Inclusive search for Ξ_{bc}

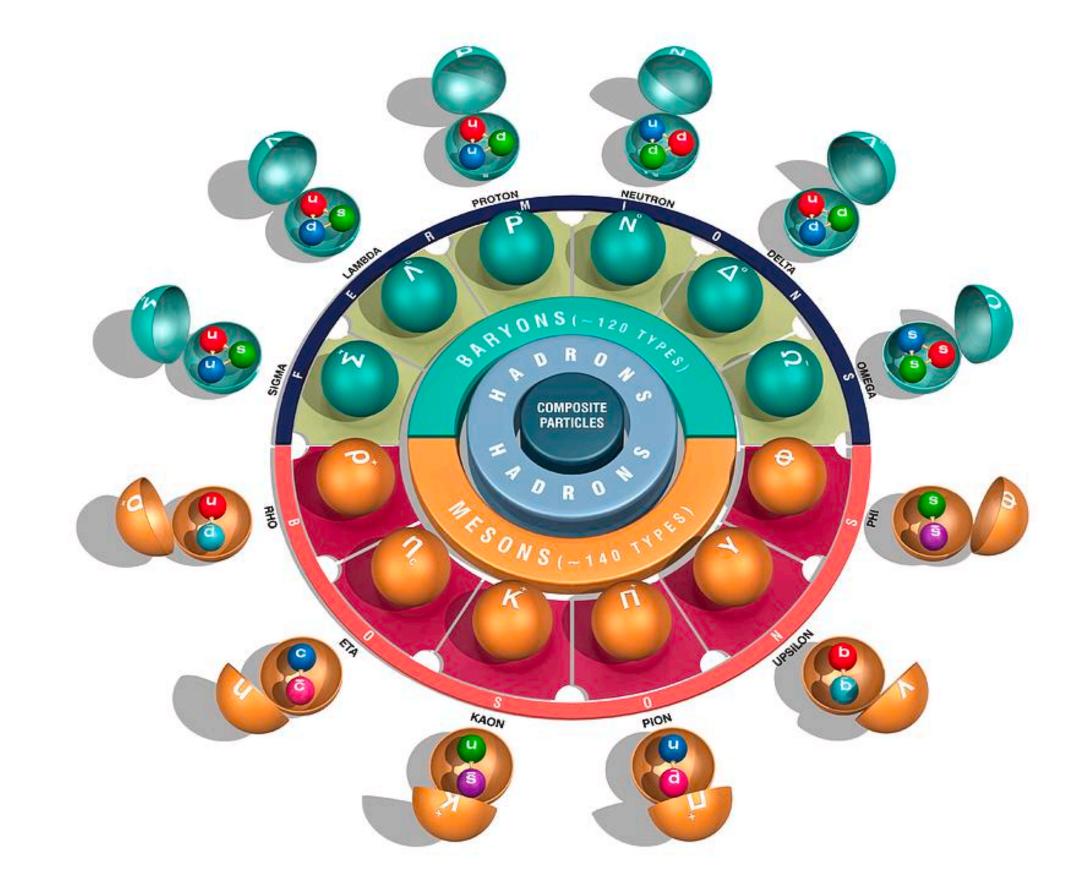
Qin Qin (秦溱)

- 合作者:施禹基、王伟、杨国贺、于福升、朱瑞林
 - 第18届重味物理和CP破坏研讨会
 - 2021年11月10-14日,暨南大学,广州

- **Huazhong University of Science and Technology**
 - 华中科技大学
 - 2108.06716

• It is important to study Ξ_{bc}

• We propose an inclusive approach to find Ξ_{bc}


• We will show it is feasible and timely for LHCb

Contents

The quark model

- Old myth
- New life

Murry Gell-Mann 1969 Nobel Prize for physics

Three new milestones

Observation of tetraquarks lacksquare

[BESIII, *Phys.Rev.Lett.* 110 (2013) 252001]

Observation of pentaguarks \bullet

[LHCb, *Phys.Rev.Lett.* 115 (2015) 072001]

Observation of a double-charm baryon Ξ_{cc}^{++} \bullet [LHCb, *Phys.Rev.Lett.* 119 (2017) 112001]

The *Physics* 2013 "Highlights of the Year" (rank 1st)

The *Physics World* 2015 "top-10 breakthroughs"

国家科技部"2017年度中国科学十大进展"

"Periodic table of the hadrons"

1 H Hydrogen 1.008												2 Hee Helium 4.003					
3 Lithium 6.941	4 Beryllium 9.012											5 B Boron 10.811	6 C Carbon 12.011	7 N Nitrogen 14.007	8 0 Oxygen 15.999	9 F Fluorine 18.998	10 Neon 20.180
11 Na Sodium 22.990	12 Magnesium 24.305											13 Aluminum 26.982	14 Silicon 28.086	15 P Phosphorus 30.974	16 S Sulfur 32.066	17 Cl Chlorine 35.453	18 Argon 39.948
19 K Potassium 39.098	20 Ca Calcium 40.078	21 Scandium 44.956	22 Tianium 47.867	23 Vanadium 50.942	24 Cr Chromium 51.996	25 Mn Manganese 54.938	26 Fe Iron 55.845	27 CO Cobalt 58.933	28 Ni Nickel 58.693	29 Cu Copper 63.546	30 Zn <u>Zinc</u> 65.38	31 Ga Gallium 69.723	32 Germanium 72.631	33 Arsenic 74.922	34 Selenium 78.972	35 Br Bromine 79.904	36 Krypton 84.798
37 Rb Rubidium 85,468	38 Sr Strontium 87.62	39 Y Yttrium 88.906	40 Zr Zirconium 91.224	41 Nbb Niobium 92.906	42 Molybdenum 95.95	43 Tc Technetium 98.907	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.906	46 Pd Palladium 106.42	47 Ag Silver 107.868	48 Cd Cadmium 112.411	49 In Indium 114.818	50 Sn Tin 118.711	51 Sb Antimony 121.760	52 Tellurium 127.6	53 Iodine 126.904	54 Xenon 131.294
55 Cs Cesium 132.905	56 Barium 137.328	57-71	72 Hf Hafnium 178.49	73 Tantalum 180.948	74 W Tungsten 183.84	75 Re Rhenium 186.207	76 Osmium 190.23	77 Iridium 192.217	78 Pt Platinum 195.085	79 Au Gold 196.967	80 Hg Mercury 200.592	81 TI Thallium 204.383	82 Pb Lead 207.2	83 Bi Bismuth 208.980	84 PO Polonium [208.982]	85 At Astatine 209.987	86 Radon 222.018
87 Francium 223.020	88 Ra Radium 226.025	89-103	104 Rf Rutherfordium [261]	105 Db Dubnium [262]	106 Seaborgium [266]	107 Bh Bohrium [264]	108 HS Hassium [269]	109 Meitnerium [268]	110 DS Darmstadtium [269]	111 Rg Roentgenium [272]	112 Copernicium [277]	113 Nh Nihonium unknown	114 Fl Flerovium [289]	115 Moscovium unknown	116 LV Livermorium [298]	117 TS Tennessine unknown	118 Oganesson unknown
$\begin{bmatrix} 57 \\ La \\ Lanthanum \\ 138.905 \end{bmatrix} \begin{bmatrix} 58 \\ Ce \\ Cerium \\ 140.116 \end{bmatrix} \begin{bmatrix} 59 \\ Pr \\ Praseodynium \\ 140.908 \end{bmatrix} \begin{bmatrix} 61 \\ Pm \\ Praseodynium \\ 144.913 \end{bmatrix} \begin{bmatrix} 62 \\ Sm \\ Smarium \\ 151.964 \end{bmatrix} \begin{bmatrix} 64 \\ Gd \\ Gadlinium \\ 151.964 \end{bmatrix} \begin{bmatrix} 65 \\ Db \\ Tsteinium \\ 152.95 \end{bmatrix} \begin{bmatrix} 66 \\ Db \\ Proprise \\ 152.95 \end{bmatrix} \begin{bmatrix} 67 \\ Bb \\ Fb \\ Folium \\ 164.930 \end{bmatrix} \begin{bmatrix} 68 \\ Fr \\ Froium \\ 164.930 \end{bmatrix} \begin{bmatrix} 69 \\ Tm \\ Thulium \\ 168.934 \end{bmatrix} \begin{bmatrix} 70 \\ Yb \\ Yterbium \\ 173.055 \end{bmatrix} \begin{bmatrix} 71 \\ Lu \\ Lutetium \\ 174.967 \end{bmatrix}$																	
	227.028 232.038 231.036 238.029 237.048 243.061 247.070 251.080 [254] 257.095 258.1 259.101 [262] Alkaline Metal Alkaline Earth Transition Metal Semimetal Nonmetal Halogen Noble Gas Lanthanide Actinide																

$\pi, K,$	D	В	η_c	B _c	η_b			
p, n, 	Λ_c	Λ_b				Ecc	Ξ_{bc}	Ξ_{bb}
	X (2900)		Z_c			T_{cc}	T_{bc}	T_{bb} >
			(P_c)					

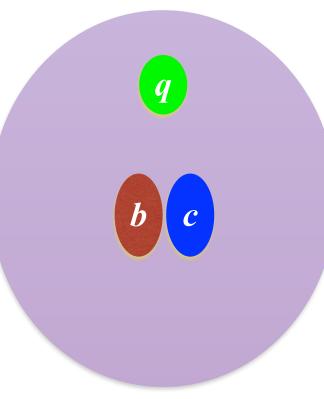
 Z_c, P_c : a new period

 Ξ_{cc} , X(6900): a new main group

Beyond stamp collecting

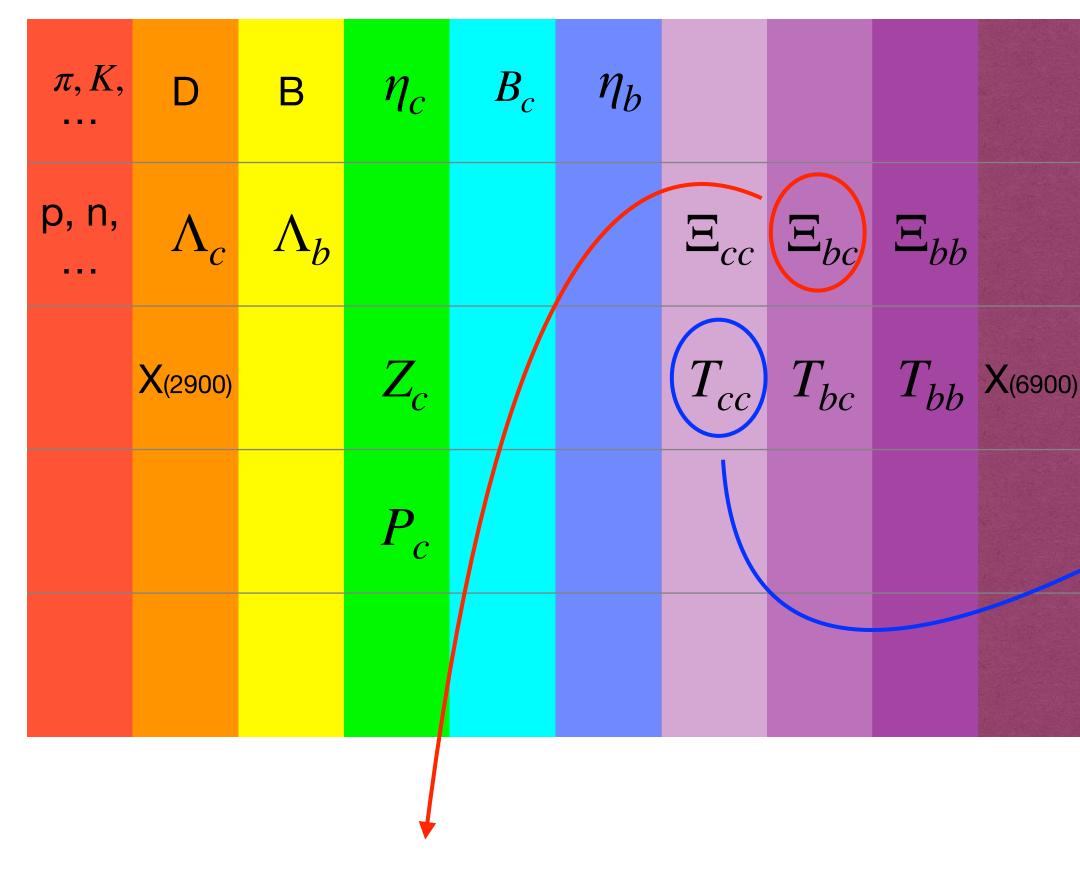
 \bullet hadrons

also electroweak dynamics


e.g., doubly heavy baryons have a unique structure, resembling a 'double star' with a 'planet' attached

analogous to a heavy meson, but also different: bosonic, sizable heavy element

e.g., the doubly heavy tetraquarks help us probe the nature of exotic hadronic states, cusps or true resonances


Because of color confinement, properties of quarks are studied via

New types of hadrons provide new visual angles into QCD and

Who is to be shot next?

 Ξ_{bc} : [**QQ**,Shi,Wang,Yang,Yu,Zhu,2108.06716]

Two targets in the talk @Nankai, 2nd May 2021.

T_{cc}: [**QQ**,Shen,Yu,2008.08026]

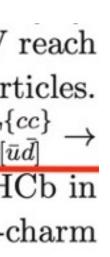
"Discovery potential of double-charm tetraquarks"

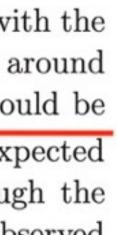
Three months later $- T_{cc}$ discovery was reported by LHCb on 28 July 2021.

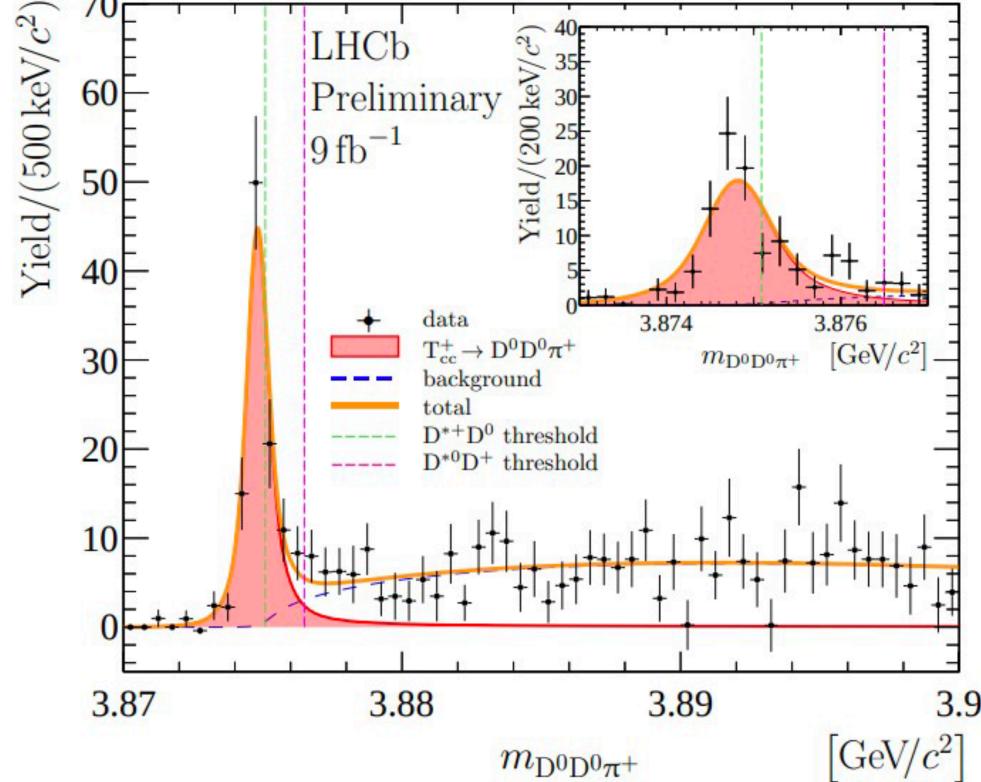
Discovery of T_{cc}

[**QQ**,Shen,Yu,2008.08026]

Discovery potentials of double-charm tetraquarks

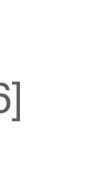

We find that their production cross sections at the LHCb with $\sqrt{s} = 13$ TeV reach $\mathcal{O}(10^4)$ pb, which indicate that the LHCb has collected $\mathcal{O}(10^8)$ such particles. Through the decay channels of $T^{\{cc\}}_{[\bar{u}\bar{d}]} \to D^+K^-\pi^+$ or $D^0D^+\gamma$ (if stable) or $T^{\{cc\}}_{[\bar{u}\bar{d}]} \to D^+K^-\pi^+$ D^0D^{*+} (if unstable), it is highly hopeful that they get discovered at the LHCb in the near future. We also discuss the productions and decays of the double-charm tetraquarks at future Tera-Z factories.


branching fractions of $T_{[\bar{u}\bar{d}]}^{\{cc\}}$ decays is the same as the observed Ξ_{cc}^{++} . Comparing with the production rates between double-charm tetraquarks and baryons, and considering around 2×10^3 events of Ξ_{cc}^{++} with the current LHCb data, the signal yields of $T_{[\bar{u}\bar{d}]}^{\{cc\}}$ would be $\mathcal{O}(10^2)$ at LHCb, and will reach $\mathcal{O}(10^3)$ at LHCb Run III. Thus it is hopefully expected that the double-charm tetraquark will be observed in the near future. Although the production rates are smaller at the future Z factories, it is also expected to be observed at the Tera-Z factories due to the smaller backgrounds.


Correct discovery channel

Correct signal yield

 $N_{\rm c} = 117 \pm 16$



[LHCb,2109.01038;2109.01056]

@ European Physical Society Conference on high energy physics 2021

Who is to be shot next?

$\pi, K,$	D	В	η_c	B _c	η_b			
p, n, 	Λ_c	Λ_b				Ξ_{cc}	Ξ_{bc}	Ξ_{bb}
	X(2900)		Z_{c}			T_{cc}	T_{bc}	T_{bb}
			P_c					

T_{cc}: **[QQ**, F.S.Yu,2008.08026]

 Ξ_{bc} : this talk

$\sigma(\Xi_{bc}) = 37 \text{ nb} \text{ at } 14 \text{ TeV LHCb}$

[X.G.Wu, et al 1101.1130]

	2011	2012	2018	2023	2029	2035
LHCb	Run I		Run II	Run III	Run IV	Run V
Integrated Iuminosity	1 fb ⁻¹	3 fb ⁻¹	9 fb ⁻¹	23 fb ⁻¹	50 fb ⁻¹	300 fb-

Trillions of Ξ_{bc} will be produced @ LHCb Run3.

Difficulties in experimental searches for Ξ_{bc}

Detection efficiency -- small exclusive branching ratios ullet

_	channels	$\Gamma/~{\rm GeV}$	\mathcal{B}	channels	$\Gamma/~{ m GeV}$	B
\langle	$\Xi_{bc}^{0} \to \Lambda_{c}^{+} \pi^{-}$	1.13×10^{-18}	1.60×10^{-7}	$\Xi^0_{bc} \to \Lambda^+_c \rho^-$	3.31×10^{-18}	4.68×10^{-7}
3) 81	$\Xi_{bc}^0 \to \Lambda_c^+ a_1^-$	4.42×10^{-18}	6.24×10^{-7}	$\Xi^0_{bc} \to \Lambda^+_c K^-$	9.36×10^{-20}	$1.32 imes 10^{-8}$
	$\Xi^0_{bc} \to \Lambda^+_c K^{*-}$	1.70×10^{-19}	2.41×10^{-8}	$\Xi^0_{bc}\to \Lambda^+_c D^-$	2.27×10^{-19}	$3.21 imes 10^{-8}$
	$\Xi^0_{bc} \to \Lambda^+_c D^{*-}$	2.42×10^{-19}	$3.42 imes 10^{-8}$	$\Xi^0_{bc}\to \Lambda^+_c D^s$	6.23×10^{-18}	$8.80 imes 10^{-7}$
_	$\Xi_{bc}^0 \to \Lambda_c^+ D_s^{*-}$	5.82×10^{-18}	8.22×10^{-7}			
	$\Xi_{bc}^0 o \Sigma_c^+ \pi^-$	1.12×10^{-18}	1.58×10^{-7}	$\Xi_{bc}^{0}\to \Sigma_{c}^{+}\rho^{-}$	3.53×10^{-18}	$4.99 imes 10^{-7}$
	$\Xi_{bc}^0 \to \Sigma_c^+ a_1^-$	5.24×10^{-18}	7.41×10^{-7}	$\Xi^0_{bc}\to \Sigma^+_c K^-$	9.16×10^{-20}	$1.29 imes 10^{-8}$
	$\Xi_{bc}^0 \to \Sigma_c^+ K^{*-}$	1.86×10^{-19}	$2.63 imes 10^{-8}$	$\Xi^0_{bc}\to \Sigma^+_c D^-$	1.96×10^{-19}	$2.77 imes10^{-8}$
	$\Xi_{bc}^0 \to \Sigma_c^+ D^{*-}$	3.85×10^{-19}	5.44×10^{-8}	$\Xi_{bc}^{0} \to \Sigma_{c}^{+} D_{s}^{-}$	5.34×10^{-18}	$7.55 imes 10^{-7}$
-	$\Xi_{bc}^0 \to \Sigma_c^+ D_s^{*-}$	9.73×10^{-18}	1.38×10^{-6}			

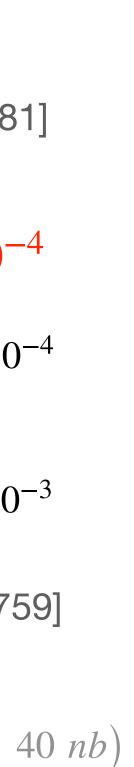
[W. Wang, F.S. Yu, Z.X. Zhao, 1707.02834]

• First experimental attempts (LHCb, 13 TeV, ~ 5 fb⁻¹)

$$\frac{\sigma(\Xi_{bc}^{0})}{\sigma(\Lambda_{b}^{0})} \frac{B(\Xi_{bc}^{0} \to D^{0}pK^{-})}{B(\Lambda_{b}^{0} \to D^{0}pK^{-})} < [1.7,30]\%$$

[LHCb, 2009.02481]

$$< [0.6, 3] \times 10^{-10}$$


$$\frac{\sigma(\Xi_{bc}^{0})}{\sigma(\Lambda_{b}^{0})} \underbrace{B(\Xi_{bc}^{0} \to \Lambda_{c}^{+}\pi^{-})}_{B(\Lambda_{b}^{0} \to \Lambda_{c}^{+}\pi^{-})} < [0.5, 2.5] \times 10^{-10}$$

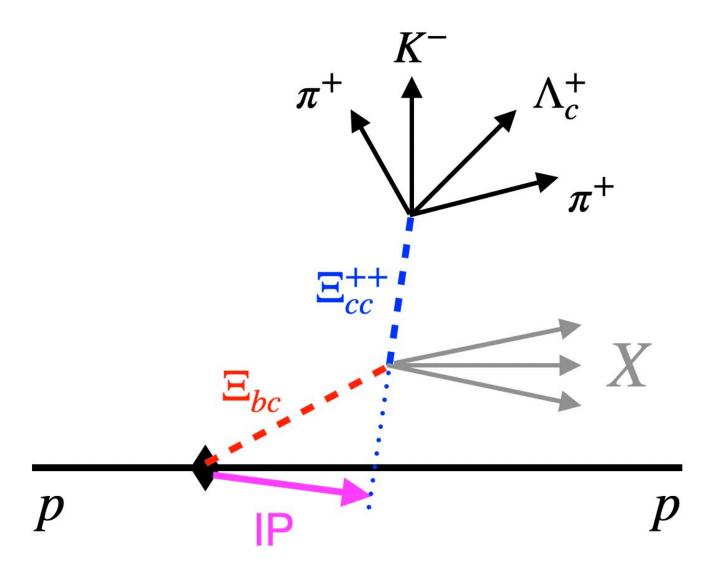
$$\frac{\sigma(\Xi_{bc}^{0})}{\sigma(\Lambda_{b}^{0})} \underbrace{B(\Xi_{bc}^{0} \to \Xi_{c}^{+}\pi^{-})}_{B(\Lambda_{b}^{0} \to \Xi_{c}^{+}\pi^{-})} < [1.4, 6.9] \times 10^{-10}$$

[LHCb, 2104.04759]

$$\left(B(\Lambda_b^0 \to \Lambda_c^+ \pi^-) = 4.9 \times 10^{-3}, \sigma(\Lambda_b^0) \sim 10 \ \mu b, \sigma(\Xi_{bc}^0) \sim 1$$

10

Generally, inclusive decays have (1) larger branching ratios but \bullet (2) lower detection efficiencies

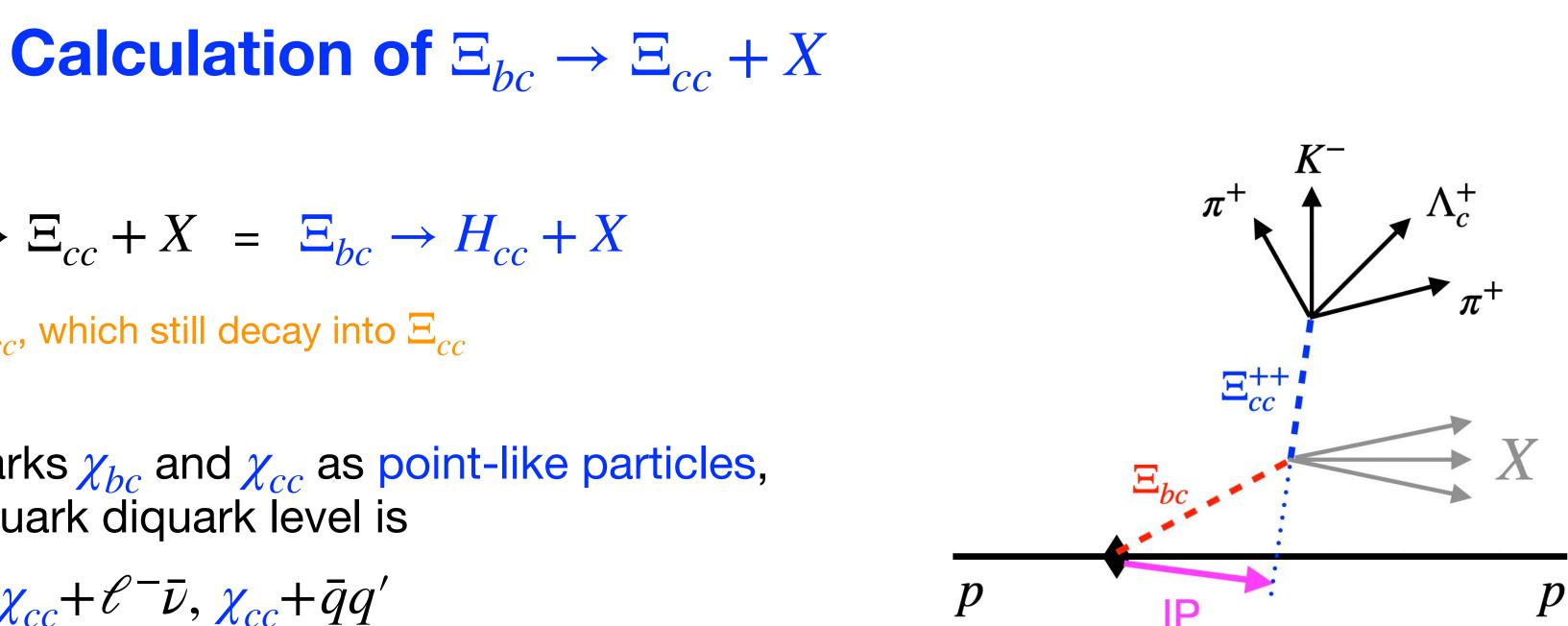

Basically impossible at hadron colliders

• However, for $\Xi_{bc} \to \Xi_{cc}^{++} + X$, the efficiency can be large by making use of the inform of displaced vertex

Inspired by the proposal to search for Ξ_{bb} via $\Xi_{bb} \rightarrow B_c + X$ [Gershon, Poluektov, 1810.06657]

- Ξ_{bc} is (almost) the only source for displaced Ξ_{cc} 's
- The $B_c \rightarrow \Xi_{cc}^{++} + X$ decay is highly suppressed

A novel approach — — inclusive Ξ_{bc} search

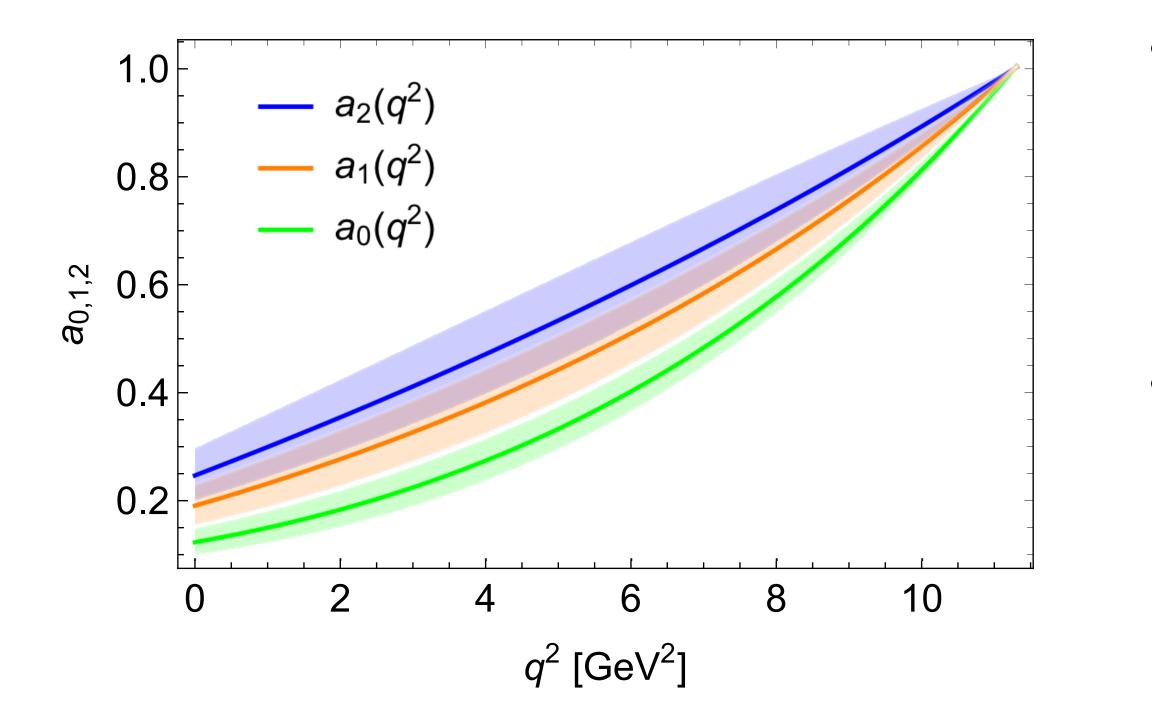


- First important fact: $\Xi_{bc} \to \Xi_{cc} + X = \Xi_{bc} \to H_{cc} + X$ H_{cc} include excited states of Ξ_{cc} , which still decay into Ξ_{cc}
- Regarding the heavy diquarks χ_{bc} and χ_{cc} as point-like particles, the decay at the quark-diquark diquark level is $\chi_{bc} \rightarrow \chi_{cc} + \ell^- \bar{\nu}, \chi_{cc} + \bar{q}q'$

It is reasonable because $r_{OO'} \sim 1/(m_O v) \ll 1/\Lambda_{QCD}$ [e.g., Brodsky, Guo, Hanhart, Meissner, 1101.1983]

- By making use of OPE, the inclusive decay rate is expanded by powers of $1/M_{OO'}$ within the Heavy Diquark Effective Theory
- At the leading power

$$B(\Xi_{bc} \to \Xi_{cc} + X) = B(\chi_{bc} \to \chi_{cc})$$

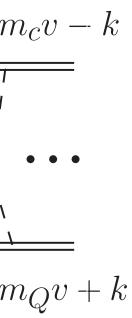


[Y.J.Shi, W.Wang, Z.X.Zhao, Meissner, 2002.02785]

 $\chi_{c} + \ell^{-} \bar{\nu}, \chi_{cc} + \bar{q}q') + \mathcal{O}(1/M_{OO'})$

Calculation

 The key issue is the 2-diquark-2-fermion interactio $\chi_{bc} \rightarrow \chi_{cc}$ diquark current $\langle \chi_{cc}(v,\epsilon) | \bar{c}\gamma^{\mu}b | \chi_{bc}(v',\epsilon') \rangle \propto - a_0 \epsilon^* \cdot \epsilon' v'^{\mu} - a_1 \epsilon^* \cdot \epsilon'$ $\langle \chi_{cc}(v,\epsilon) | \bar{c}\gamma^{\mu}\gamma_5 b | \chi_{bc}(v',\epsilon') \rangle \propto -ib_0 \epsilon^{\epsilon'\epsilon^*v'\mu} - ib_1 \epsilon^{\epsilon'\epsilon^*v\mu}$


$$\int \mathbf{Of} \ \Xi_{bc} \rightarrow \Xi_{cc} + X$$
on vertex, i.e. the

$$\int v^{\mu} + a_{2}e^{*} \cdot v'e'^{\mu} + a_{3}v \cdot e'e^{*\mu}$$

$$\int \mathbf{M}_{c} + 1 \frac{1}{N_{c}} \frac{1}{m_{c}^{3}} R_{bc}(0)R_{cc}^{*}(0)$$

• The small-recoil diquark current determined by heavy quark symmetry

$$a_{0,1,2,3}(q_{\max}^2) = b_{0,1}(q_{\max}^2) = 1$$

Calculation of $\Xi_{bc} \rightarrow \Xi_{cc} + X$

Numerical result for the decay width

$$\Gamma(\Xi_{bc} \to \Xi_{cc} + X) = (1.9 \pm 0.$$

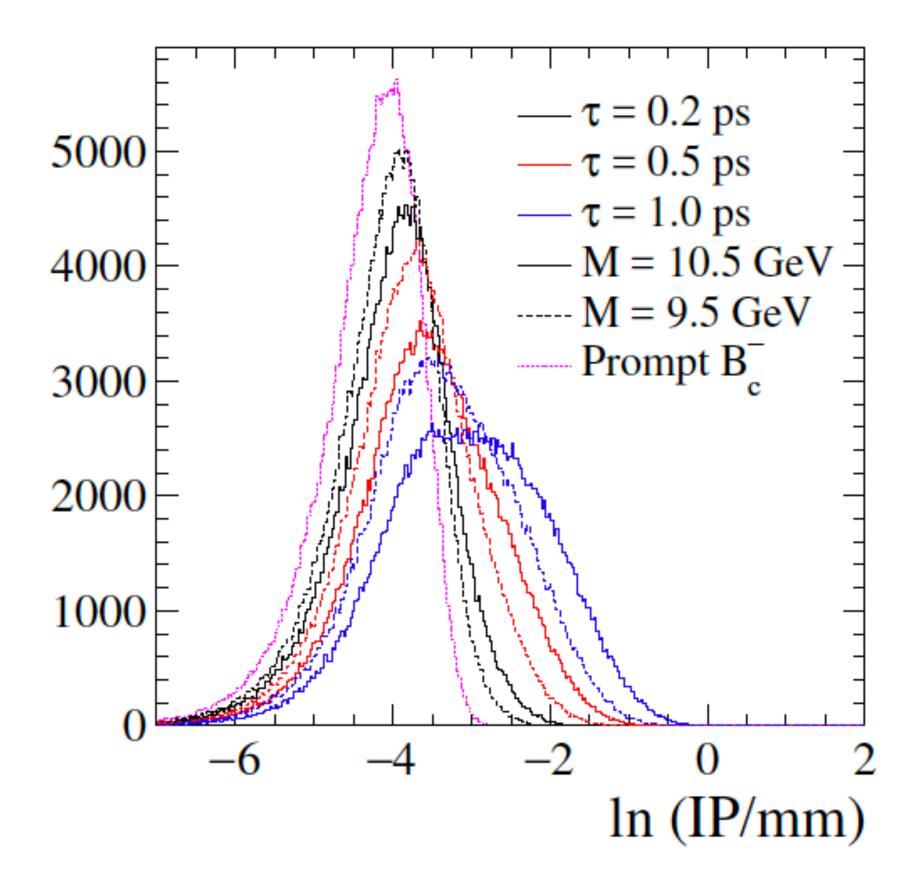
Uncertainties from quark mass, wave function at origin, scale dependence

• Lifetime [H.Y.Cheng, F.R.Xu, 1903.08148]

93fs <
$$\tau(\Xi_{bc}^{0})$$
 < 108 fs, 409 fs < $\tau(\Xi_{bc}^{+})$ < 607 fs

• The branching ratio is

$$B(\Xi_{bc}^+ \to \Xi_{cc} + X) \approx 14\%,$$


• Ξ_{cc}^{++} fragmentation suffers a factor of 1/2

$$B(\Xi_{bc}^{+} \to \Xi_{cc}^{++} + X) \approx 7\%, \quad B(\Xi_{bc}^{0} \to \Xi_{cc}^{++} + X) \approx 1.5\%$$

$.1 \pm 0.3 \pm 0.4) \times 10^{-13}$ GeV

$$B(\Xi_{bc}^0 \to \Xi_{cc} + X) \approx 3\%$$

IP resolution of LHCb

[Gershon,Poluektov,1810.06657]

• Ξ_{bc}^+ is very promising.

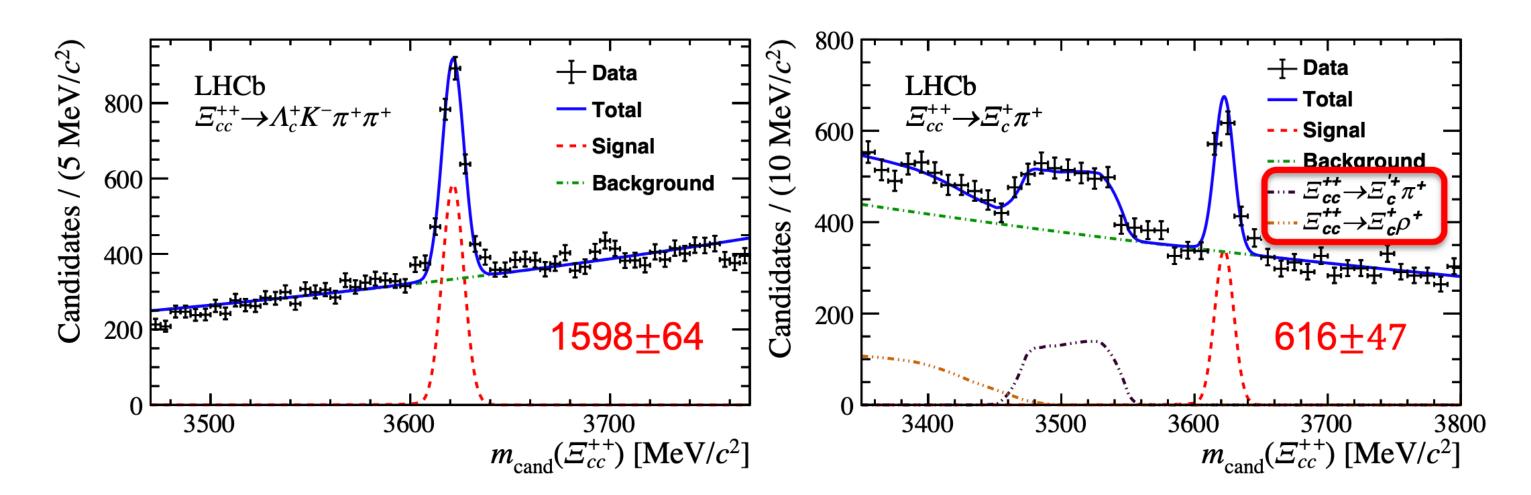
93fs < $\tau(\Xi_{bc}^0)$ < 108 fs, 409 fs < $\tau(\Xi_{bc}^+)$ < 607 fs

[H.Y.Cheng, F.R.Xu, 1903.08148]

Search for
$$\Xi_{bc}^+ \to \Xi_{cc}^{++} + X$$
 with displaced Ξ_{cc}^{++}

- Estimated of signal signal events
 - $N(\Xi_{bc}^+ \to \Xi_{cc}^{++} + X) =$

Three ingredients:

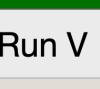

- 1. Number of signals of Ξ_{cc}^{++}
- 2. Production ratio $\sigma(\Xi_{bc})/\sigma(\Xi_{cc})$
- 3. Branching fraction of inclusive decay of $\Xi_{hc}^+ \to \Xi_{cc}^{++} + X$

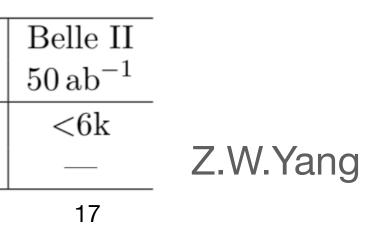
$$= N_p(\Xi_{bc}^+) \cdot B(\Xi_{bc}^+ \to \Xi_{cc}^{++} + X) \cdot \epsilon(\Xi_{cc}^{++})$$
$$= N_d(\Xi_{cc}^{++}) \cdot \frac{\sigma(\Xi_{bc})}{\sigma(\Xi_{cc})} \cdot B(\Xi_{bc}^+ \to \Xi_{cc}^{++} + X)$$

(The detection efficiency is identical to that of Ξ_{cc}^{++})

1.Number of signals of Ξ_{cc}^{++}

	2011	2012	2018	2023	2029	2035
LHCb	Run I		Run II	Run III	Run IV	Run V
Integrated Iuminosity	1 fb ⁻¹	3 fb ⁻¹	9 fb ⁻¹	23 fb ⁻¹	50 fb ⁻¹	300 fb ⁻¹


		LHCb	
Decay mode	$23\mathrm{fb}^{-1}$	$50\mathrm{fb}^{-1}$	$300\mathrm{fb}^{-1}$
$\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$	7k	15k	90k
$\Xi_{bc}^+ \to J/\psi \Xi_c^+$	50	100	600


Search for $\Xi_{bc} \rightarrow \Xi_{cc}^{++} + X$ with displaced Ξ_{cc}^{++}

J.B.He

1600

• Data of 9 fb^{-1} Run 1+2

• Events estimated for 23 fb^{-1} (Run III) 7000 $\frac{1}{2} \times (1600 + 600) \approx (10000)$

Search for $\Xi_{bc} \rightarrow \Xi_{cc}^{++} + X$ with displaced Ξ_{cc}^{++}

2. Production ratio $\sigma(\Xi_{bc})/\sigma(\Xi_{cc})$

[X.G.Wu et al, 1101.1130]

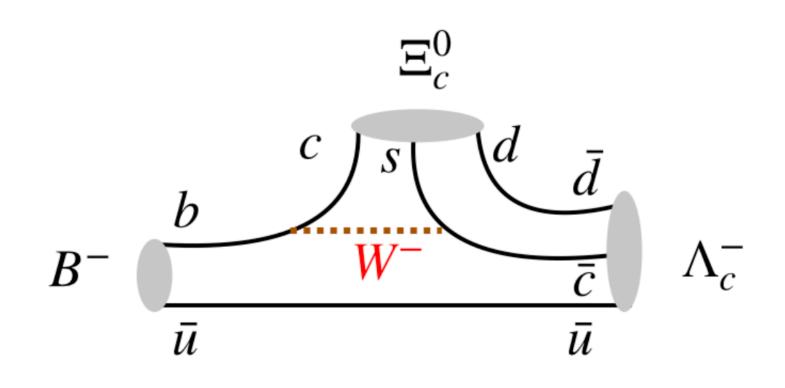
respectively. In the calculations, we adopt $p_T > 4$ GeV and |y| < 1.5.

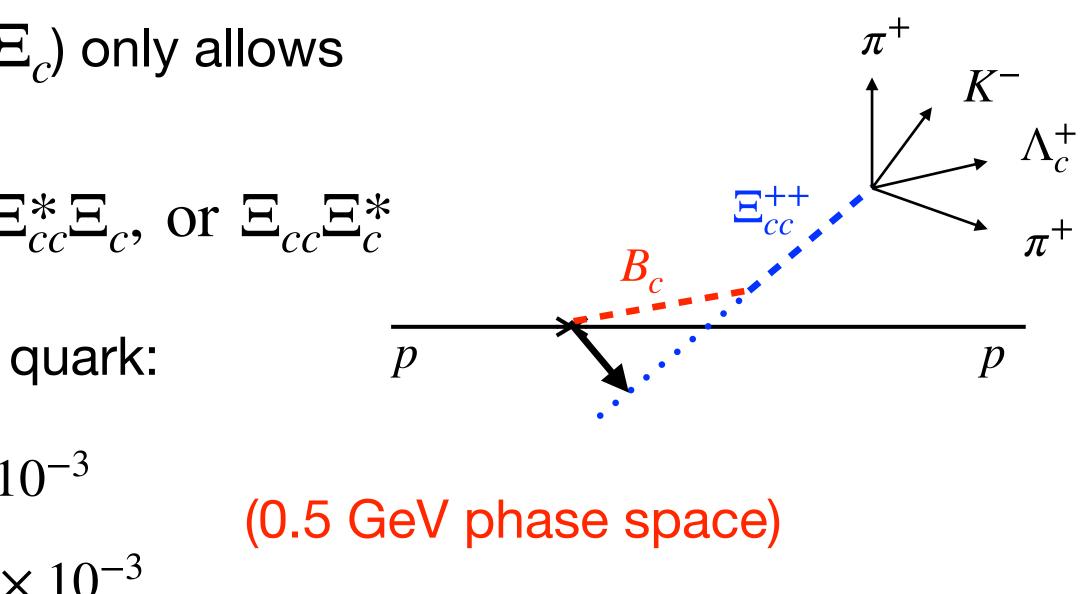
	Έ		Έ	E_{bc}	Ξ_{bb}		
	$\sqrt{S} = 7.0 \text{ TeV}$	$\sqrt{S} = 14.0 \text{ TeV}$	$\sqrt{S} = 7.0 \text{ TeV}$	$\sqrt{S} = 14.0 \text{ TeV}$	$\sqrt{S} = 7.0 \text{ TeV}$	$\sqrt{S} = 14.0 \text{ TeV}$	
$[{}^{3}S_{1}]$	38.11	69.40	16.7	28.55	0.503	1.137	
$[{}^{1}S_{0}]$	9.362	17.05	3.72	6.315	0.100	0.226	
Total	47.47	86.45	20.42	34.87	0.603	1.363	

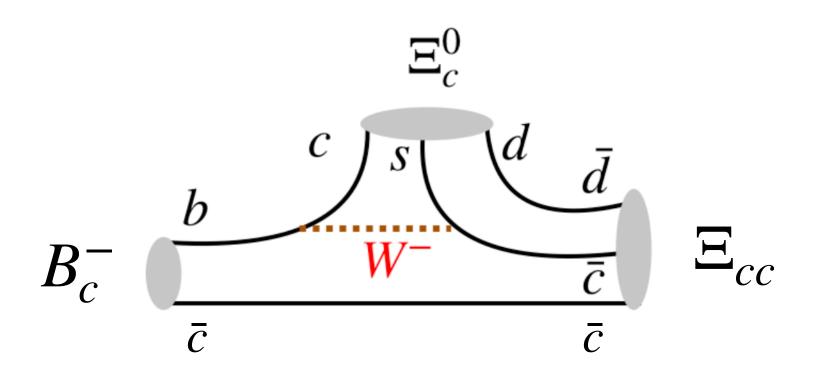
 $\sigma(\Xi_{bc})/\sigma(\Xi_{cc}) \approx 40\%$

TABLE VI. Comparison of the total cross section (in units nb) for the hadronic production of Ξ_{cc} , Ξ_{bc} , and Ξ_{bb} at $\sqrt{S} = 7.0$ TeV and $\sqrt{S} = 14.0$ TeV, where $[{}^{3}S_{1}]$ and $[{}^{1}S_{0}]$ stand for the combined results for the diquark in spin-triplet and spin-singlet states,

Search for $\Xi_{bc} \rightarrow \Xi_{cc}^{++} + X$ with displaced Ξ_{cc}^{++}


• Final number of estimated signal events @ LHCb Run3


$$N(\Xi_{bc}^{+} \to \Xi_{cc}^{++} + X) = N(\Xi_{cc}^{++}) \cdot \frac{\sigma(\Xi_{bc}^{+})}{\sigma(\Xi_{cc})} \cdot B(\Xi_{bc}^{+} \to \Xi_{cc}^{++} + X)$$
$$\approx 10^{4} \times 40\% \times 7\%$$
$$\approx 280$$


With possible efficiency lost, it should still be detectable @ LHCb Run3 \bullet

Small possibility from B_c decays

- The small phase space (0.18 GeV for $\Xi_{cc}\Xi_c$) only allows the processes of $B_c \to \Xi_{cc}\Xi_c$, or $\Xi_{cc}\Xi_c\gamma$, or $\Xi_{cc}\Xi_c\pi$, or $\Xi_{cc}^*\Xi_c$, or $\Xi_{cc}\Xi_c^*$
- Similar process but with a light spectator quark:
 - $Br(B^0 \to \Xi_c^- \Lambda_c^+) = (1.2 \pm 0.8) \times 10^{-3}$ $Br(B^- \to \Xi_c^0 \Lambda_c^-) = (0.95 \pm 0.23) \times 10^{-3}$

Conclusion

• We calculate $\Gamma(\Xi_{bc} \to \Xi_{cc} + X) = (1.9 \pm 0.1 \pm 0.3 \pm 0.4) \times 10^{-13}$ GeV.

• We estimate about 280 signal events to be observed @ LHCb Run 3.

We hope it is useful. lacksquare

• We propose to search for Ξ_{bc} via inclusive $\Xi_{bc}^+ \to \Xi_{cc}^{++} + X$ with a displaced Ξ_{cc}^{++} .

Thank you!