

Prospects for discovering new physics in charm sector through low-energy scattering processes

$$e^-p \to e^-(\mu^-)\Lambda_c$$

Li-Fen Lai

IOPP, CCNU

November 13th, 2021

Based on arXiv:2111.01463

In collaboration with Xin-Qiang Li, Xin-Shuai Yan and Ya-Dong Yang

←□▶ ←□▶ ← □▶ ← □ ▶ ← □

Li-Fen Lai (IOPP, CCNU) HFCPV 2021 November 13th, 2021

Outline

- Motivation
- 2 Theoretical framework
- Fixed-target scattering
- 4 Lepton flavor conserving scattering process: $e^-p \to e^-\Lambda_c$
- 5 Lepton flavor violating scattering process: $e^-p \to \mu^-\Lambda_c$
- **6** Summary

Why FCNC in charm sector

- In the SM, Flavor-changing-neutral -current (FCNC) transitions do not exist at tree level
- FCNC transitions in charm sector are strongly GIM-suppressed, ideal ground for NP searches
- FCNC processes in charm sector
 - Decay
 - semileptonic decays, e.g., $D^+ \to \pi^+ \mu^+ \mu^-$
 - S. Boer and G. Hiller, 1510.00311
 - leptonic decays, e.g., $D^0 \rightarrow \mu^+\mu^-$ S. Fajfer et al., 1510.00965
 - High-energy collider, e.g., $pp(qar{q}) o \ell^+\ell^-$ J. Fuentes-Martin et al., 2003.12421
 - Low-energy scattering processes (NEW)

FCNC in charm sector

Resonance problem

<ロト <回ト < 重ト < 重

S. Boer et al., 1510.00311

Why low-energy scattering in charm sector

Low-energy scattering processes

- In theory:
 - free from the SM long-distance pollution, due to different kinematics
 - Lepton flavor conserving (LFC) $e^-p \to e^-\Lambda_c$ and lepton flavor violating (LFV) $e^-p \to \mu^-\Lambda_c$, can be detected with one experimental setup
- In experiment:
 - electron beam and proton target have been used in the APEX and Qweak experiments at JLab for hunting sub-GeV dark vector bosons

APEX Collaboration, S. Abrahamyan et al., 1108.2750
Qweak Collaboration, T. Allison et al., 1409.7100

Effective Lagrangian

The general effective Lagrangian responsible for the process $\ell u o \ell^{(')} c$ is given by

$$\begin{split} \mathcal{L}_{\text{eff}}^{\text{NP}} &= \sum_{i,j,m,n} \Big\{ [g_{V}^{LL}]^{ij,mn} (\bar{\ell}_{L}^{i} \gamma_{\mu} \ell_{L}^{j}) (\bar{q}_{L}^{m} \gamma^{\mu} q_{L}^{n}) + [g_{V}^{LR}]^{ij,mn} (\bar{\ell}_{L}^{i} \gamma_{\mu} \ell_{L}^{j}) (\bar{q}_{R}^{m} \gamma^{\mu} q_{R}^{n}) \\ &+ [g_{V}^{RL}]^{ij,mn} (\bar{\ell}_{R}^{i} \gamma_{\mu} \ell_{R}^{j}) (\bar{q}_{L}^{m} \gamma^{\mu} q_{L}^{n}) + [g_{V}^{RR}]^{ij,mn} (\bar{\ell}_{R}^{i} \gamma_{\mu} \ell_{R}^{j}) (\bar{q}_{R}^{m} \gamma^{\mu} q_{R}^{n}) \\ &+ [g_{T}^{L}]^{ij,mn} (\bar{\ell}_{R}^{i} \sigma^{\mu\nu} \ell_{L}^{j}) (\bar{q}_{R}^{m} \sigma_{\mu\nu} q_{L}^{n}) + [g_{T}^{R}]^{ij,mn} (\bar{\ell}_{L}^{i} \sigma^{\mu\nu} \ell_{R}^{j}) (\bar{q}_{L}^{m} \sigma_{\mu\nu} q_{R}^{n}) \\ &+ [g_{S}^{L}]^{ij,mn} (\bar{\ell}_{R}^{i} \ell_{L}^{j}) (\bar{q}_{R}^{m} q_{L}^{n}) + [g_{S}^{R}]^{ij,mn} (\bar{\ell}_{L}^{i} \ell_{R}^{j}) (\bar{q}_{L}^{m} q_{R}^{n}) \Big\} \end{split}$$

Leptoquark model

Why LQ?

LQ models can explain B anomalies, such as $R(D^{(*)})$ and $R(K^{(*)})$

I. Doršner et al., 1603.09443; A. Crivellin and F. Saturnino, 1905.08297

Scalar LQ	SM Rep.	Vector LQ	SM Rep.	
$S_1Q_LL_L$, $S_1u_Re_R$	$(\bar{3}, 1, 1/3)$	$\tilde{V}_{2\mu}u_R\gamma^{\mu}L_L$	$(\bar{3}, 2, -1/6)$	mediate proton decays at tree level, $\tau(p \rightarrow \pi^0 e^+) > 1.6 \times 10^{33}$ years
$ ilde{R}_2ar{d}_RL_L$	(3, 2, 1/6)	$V_{2\mu}d_R\gamma^\mu L_L, V_{2\mu}Q_L\gamma^\mu e_R$	$(\bar{3}, 2, 5/6)$	P. Nath, P. F. Perez, hep-ph/0601023
$S_3Q_LL_L$	$(\bar{3}, 3, 1/3)$	$U_{1\mu}\bar{Q}_L\gamma^{\mu}L_L, U_{1\mu}\bar{d}_R\gamma^{\mu}e_R$	(3, 1, 2/3)	\longrightarrow cannot mediate $e^-p \rightarrow e^-\Lambda_c$ at tree level
$ ilde{S}_1 d_R e_R$	$(\bar{3}, 1, 4/3)$	$U_{3\mu}ar{Q}_L\gamma^\mu L_L$	(3, 3, 2/3)	
$R_2\bar{u}_RL_L$, $R_2\bar{Q}_Le_R$	(3, 2, 7/6)	$ ilde{U}_{1\mu}ar{u}_R\gamma^\mu e_R$	(3, 1, 5/3)	

• Interactions of R_2, U_3, \tilde{U}_1 with the SM fermions in the mass eigenstates:

$$\begin{split} \mathcal{L}_{R_2} \supset R_2^{\frac{5}{3}} \left[(\lambda_2^S)_{ij} \bar{u}_R^i e_L^j + (\lambda_2'^S)_{ij} \bar{u}_L^i e_R^j \right] + \text{H.c.} \\ \mathcal{L}_{U_3} \supset U_{3\mu}^{\frac{5}{3}} (\lambda_3^V)_{ij} \bar{u}_L^i \gamma^\mu e_L^j + \text{H.c.} \\ \mathcal{L}_{\tilde{U}_1} \supset \tilde{U}_{1\mu}^{\frac{5}{3}} (\lambda_{\tilde{1}}^V)_{ij} \bar{u}_R^i \gamma^\mu e_R^j + \text{H.c.} \end{split}$$

6/21

Wilson Coefficients

• $\mu=M=1$ TeV CMS Collaboration, A. M. Sirunyan et al., 1809.05558

	g_V^{LL}	g_V^{LR}	g_V^{RL}	g_V^{RR}	g_T^L	g_T^R	g_S^L	g_S^R
R_2	X	✓	✓	×	✓	✓	✓	✓
U_3	✓	X	×	×	×	×	×	×
\tilde{U}_1	×	✓	×	×	X	X	X	X

$$g_S^{L,R} = 4 \ g_T^{L,R}(R_2 \text{ model})$$

 \bullet $\mu=2~{\rm GeV}$

$$g_S^{L,R}(2~{\rm GeV})\approx 2.0~g_S^{L,R}(1~{\rm TeV}) - 0.5~g_T^{L,R}(1~{\rm TeV})$$

$$g_T^{L,R}(2 \text{ GeV}) \approx 0.8 \ g_T^{L,R}(1 \text{ TeV}) \quad g_V^{\alpha}(2 \text{ GeV}) \approx g_V^{\alpha}(1 \text{ TeV})$$

$$\implies \quad g_S^{L,R}(2 \text{ GeV}) \approx 9.4 \; g_T^{L,R}(2 \text{ GeV}) \; (R_2 \text{ model})$$

Cross section and kinematics

ullet The event rate of fixed-target scattering experiments dN/dt is defined as

$$dN/dt = \mathcal{L}\sigma = \phi \rho_T L \sigma$$

• $e^-(k) + p(P) \to e^-(\mu^-)(k') + \Lambda_c(P')$

$$\begin{split} \sigma &= \frac{1}{64\pi m_p^2 E^2} \int_{q_{\rm min}^2}^{q_{\rm max}^2} dq^2 \overline{|\mathcal{M}|}^2 \\ \mathcal{M} &= \sum g_{\alpha\beta} \langle k' | j_\alpha | k \rangle \overline{\langle P', s' | J_\beta | P, s \rangle} \end{split}$$

• The experimental parameters for the low-energy scattering experiments

APEX electron beam ^{[1],[2]}		Liquid hyd	Luminosity	
Energy(GeV	Current (μA)	Length (cm)	Density (g/cm ³)	$(s^{-1}cm^{-2})$
3	150	40	71.3×10^{-3}	1.6×10^{39}

APEX Collaboration, S. Abrahamyan et al., 1108.2750;
 R. Essig et al., 1001.2557;
 Qweak Collaboration, T. Allison et al., 1409.7170

Model independent results of LFC scatter process

 \bullet Model independent results $(G_F^2\alpha_e^2/\pi^2)$

Processes	$\left \left g_V^{LL,RR} \right ^2 \right $		$ g_V^{LR,RI} $	$\left g_V^{LR,RL}\right ^2$		$ ^2$	$\left g_T^{L,R}\right ^2$
$D^0 \to e^- e^{+[1]}$	\		\		0.062	2	\
$D^+ \to \pi^+ e^- e^{+[2]}$	1	.4	14		6.3		13
$pp(q\bar{q}) \rightarrow e^-e^{+[3]}$	3	.6	3.6		22		0.57
$e^-p \to e^-\Lambda_c$	0.0)35	0.083		0.17	ĺ	0.0056

- LHCb Collaboration, R. Aaij et al., 1512.00322;
 BaBar Collaboration, J. Lees et al., 1107.4465;
 A. Angelescu et al., 2002.05684
- ullet Low-energy scattering process can provide more competitive constraints and build a further complementary relation with the D-meson leptonic decays
- \bullet Constraints on $g_V^{LL,RR}$ and $g_V^{LR,RL}$ are different compared with other processes

◆□▶ ◆□▶ ◆差▶ ◆差▶ 差 めらぐ

9/21

Results in LQ models

• Event rate forecast in units of number per year in LQ models

Models	g_V^{LL}	g_V^{RR}	$g_V^{LR,RL}$	$g_S^{L,R}$
R_2	\	\	43	0.25
U_3	103	\	\	\
$ ilde{U}_1$	\	\	\	\

- promising event rates can be expected for the scattering process
- the vector LQ models are expected to generate more events than the scalar one

The differential cross section

- distinguish the survived scalar and vector LQs in future low-energy scattering experiments, e.g., $d\Gamma(D^+ \to \pi^+ e^+ e^-)/d\sigma(e^- p \to e^- \Lambda_c)$ in $Q^2 \in [0.04, 0.9] \, \mathrm{GeV}^2$

- $\bar{\sigma} = (256\pi m_p^2)\sigma$
- $d\bar{\sigma}$ falls gradually, but still not as dramatically as in the R_2 model
- high beam energy clearly favors high event rate

Model independent results of LFV scatter process

 \bullet Model independent results $(G_F^2\alpha_e^2/\pi^2)$

Processes	$\left g_V^{LL,RR}\right ^2$	$\left \left g_{V}^{LR,RL}\right ^{2}\right $	$\left \left g_{S}^{L,R}\right ^{2}\right $	$\left\ g_T^{L,R}\right\ ^2$
$D^0 \to e^- \mu^{+[1]}$	\	\	0.010	\
$D^+ \to \pi^+ e^- \mu^{+[2]}$	40	40	19	34
$pp(q\bar{q}) \rightarrow e^{-}\mu^{+[3]}$	1.2	1.2	5.8	0.19
$e^-p \to \mu^-\Lambda_c$	0.039	0.091	0.18	0.0063

LHCb Collaboration, R. Aaij et al., 1512.00322;
 BaBar Collaboration, J. Lees et al., 1107.4465;
 Angelescu et al., 2002.05684

- Low-energy scattering process can provide more competitive constraints and build a further complementary relation with the D-meson leptonic decays
- \bullet Constraints on $g_V^{LL,RR}$ and $g_V^{LR,RL}$ are different compared with other processes

◄□▶
□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

12/21

Observables

Event rate forecast in LFV case

Models	g_V^{LL}	g_V^{RR}	$g_V^{LR,RL}$	$g_S^{L,R}$
R_2	\	\	13	0.039
U_3	31	\	\	\
$ ilde{U}_1$	\	31	\	\

 Differential cross section in the LFV case

Event rate forecast in LFC case

Models	g_V^{LL}	g_V^{RR}	$g_V^{LR,RL}$	$g_S^{L,R}$
R_2	\	\	43	0.25
U_3	103	\	\	\
$ ilde{U}_1$	\	\	\	\

 Differential cross section in the LFC case

Summary

- Search for LQ contributions to the FCNC in charm sector through $e^-p\to e^-\Lambda_c$ and $e^-p\to \mu^-\Lambda_c$
- Low-energy scattering experiments can provide more competitive constraints compared with charm decays and high- p_T invariant mass tails of dilepton, and build a further complementary relation with the D-meson leptonic decays
- Promising event rates can be expected for both LFC and LFV scattering experiments in the LQ models
- Providing a potential path to distinguish the survived scalar and vector LQs in future experiments
- Since most of our analyses are based on the general effective Lagrangian, our results can be directly applied to other NP models

Thanks for your attention!

GIM-suppression

$$\mathcal{A}(c \to u) = V_{cs}^* V_{us} \left(f(m_s^2/m_W^2) - f(m_d^2/m_W^2) \right) \\ + V_{cb}^* V_{ub} \left(f(m_b^2/m_W^2) - f(m_d^2/m_W^2) \right)$$

$$d, s, b$$

• $\mathcal{L}_{\text{eff}} = \sum g_{\alpha\beta} j_{\alpha} J_{\beta}$

$$\begin{split} j_S^{R,L} &= \bar{\ell} P_{R,L} \ell, \qquad J_S^{R,L} &= \bar{q} P_{R,L} q, \\ (j_V^{R,L})^\mu &= \bar{\ell} \gamma^\mu P_{R,L} \ell, \qquad (J_V^{R,L})^\mu &= \bar{q} \gamma^\mu P_{R,L} q, \\ (j_T^{R,L})^{\mu\nu} &= \bar{\ell} \sigma^{\mu\nu} P_{R,L} \ell, \qquad (J_T^{R,L})^{\mu\nu} &= \bar{q} \sigma^{\mu\nu} P_{R,L} q. \\ \mathcal{M} &= \sum g_{\alpha\beta} \langle k' | j_\alpha | k \rangle \langle P', s' | J_\beta | P, s \rangle, \end{split}$$

$$Q_{\max}^2 = - \tfrac{2E(M_{\Lambda_c}^2 - m_p^2 - 2m_p E)}{m_p + 2E}$$

- $\mathcal{L}_{\text{eff}}(\mu = 2 \, \text{GeV}) \Longrightarrow Q^2 < 4 \, \text{GeV}^2$
- \bullet consider a benchmark scenario with $Q^2_{\rm max} \leq 1\,{\rm GeV}^2$ and $E \leq 3\,{\rm GeV}$

Other constraints

- Processes involving the CKM and PMNS matrices
 - \bullet the flavor structure of λ is unknown
 - without additional assumptions
- Measurements of $D^0 \bar{D}^0$ mass and lifetime difference
 - set constraints on $\mathrm{Re}[(\lambda^{u\ell}(\lambda^{c\ell})^*)^2]$
 - constraint from the measurement of $D^0-\bar{D}^0$ mass difference is much less severe in comparison with that from meson decays
 - \bullet the measurement of $D^0-\bar{D}^0$ lifetime difference sets no constraints on the Wilson coefficients for 1 TeV LQs
- Measurement of anomalous magnetic moments and electric dipole moments (EDM)
 - ullet no constraints can be set on $|\lambda|$ for 1 TeV vector LQs
 - $\bullet \ \operatorname{Re}[(\lambda_2^S)_{ce}(\lambda_2^{'S})_{ce}^*] \in [0.00, 0.01]$
 - $\operatorname{Im}[(\lambda_2^S)_{ce}(\lambda_2^{'S})_{ce}^*] \lesssim 2 \times 10^{-11}$
- \bullet Corrections to $Z \to ff$
 - $\lambda \lesssim \frac{M}{T_{ev}}$, yielding no constraint
- \bullet Measurements of $\mu \to e$ conversion in nuclei
 - $|g_V|^{e\mu,uu} < 2.4 \times 10^{-7} G_F$

Electron beam

Favor an electron beam with an intensity up to 150 μ A and beam energy ranging from 1.1 - 4.5 GeV in the APEX experiment at Jefferson Laboratory (JLab)

- The proton target
 - Select a liquid hydrogen target due to its higher number density
 - Cooling system

$$H = L\rho dE/dL$$
 $P = HI$

where H is the energy stored in the target, dE/dL represents the mean rate of electron energy loss in units of MeV ${\rm g}^{-1}$ cm², ρ and L denote the respective density and length of the target and P is the cooling power

In the physical limits $(a=0; m_{\pi}=m_{\pi,phys})$, the form factor takes the form

$$f(q^2) = \frac{1}{1 - q^2/(m_{pole}^f)^2} \sum_{n=0}^{n_{max}} a_n^f [z(q^2)]^n$$

where the expansion variable is defined as

$$z(q^2) = \frac{\sqrt{t_+ - q^2 - \sqrt{t_+ - t_0}}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}} \quad t_+ = (m_D + m_\pi)^2$$

$$t_{+} = (m_D + m_{\pi})^2$$
 $t_0 = (m_{\Lambda_c} - m_N)^2$

To fit the parameters a_n^f in L_{QCD} , form factor must modified by incorporating lattice information. Two independent fits are performed: a "normal" fit and a "higher-order" (HO) fit The form factor function for normal fit is given by

$$f(q^2) = \frac{1}{1 - (a^2 q^2)/(am_D + a\Delta^f)^2} \left[a_0^f (1 + c_0^f \frac{m_\pi^2 - m_{\pi,phys}^2}{\Lambda_\chi^2}) + a_1^f z(q^2) + a_2^f [z(q^2)]^2 \right] \times \left[1 + b^f a^2 |\mathbf{p}'|^2 + d^f a^2 \Lambda_{had}^2 \right]$$

(Stefan Meinel,arxiv:1712.05783)

Form factor parametrization

• $\mathcal{M} = \sum g_{\alpha\beta} \langle k' | j_{\alpha} | k \rangle \langle P', s' | J_{\beta} | P, s \rangle$

Use form factors to parametrize the hadronic contributions as in charm decays

$$\langle p(P,s)|\bar{u}\gamma^{\mu}c|\Lambda_{c}(P',s')\rangle = \bar{u}_{p}(P,s)\Big[f_{0}(q^{2})(m_{\Lambda_{c}} - m_{p})\frac{q^{\mu}}{q^{2}} + f_{+}(q^{2})\frac{m_{\Lambda_{c}} + m_{p}}{s_{+}}\Big(P'^{\mu} + P^{\mu} - (m_{\Lambda_{c}}^{2} - m_{p}^{2})\frac{q^{\mu}}{q^{2}}\Big) + f_{\perp}(q^{2})\Big(\gamma^{\mu} - \frac{2m_{N}}{s_{+}}P'^{\mu} - \frac{2m_{\Lambda_{c}}}{s_{+}}P^{\mu}\Big)\Big]u_{\Lambda_{c}}(P',s')$$

ullet Analyticity of the form factor parametrization in the complex q^2 -plane

C. Bourrely et al., 0807.2722; S. Meinel, 1712.05783