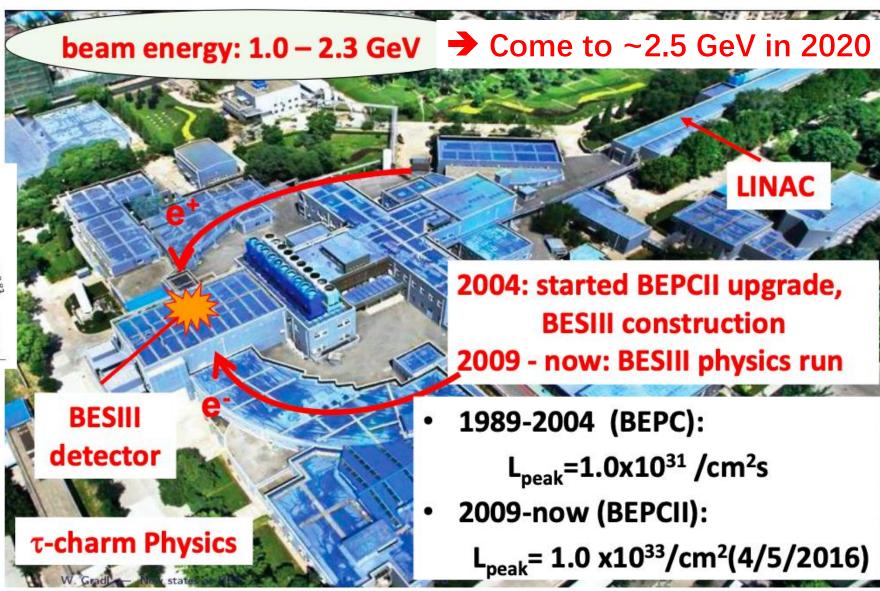
CKM


Precise BF

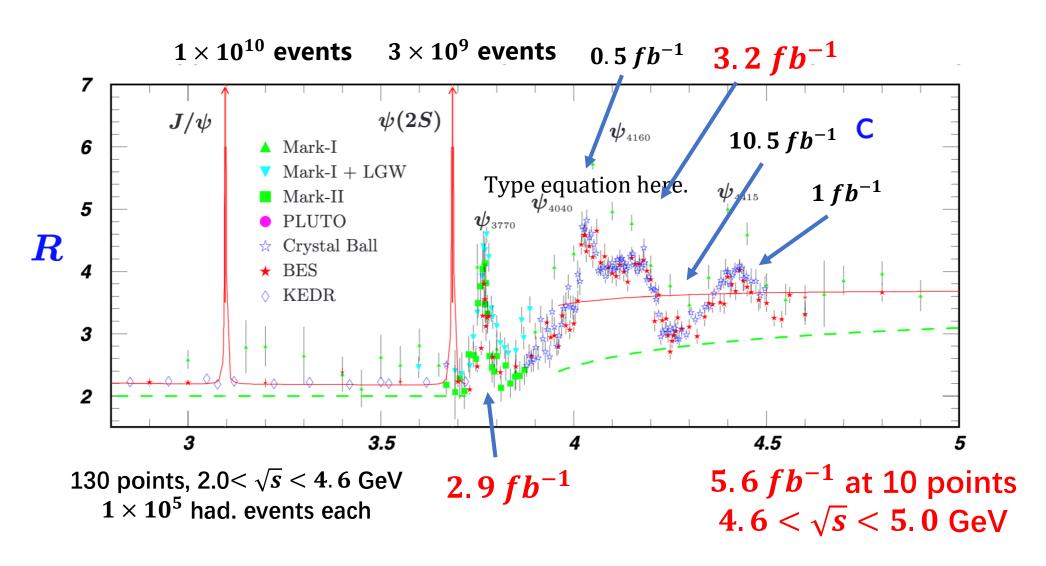

Rare decay

New resonances

BEPCII and **BESIII**

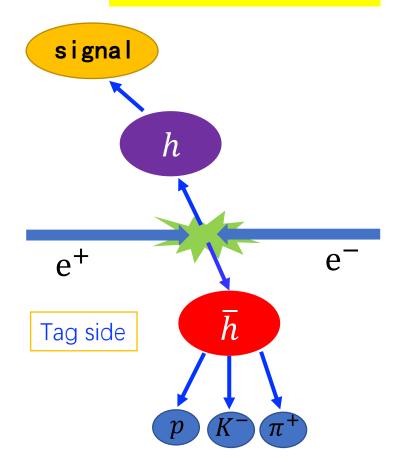

MDC: spatial reso. 115 μ m

dE/dx reso: 5%


EMC: energy reso.: 2.4%

BTOF: time reso.: 70 ps

ETOF: time reso.: 60 ps



Data sets for D and Λ_c productions

Advantage at BESIII

Double-tag (DT)

Threshold characteristic:

Symmetric pair production: $\Delta E = E_{rec} - E_{beam}$ Beam-constrained mass: $m_{BC} = \sqrt{E_{beam}^2 - \vec{p}_{rec}^2}$

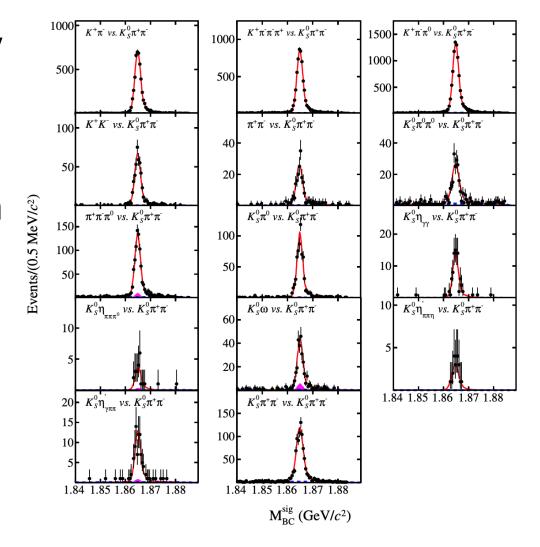
Advantage of DT:

Probe correlation of the pair

Absolute Br measurement:

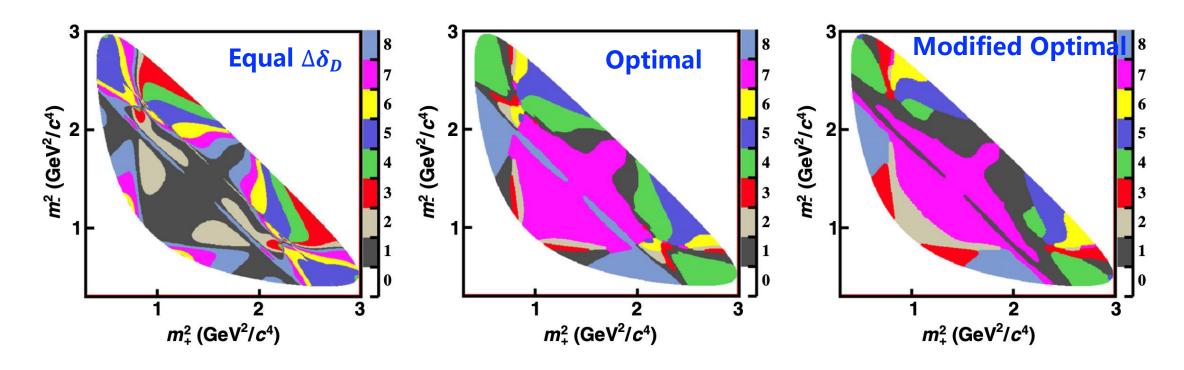
$$\mathcal{B} = \frac{N_{\text{obs}}}{\sum_{i} N_{i}^{\text{single-tag}} \cdot (\epsilon_{i}^{\text{double-tag}} / \epsilon_{i}^{\text{single-tag}})}$$

Missing particle reconstruction: v, n

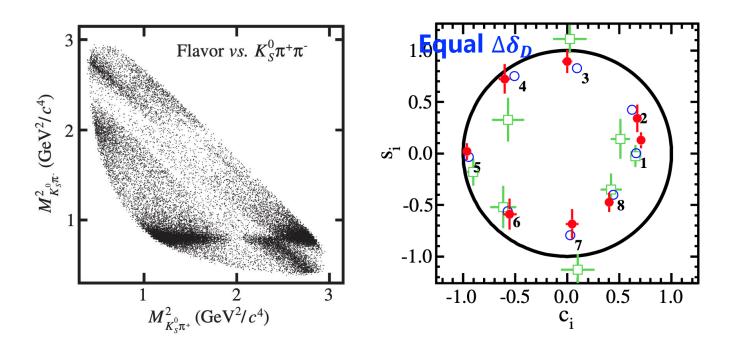

$$M_{miss}^2 = E_{miss}^2 - p_{miss}^2$$
 , $U_{miss} = E_{miss} - |\vec{p}_{miss}|$

Charm Meson

$$D^0 \rightarrow K_{S,L} \pi^+ \pi^-$$


- 2.93 fb⁻¹ of data @ $\sqrt{s} = 3.773$ GeV
- Measurement of $D^0/\overline{D}{}^0 \to K_{S,L}\pi^+\pi^-$ strong phase parameters $c_i[s_i] \equiv$ amplitude-weighted $cos[sin]\Delta\delta_D$ in phase-space bin i
- 17 tag modes employed, yields determined with 2-D fit to $M_{BC} \equiv$

$$\sqrt{E_{beam}^2 - p_D^2}$$



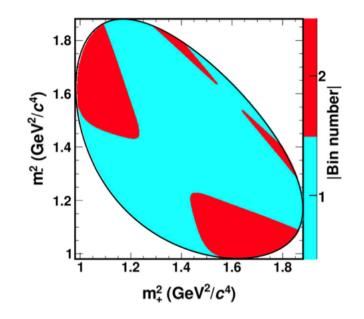
$$D^0 o K_{S,L} \pi^+ \pi^-$$

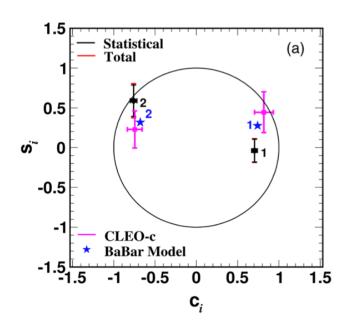
Phase space described by $m_{\pm}=m(K^0\pi^{\pm})$ Binning schema from CLEO PRD 82,112006 (2010)

$D^0 o K_{S,L} \pi^+ \pi^-$

Red circles are BESIII measurements. Blue Circles are predictions from Belle and Babar Green square are CLEO results.

PRL 124 241802 (2020) PRD 101 112002 (2020)

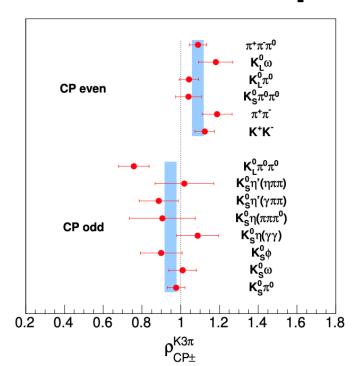

Impact on the γ is improved by a factor of 3 comparing to CLEO results.

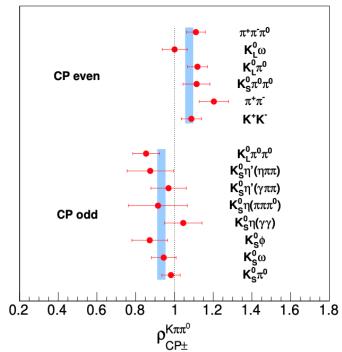

The uncertainty in γ due to the strong-phase is reduced to $\sim 1^{o}$

$$D^0 \rightarrow K_{S,L}K^+K^-$$

PRD 102 052008 (2020)

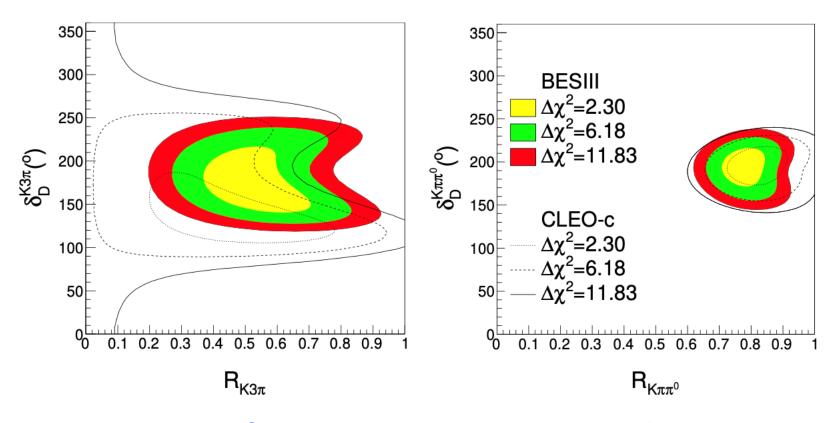
- 2.93 fb⁻¹ of data @ $\sqrt{s} = 3.773$ GeV
- Measurement of $D^0/\overline{D}{}^0 \to K_{S,L}K^+K^-$ strong phase parameters $c_i[s_i]$; fewer bins



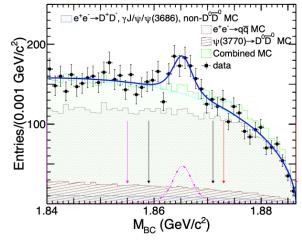


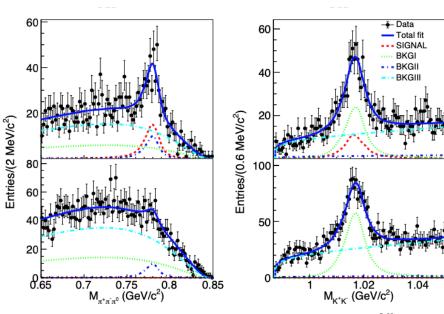
$$D^0 o K^- \pi^+ \pi^+ \pi^-, K^- \pi^+ \pi^0$$

JHEP 05 (2021) 164


- 2.93 fb⁻¹ of data @ $\sqrt{s} = 3.773$ GeV
- Measurement of phase-space-averaged δ_D , coherence factors R, and amplitude ratios r_D^X

$$\rho_{CP}^X \sim \frac{\mathcal{B}(D_{CP} \to X)}{\mathcal{B}(D^0 \to X)}$$

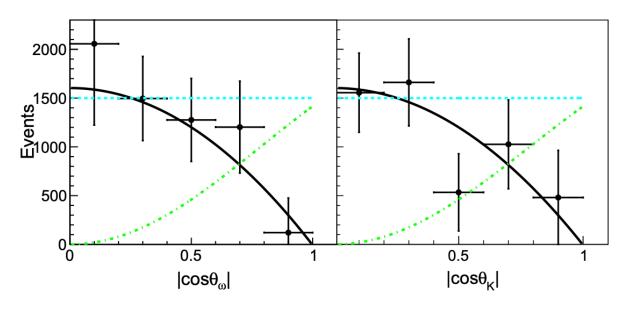

$D^0 o K^-\pi^+\pi^+\pi^-$, $K^-\pi^+\pi^0$



Significantly more constrained ! Impact on the γ : an uncertainty of $\sim 7^{o}$

$$D^0 \rightarrow \omega \phi$$

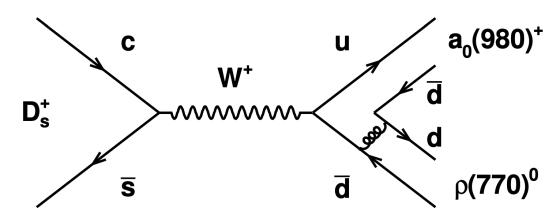
- 2.93 fb⁻¹ of data @ $\sqrt{s} = 3.773$ GeV
- Polarization puzzle: Many heavy meson to vector-vector decays have large transverse polarization fraction
- ω reconstructed through $\pi^+\pi^-\pi^0$, ϕ through K^+K^-
- Signal yields determined with fit to $M_{\pi^+\pi^-\pi^0}$ vs $M_{K^+K^-}$



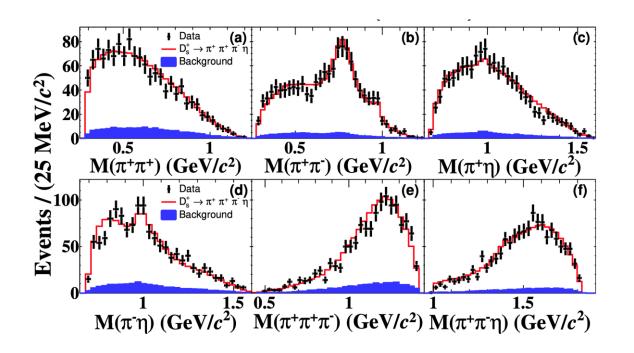
$$D^0 \rightarrow \omega \phi$$

arXiv:2108.02405

$$\mathcal{B}\left(D^0 \to \omega \phi\right) = (6.48 \pm 0.96 \pm 0.38) \times 10^{-4}$$
 First observation


Large transverse polarization of $D^0 \to \omega \phi$

Black: Fit Green: Longitudinal Cyan: Phase space


$$D_s^+ o \pi^+ \pi^+ \pi^- \eta$$

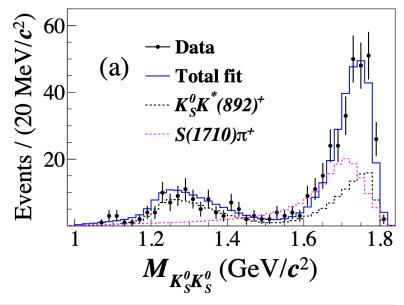
- 6.32 fb⁻¹ of data @ $\sqrt{s} = 4.178 4.230$ GeV
- $D_s^+ o \pi^+ \pi^- X$ decays are important background in $B o D^{(*)} au
 u$
- W-annihilation (WA) decay $D_s^+ o a_0(980)\pi$ significantly enhanced over other WA decays
- $D_s^+ \to a_0(980)^+ \rho^0$ is pure WA

$D_s^+ o \pi^+ \pi^+ \pi^- \eta$

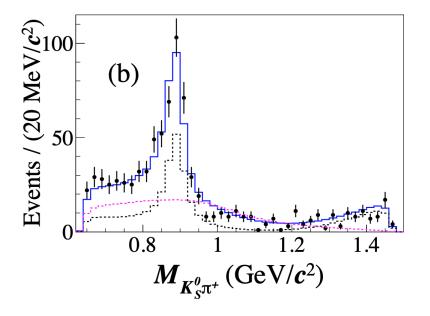
PRD 104 L071101 (2021)

Amplitudo	Phase	EE(07)
Amplitude	rnase	FF(%)
$a_1(1260)^+(\rho(770)^0\pi^+)\eta$	$0.0({ m fixed})$	$55.4 \pm 3.9 \pm 2.0$
$a_1(1260)^+(f_0(500)\pi^+)\eta$	$5.0\pm0.1\pm0.1$	$8.1\pm1.9\pm2.1$
$a_0(980)^+\rho(770)^0$	$2.5\pm0.1\pm0.1$	$6.7\pm2.5\pm1.5$
$\eta(1405)(a_0(980)^-\pi^+)\pi^+$	$0.2\pm0.2\pm0.1$	$0.7\pm0.2\pm0.1$
$\eta(1405)(a_0(980)^+\pi^-)\pi^+$	$0.2\pm0.2\pm0.1$	$0.7\pm0.2\pm0.1$
$f_1(1420)(a_0(980)^-\pi^+)\pi^+$	$4.3\pm0.2\pm0.4$	$1.9\pm0.5\pm0.3$
$f_1(1420)(a_0(980)^+\pi^-)\pi^+$	$4.3\pm0.2\pm0.4$	$1.7\pm0.5\pm0.3$
$[a_0(980)^-\pi^+]_S\pi^+$	$0.1\pm0.2\pm0.2$	$5.1 \pm 1.2 \pm 0.9$
$[a_0(980)^+\pi^-]_S\pi^+$	$0.1\pm0.2\pm0.2$	$3.4 \pm 0.8 \pm 0.6$
$[f_0(980)\eta]_S\pi^+$	$1.4\pm0.2\pm0.3$	$6.2\pm1.7\pm0.9$
$[f_0(500)\eta]_S\pi^+$	$2.5 \pm 0.2 \pm 0.3$	$12.7 \pm 2.6 \pm 2.0$

$$\mathcal{B}(D_s^+ \to \pi^+ \pi^- \eta) = (3.12 \pm 0.13 \pm 0.09)\%$$

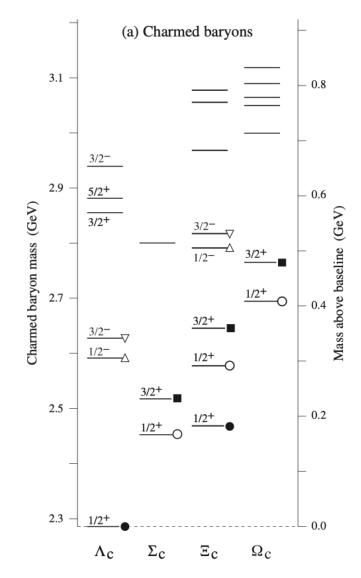

$$\mathcal{B}(D_s^+ \to a_0(980)^+ \rho^0, a_0(980)^+ \to \pi^+ \eta) = (0.21 \pm 0.08 \pm 0.05)\%$$

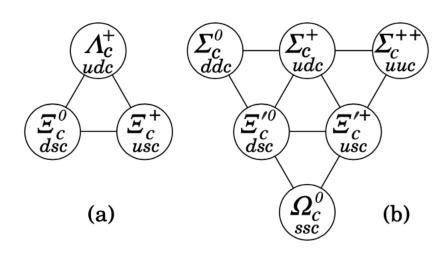
Significantly larger WA effects than seen in other D_s^+ decays


$$D_s^+ \rightarrow K_S^0 K_S^0 \pi^-$$

arXiv:2110.07650

- 6.32 fb⁻¹ of data @ $\sqrt{s} = 4.178 4.230$ GeV
- Isovector partner observed for $f_0(1710)$


Amplitude	BF (10^{-3})
$D_s^+ \to K_S^0 K^*(892)^+ \to K_S^0 K_S^0 \pi^+$	$3.0 \pm 0.3 \pm 0.1$
$D_s^+ \to S(1710)\pi^+ \to K_S^0 K_S^0 \pi^+$	$3.1\pm0.3\pm0.1$



Not seen in earlier $D_s^+ \to K^+K^-\pi^-$ work

Charm Baryon

Singly Charm-Baryon Family

Ground state
$$J^p = \frac{1}{2}^+$$

PDG in 2015

 pK^+K^- non- ϕ

 Γ_{22}

Λ_c^+ DECAY MODES

Scale factor/

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
	Hadronic modes with a p:	S — _ 1 final states	
Γ_1	$p\overline{K}^0$	$(3.21\pm 0.30)\%$	
_	$ ho K^- \pi^+$	(6.84 + 0.32)%	
		$[a]$ (2.13 \pm 0.30) %	
	$\Delta(1232)^{++}K^{-}$	(1.18± 0.27) %	
Γ_{5}	$\Lambda(1520)\pi^+$	[a] $(2.4 \pm 0.6)\%$	
Γ_6	$pK^-\pi^+$ nonresonant $pK^0\pi^0$	(3.8 ± 0.4) %	
Γ_7	$ ho \overline{K}^0 \pi^0$	(4.5 \pm 0.6) %	
Γ ₈	$ ho \overline{K}{}^0 \eta$	(1.7 ± 0.4) %	
Γ_9	$ ho \overline{K}{}^0 \pi^+ \pi^-$	(3.5 ± 0.4) %	
Γ_{10}	$ ho K^- \pi^+ \pi^0$	$(4.6 \pm 0.8)\%$	
Γ_{11}	$pK^*(892)^-\pi^+$	[a] (1.5 ± 0.5) %	
Γ ₁₂	$p(K - \pi^+)_{\text{nonresonant}} \pi^0$ $\Delta(1232)K^*(892)$	(5.0 ± 0.9) %	,
13 F	Δ (1232) K^{+} (892) $\rho K^{-} \pi^{+} \pi^{+} \pi^{-}$	seen	0-3
' 14 Г	$pK - \pi + \pi + \pi $ $pK - \pi + \pi^0 \pi^0$	$(1.5 \pm 1.0) \times 1$ $(1.1 \pm 0.5)\%$	10 0
Γ ₁₆	$pK - \pi + 3\pi^0$	(1.1 ± 0.3) /0	
	Hadronic modes with a p :	S = 0 final states	
Γ_{17}	$ ho\pi^+\pi^-$	$(4.7 \pm 2.5) \times 1$	1.0-3
Γ ₁₈	$pf_0(980)$	[a] (3.8 ± 2.5) \times 1	LO ⁻³
Γ_{19}	$p\pi^+\pi^+\pi^-\pi^-$	(2.5 ± 1.6) \times 1	₁₀ -3
	pK^+K^-	(1.1 ± 0.4) \times 1	
Γ ₂₁	$oldsymbol{ ho}\phi$	[a] $(1.12\pm 0.23) \times 1$	10-3

 $(4.8 \pm 1.9) \times 10^{-4}$

PDG in 2020

```
Hadronic modes with a p or n: S = -1 final states
        pK_S^0
                                                                                       \downarrow 44% S=1.1
\Gamma_1
                                                               (1.59\pm\ 0.08)\%
       pK^-\pi^+
                                                                                                  S=1.4
                                                               (6.28 \pm 0.32)\%
           p\overline{K}^*(892)^0
                                                        [a] (1.96 \pm 0.27)\%
      \Delta(1232)^{++}K^{-}
                                                               (1.08 \pm 0.25)\%
           \Lambda(1520)\pi^{+}
                                                        [a] (2.2 \pm 0.5)\%
           pK^-\pi^+ nonresonant
                                                               ( 3.5 \pm 0.4 ) %
        pK_S^0\pi^0
                                                                                       \downarrow 50\% S=1.1
                                                               (1.97\pm\ 0.13)\%
        nK_{S}^{0}\pi^{+}
                                                               (1.82 \pm 0.25)\% First
        p\overline{K}^{\bar{0}}\eta
                                                               ( 1.6 \pm 0.4 ) %
       pK_S^0\pi^+\pi^-
                                                               (1.60 \pm 0.12)\%
\Gamma_{11} \quad p \, K^{-} \pi^{+} \pi^{0}
                                                               (4.46 \pm 0.30)\%
       pK^*(892)^-\pi^+
                                                        [a] (1.4 \pm 0.5)\%
\Gamma_{13} p(K^-\pi^+)_{\text{nonresonant}}\pi^0

\Gamma_{14} \Delta(1232)\overline{K}^*(892)
                                                               ( 4.6 \pm 0.8 ) %
\Gamma_{15} p K^{-} 2\pi^{+} \pi^{-}
                                                               (1.4 \pm 0.9) \times 10^{-3}
\Gamma_{16} p K^{-} \pi^{+} 2\pi^{0}
                                                               ( 1.0 \pm 0.5 ) %
                       Hadronic modes with a p: S = 0 final states
```

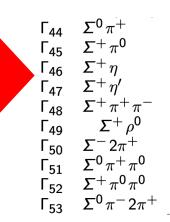
Γ_{17}	$ ho\pi^0$	$< 2.7 \times 10^{-4}$	
	$p\eta$	$(1.24\pm 0.30) \times 10^{-3}$	First
	$p\omega(782)^{0}$	$(9 \pm 4) \times 10^{-4}$	
Γ_{20}	$ ho\pi^+\pi^-$	$(4.61\pm 0.28) \times 10^{-3}$	First
Γ_{21}	$p f_0(980)$	[a] $(3.5 \pm 2.3) \times 10^{-3}$	
Γ_{22}	$p2\pi^{+}2\pi^{-}$	$(2.3 \pm 1.4) \times 10^{-3}$	
Γ_{23}	$ hoK^+K^-$	$(1.06\pm\ 0.06)\times10^{-3}$	1
Γ_{24}	$oldsymbol{p}\phi$	[a] $(1.06 \pm 0.14) \times 10^{-3}$	↓ 36%
Γ ₂₅	$ ho {\sf K}^+ {\sf K}^-$ non- ϕ	$(5.3 \pm 1.2) \times 10^{-4}$	
	$ ho\phi\pi^0$	$(10 \pm 4) \times 10^{-5}$	
Γ ₂₇	$ ho K^+ K^- \pi^0$ nonresonant	$< 6.3 \times 10^{-5}$	20 =90%

PDG in 2015

Hadronic modes with a hyperon: S = -1 final states

Γ_{23}	$\Lambda\pi^+$	(1.46± 0.13) %	
· 23	$\Lambda\pi^+\pi^0$	$(5.0 \pm 0.13)\%$	
	$\Lambda \rho^+$	< 6 %	CL=95%
Γ ₂₅	$\Lambda \pi^+ \pi^+ \pi^-$	(3.59± 0.28) %	CL-9570
Γ ₂₇	$\Sigma(1385)^+\pi^+\pi^-$, $\Sigma^{*+} \rightarrow$	$(1.0 \pm 0.5)\%$	
127	$2(1303)$ % % , $Z \rightarrow \Lambda \pi^+$	(1.0 ± 0.5)/8	
Γ ₂₈	$\Sigma(1385)^-\pi^+\pi^+$, $\Sigma^{*-} ightarrow$	(7.5 \pm 1.4) \times 10 ⁻³	
Γ ₂₉	$\Lambda\pi^- \Lambda\pi^+ ho^0$	(1.4 ± 0.6) %	
Γ ₃₀	$\Sigma(1385)^+ ho^0$, $\Sigma^{*+} ightarrow\Lambda\pi^+$	$(5 \pm 4) \times 10^{-3}$	
Γ_{31}	$\Lambda\pi^+\pi^+\pi^-$ nonresonant	< 1.1 %	CL=90%
Γ ₃₂	$\Lambda\pi^+\pi^+\pi^-\pi^0$ total	($2.5~\pm~0.9$) %	
Γ ₃₃	$\Lambda\pi^+\eta$	[a] (2.4 ± 0.5) %	
Γ ₃₄	$\Sigma(1385)^+\eta$	[a] ($1.16\pm~0.35$) %	
Γ ₃₅	$\Lambda\pi^+\omega$	[a] ($1.6~\pm~0.6$) %	
Γ ₃₆	$arLambda\pi^+\pi^+\pi^-\pi^0$, no η or ω	$< 9 \times 10^{-3}$	CL=90%
Γ ₃₇	$\Lambda K^+ \overline{K}{}^0$	$(6.4 \pm 1.3) \times 10^{-3}$	S=1.6
Γ ₃₈	${\it \Xi}(1690)^0 K^+$, ${\it \Xi}^{*0} ightarrow \Lambda \overline{K}{}^0$	$(1.8 \pm 0.6) \times 10^{-3}$	
Γ_{39}	$\mathcal{\Sigma}^0 \pi^+$	$(1.43\pm\ 0.14)\%$	
Γ ₄₀	$\mathbf{\Sigma}^{+}\pi^{0}$	(1.37± 0.30) %	
	$\Sigma^+ \eta$	$(7.5 \pm 2.5) \times 10^{-3}$	
Γ_{42}	$\Sigma^+\pi^+\pi^-$	$(4.9 \pm 0.5)\%$	
Γ_{43}	$\Sigma^+ ho^0$	< 1.8 %	CL=95%
Γ_{AA}	$\Sigma^-\pi^+\pi^+$	(2.3 ± 0.4) %	
Γ ₄₅	$\sum_{\Gamma} 0 \pi + \pi^0$	$(2.5 \pm 0.9)\%$	

Semileptonic modes


$$\Gamma_{64}$$
 $\Lambda \ell^+ \nu_\ell$ [b] (2.8 ± 0.4)%
 Γ_{65} $\Lambda e^+ \nu_e$ (2.9 ± 0.5)%
 Γ_{66} $\Lambda \mu^+ \nu_\mu$ (2.7 ± 0.6)%

PDG in 2020

Improvement: Not only the central value, but also the uncertainty

Hadronic modes with a hyperon: S = -1 final states

20	$\Lambda \pi^+$	(1.30± 0.07) %	1
	$\Lambda\pi^+\pi^0$ Λho^+	(7.1 ± 0.4) % < 6 %	• -
Γ ₃₁	$\Lambda\pi^-2\pi^+$	(3.64± 0.29) %	S=1.4

$$(1.29\pm 0.07)\% \downarrow 45\% S=1.1$$

 $(1.25\pm 0.10)\% \downarrow 33\%$
 $(4.4\pm 2.0)\times 10^{-3}$
 $(1.5\pm 0.6)\%$
 $(4.50\pm 0.25)\% \downarrow 46\% S=1.3$
 $<1.7\% CL=95\%$
 $(1.87\pm 0.18)\%$
 $(3.5\pm 0.4)\%$
 $(1.55\pm 0.15)\%$
 $(1.11\pm 0.30)\%$

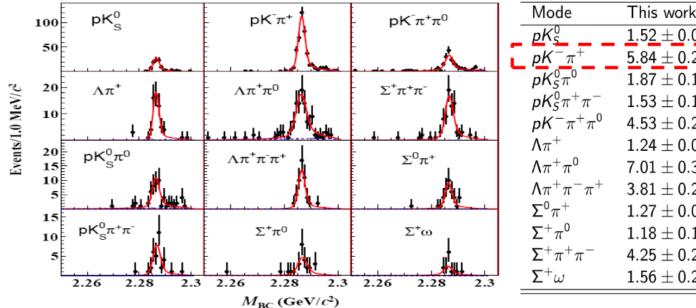
Semileptonic modes

$$\Gamma_{72}$$
 $\Lambda e^+
u_e$ Γ_{73} $\Lambda \mu^+
u_\mu$

$$(3.6 \pm 0.4)\%$$

 $(3.5 \pm 0.5)\%$ $\downarrow 35\%$

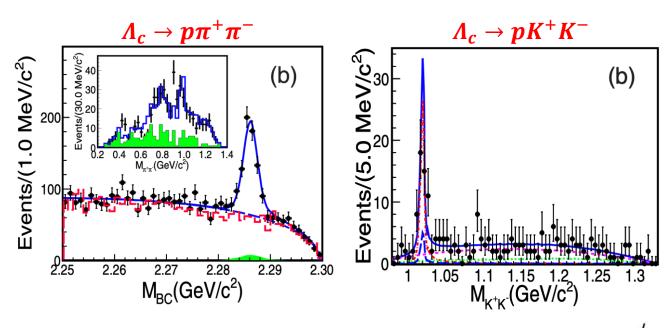
Publications at BESIII

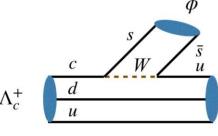

Hadronic decays	
$\Lambda_c ightarrow pK\pi$ + 11 CF modes	PRL 116, 052001 (2016)
$\Lambda_c o p K^+ K^-$, $p \pi^+ \pi^-$	PRL 117, 232002 (2016)
$\Lambda_c \to nK_s\pi$	PRL 118, 112001 (2017)
$arLambda_c o p \eta$, $p \pi^0$	PRD 95, 111102(R) (2017)
$\Lambda_c o \Sigma \pi^+ \pi^- \pi^0$	PLB 772, 338 (2017)
$\Lambda_c o m{\mathcal{Z}}^{0(*)} K$	PLB 783, 200 (2018)
$\Lambda_c o \Lambda \eta \pi$	PRD 99, 032010 (2019)
$\Lambda_c \to pK_s\eta$	PLB 817 (2021) 136327

Semi-leptonic decays	
$\Lambda_c \to \Lambda e^+ \nu$	PRL 115, 221805 (2015)
$\Lambda_c o \Lambda \mu^+ u$	PLB 767m 42 (2017)
Inclusive decays	
$\Lambda_c \to \Lambda + X$	PRL 121, 062003 (2018)
$\Lambda_c \rightarrow e^+ + X$	PRL 121, 251801 (2018)
$\Lambda_c \to K_s + X$	EPJC 80, 935 (2020)
Production	
$\Lambda_c^+ \overline{\Lambda}_c^-$	PRL 120, 132001 (2018)

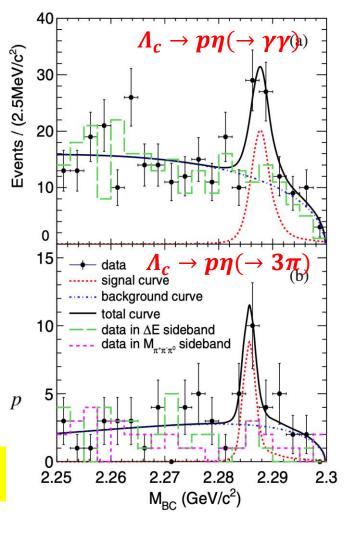
One of the highlights at BESIII!

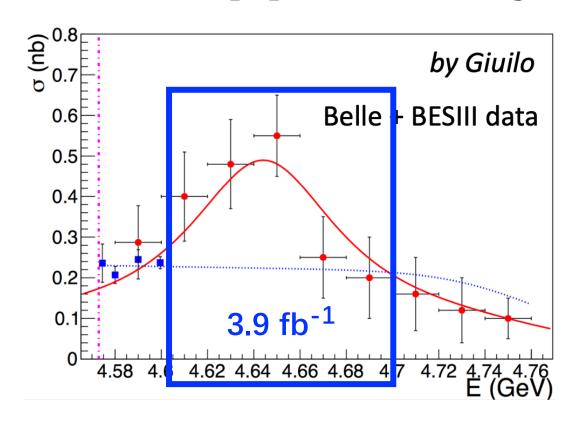
Cabbibo-favor hadronic decays

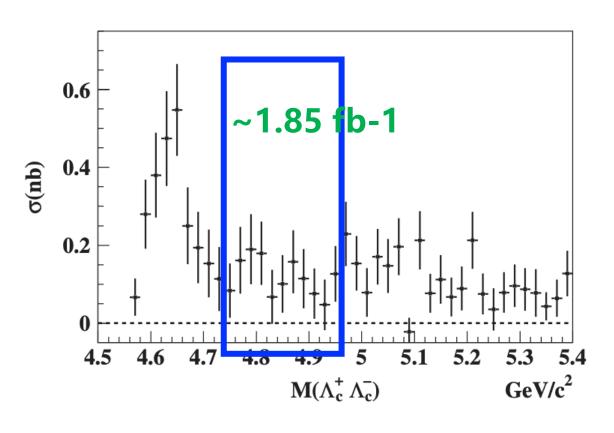

- \blacksquare BESIII: 567pb-1at 4.599GeV, 12 MeV above $\Lambda_c^+\overline{\Lambda}_c^-$ threshold in $e^+e^-\to\Lambda_c^+\overline{\Lambda}_c^-$
- ☐ Double tag method to measure absolute Brs.


_				
-	Mode	This work (%)	PDG (%)	BELLE B
_	pK ₅ ⁰	$1.52 \pm 0.08 \pm 0.03$	1.15 ± 0.30	
L	$ ho K^- \pi^+$	$5.84 \pm 0.27 \pm 0.23$	5.0 ± 1.3	$6.84 \pm 0.24^{+0.21}_{-0.27}$
Т	$pK_S^0\pi^0$	$1.87 \pm 0.13 \pm 0.05$	1.65 ± 0.50	
	$ ho K_S^0 \pi^+ \pi^-$	$1.53 \pm 0.11 \pm 0.09$	$\boldsymbol{1.30 \pm 0.35}$	
	$ ho K^-\pi^+\pi^0$	$4.53 \pm 0.23 \pm 0.30$	$\textbf{3.4} \pm \textbf{1.0}$	
	$\Lambda\pi^+$	$1.24 \pm 0.07 \pm 0.03$	1.07 ± 0.28	
	$\Lambda\pi^+\pi^0$	$7.01 \pm 0.37 \pm 0.19$	3.6 ± 1.3	
	$\Lambda\pi^+\pi^-\pi^+$	$3.81 \pm 0.24 \pm 0.18$	2.6 ± 0.7	
	$\mathbf{\Sigma}^0\pi^+$	$1.27 \pm 0.08 \pm 0.03$	1.05 ± 0.28	
	$\mathbf{\Sigma}^+\pi^{0}$	$1.18 \pm 0.10 \pm 0.03$	1.00 ± 0.34	
	$\mathbf{\Sigma}^{+}\pi^{+}\pi^{-}$	$4.25 \pm 0.24 \pm 0.20$	3.6 ± 1.0	
	$\Sigma^+\omega$	$1.56 \pm 0.20 \pm 0.07$	2.7 ± 1.0	
-	·		·	

- \square B($\Lambda_c^+ \to pK^-\pi^+$): BESIII precision comparable with Belle's
- \square BESIII $B(\Lambda_c^+ \to pK^-\pi^+)$ is compatible with BELLE's within 2σ
- ☐ Improved precisions in other modes significantly


Cabbibo-Suppressed hadronic decay


- First observation of $\Lambda_c \to p\pi^+\pi^-$ and improved measurement of $\Lambda_c \to p\phi$
- Evidence of $\Lambda_c \to p\eta$ (4.2 σ); No hint for $\Lambda_c \to p\pi^0$
- Br ~ 10^{-3}

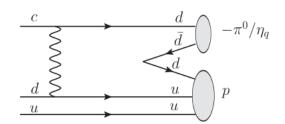


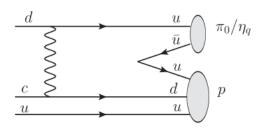
 $\Lambda_c
ightarrow p \phi$ only receives the internal W-emission

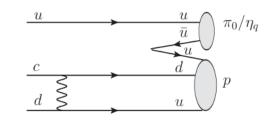
New Opportunity at BESIII

- 4.612 4.700 GeV, 3.9 fb⁻¹ collected in 2019-2020
- 4.7 4.95 GeV, ~1.85 fb-1 collected in 2020-2021

Singly-CS hadronic process

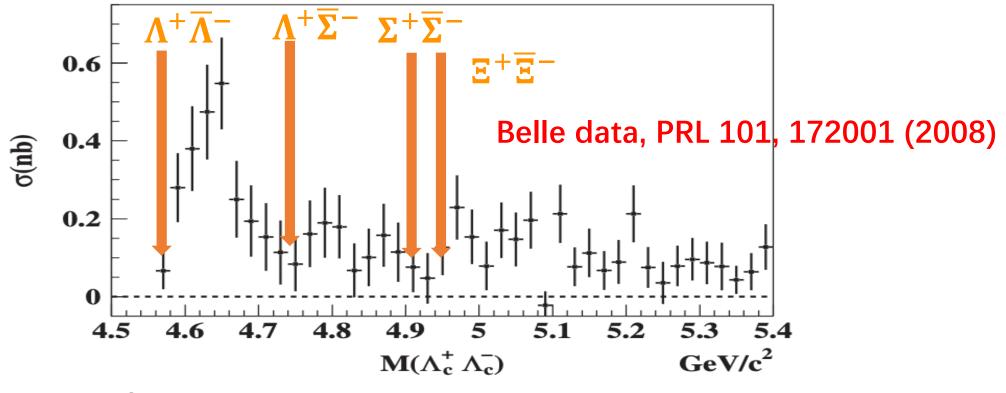

H.-Y. Cheng, et al, PRD 97, 074028 (2018)


TABLE III. Comparison of various theoretical predictions for the branching fractions (in units of 10^{-3}) of singly Cabibbo-suppressed decays of Λ_c^+ .


		Sharma et al. [24]	Uppal <i>et al</i> . [42]	Chen et al. [43]	Lu et al. [25]	Geng et al. [28]	This work	Experiment [7,19]
	$\Lambda_c^+ \to p\pi^0$	0.2	0.1-0.2	0.11-0.36	0.48	0.57 ± 0.15	0.08	< 0.27
	$\Lambda_c^+ \to p\eta$	$0.2^{a}(1.7)^{b}$	0.3			1.24 ± 0.41	1.28	1.24 ± 0.29
J.	$\Lambda_c^+ \to p\pi^0$ $\Lambda_c^+ \to p\eta$ $\Lambda_c^+ \to p\eta'$ $\Lambda_c^+ \to n\pi^+$	0.4-0.6	0.04-0.2			$1.22^{+1.43}_{-0.87}$		
	$\Lambda_c^+ \to n\pi^+$	0.4	0.8-0.9	0.10-0.21	0.97	1.13 ± 0.29	0.27	
	$\Lambda_c^+ \to \Lambda K^+$	1.4	1.2	0.18-0.39		0.46 ± 0.09	1.06	0.61 ± 0.12
	$\Lambda_c^+ \to \Sigma^0 K^+$	0.4-0.6	0.2 - 0.8			0.40 ± 0.08	0.72	0.52 ± 0.08
N	$\Lambda_c^+ \to \Sigma^+ K^0$	0.9-1.2	0.4-0.8			0.80 ± 0.16	1.44	
	-		_					

^aThe *P*-wave amplitude of $\Lambda_c^+ \to \Xi^0 K^+$ is assumed to be positive. ^bThe *P*-wave amplitude of $\Lambda_c^+ \to \Xi^0 K^+$ is assumed to be negative.

Important information for understanding the non-factorizable component!


Other interests

- SCS $\Lambda_c \to p\eta'$, $\Sigma^+ K_S$, $\Sigma^0 K^+$, ΛK^+ , and three-body decay as well.
- Weak radiative decay $\Lambda_c o \gamma \Sigma^+$
- PWA to extract hadronic decays: $\Lambda_c \to \Lambda \pi^+ \pi^0$, $\Lambda_c \to p \pi^+ \pi^-$, ...
- Inclusive decay: $\Lambda_c \rightarrow hadron + X$

Stay tuned!

• • •

Charm Baryon threshold

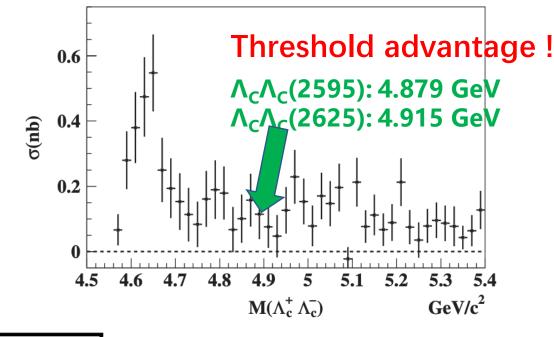
Energy thresholds

$$\checkmark e^+e^- \rightarrow \Lambda_c^+ \bar{\Sigma}_c^-$$
 4.74 GeV
 $\checkmark e^+e^- \rightarrow \Lambda_c^+ \bar{\Sigma}_c \pi$ 4.88 GeV
 $\checkmark e^+e^- \rightarrow \Sigma_c \bar{\Sigma}_c$ 4.91 GeV (10MeV above current limit)
 $\checkmark e^+e^- \rightarrow \Xi_c \bar{\Xi}_c$ 4.95 GeV (50 MeV above current limit)

Λ_{c}^{*} production

Except the Σ_c and Ξ_c , the Λ_C^* will be produced associated with Λ_C .

$$\Lambda_c(2595)^+$$


$$I(J^P) = 0(\frac{1}{2}^-)$$

The spin-parity follows from the fact that $\Sigma_c(2455)\pi$ decays, with little available phase space, are dominant. This assumes that $J^P=1/2^+$ for the $\Sigma_c(2455)$.

Mass
$$m = 2592.25 \pm 0.28$$
 MeV $m - m_{\Lambda_c^+} = 305.79 \pm 0.24$ MeV Full width $\Gamma = 2.6 \pm 0.6$ MeV

 $\Lambda_C^+\pi\pi$ and its submode $\Sigma_C(2455)\pi$ — the latter just barely — are the only strong decays allowed to an excited Λ_C^+ having this mass; and the submode seems to dominate.

Λ_c (2595) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \pi^+ \pi^-$	[s] —	117
$\Sigma_c(2455)^{++}\pi^-$	$24 \pm 7 \%$	†
$\Sigma_{c}(2455)^{0}\pi^{+}$	24 \pm 7 %	†
$\Lambda_c^+ \pi^+ \pi^-$ 3-body	18 \pm 10 %	117
See Particle Listings for 2 deca	y modes that have been seen / i	not seen

$$\Lambda_c(2625)^+$$

$$I(J^P) = 0(\frac{3}{2}^-)$$

 J^P has not been measured; $\frac{3}{2}$ is the quark-model prediction.

Mass
$$m=2628.11\pm0.19$$
 MeV (S = 1.1) $m-m_{\Lambda_c^+}=341.65\pm0.13$ MeV (S = 1.1) Full width Γ < 0.97 MeV, CL = 90%

 $\Lambda_C^+\pi\pi$ and its submode $\Sigma(2455)\pi$ are the only strong decays allowed to an excited Λ_C^+ having this mass.

A _C (2625) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_c^+ \pi^+ \pi^-$	≈ 67%		184
$\Sigma_c(2455)^{++}\pi^-$	<5	90%	102
$\Sigma_{c}(2455)^{0}\pi^{+}$	<5	90%	102
$\Lambda_c^+ \pi^+ \pi^-$ 3-body	large		184
See Particle Listings for 2 deca	y modes that have been se	en / not seen.	

"New era"

From Haibo Li

BEPCII upgrade:

Scan data: 65 fb⁻¹

4.01 GeV: 20 fb⁻¹ DsDs 4.60 GeV: 20 fb⁻¹ Λ_c Λ_c

Others

✓ $\Xi_c \overline{\Xi}_c$ 6 fb⁻¹ 4.95 -4.97GeV ✓ $\Omega_c^0 \overline{\Omega}_c^0$ 6 fb⁻¹ 5.4 -5.5 GeV

Total: **117fb**-1

Unique data samples near thresholds, and using quantum-entanglement:

- Hadron physics: spectroscopy, (transition-)form-factors, decay constants, fragmentation /Collins function, charmed hadron decays...
- Precise test of SM: charm hadron weak decays, CKM, CP violation in hyperon decays, and rare/forbidden charm and hyperon decays...

谢谢!