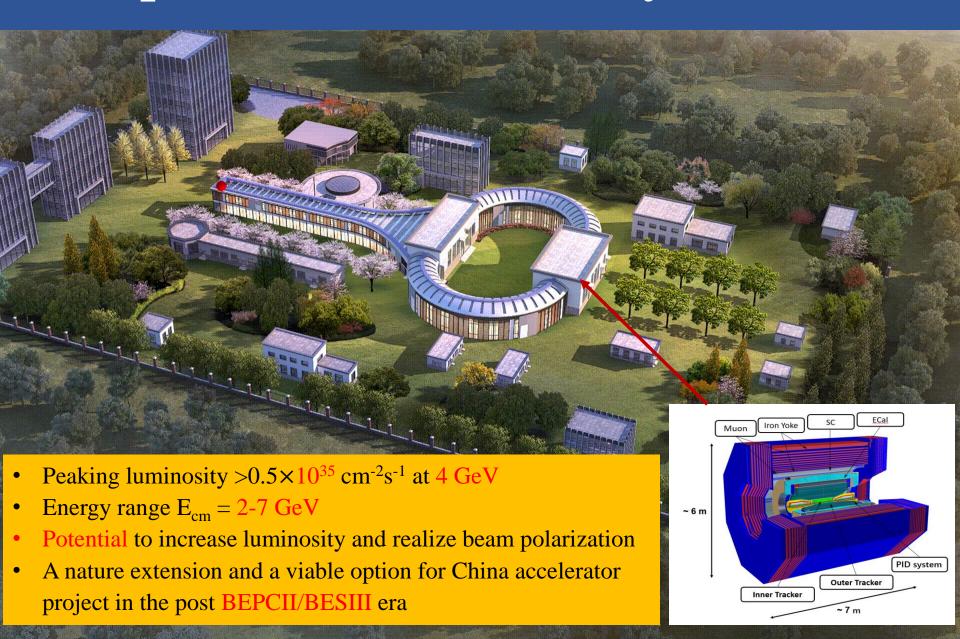
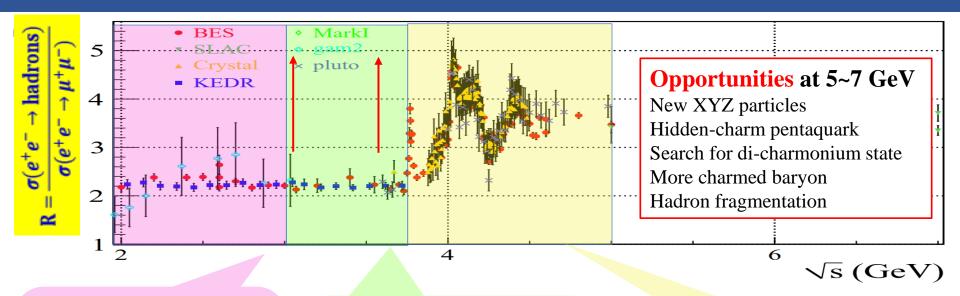


The Super Tau-Charm Facility Prospects


Xiaorong Zhou (On behalf of STCF working group)

zxrong@ustc.edu.cn


University of Science and Technology of China

HFCPV2021, 10-14 November 2011

Super tau-Charm Facility in China

Physics in tau-Charm Region

- Hadron form factors
- Y(2175) resonance
- Mutltiquark states with s quark,
- MLLA/LPHD and QCD sum rule predictions

- Light hadron spectroscopy
- Gluonic and exotic states
- Process of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton

- XYZ particles
- Physics with D mesons
- fD and fDs
- D0-D0 mixing
- Charm baryons
- Rich of physics program, unique for physics with c quark and τ leptons,
- important playground for study of QCD, exotic hadrons, flavor and search for new physics.

Expected Data Samples at STCF

Expected data samples per year

				•		
CME (GeV)	Lumi (ab ⁻¹)	samples	σ(nb)	No. of Events	remark	
3.097	1	J/ψ	3400	3.4×10^{12}		
3.670	1	$\tau^+\tau^-$	2.4	2.4×10^{9}		
		ψ(3686)	640	6.4×10^{11}		
3.686	1	$\tau^+\tau^-$	2.5	2.5×10^{9}		
		$\psi(3686) \rightarrow \tau^+\tau^-$		2.0×10^{9}		
		$D^0ar{D}^0$	3.6	3.6×10^{9}		
		$D^+ \bar{D}^-$	2.8	2.8×10^{9}		
3.770	1	$D^0ar{D}^0$		7.9×10^{8}	Single Tag	
		$D^+ \bar{D}^-$		5.5×10^{8}	Single Tag	
		$\tau^+\tau^-$	2.9	2.9×10^{9}		
		$\gamma D^0 ar{D}^0$	0.40	4.0×10^{6}	$CP_{D^0\bar{D}^0} = +1$	
4.040	1	$\pi^{0}D^{0}\bar{D}^{0}$	0.40	4.0×10^{6}	$CP_{D^0\bar{D}^0} = -1$	
4.040	1	$D_s^+D_s^-$	0.20	2.0×10^{8}		
		$ au^+ au^-$	3.5	3.5×10^{9}		
		$D_s^{+*}D_s^{-}$ +c.c.	0.90	9.0×10^{8}		
4.180	1	$D_s^{+*}D_s^- + \text{c.c.}$		1.3×10^{8}	Single Tag	
		$\tau^+\tau^-$	3.6	3.6×10^{9}		
		$J/\psi \pi^+\pi^-$	0.085	8.5×10^{7}		
4.230	1	$\tau^+\tau^-$	3.6	3.6×10^{9}		
		$\gamma X(3872)$				
4.360	1	$\psi(3686)\pi^{+}\pi^{-}$	0.058	5.8×10^{7}		
4.300	1	$\tau^+\tau^-$	3.5	3.5×10^{9}		
4.420	1	$\psi(3686)\pi^{+}\pi^{-}$	0.040	4.0×10^{7}		
4.420	1	$\tau^+\tau^-$	3.5	3.5×10^{9}		
4.630		$\psi(3686)\pi^{+}\pi^{-}$	0.033	3.3×10^{7}		
4.030		$\Lambda_c \bar{\Lambda}_c$	0.56	5.6×10^{8}		
	1	$\Lambda_c \bar{\Lambda}_c$		6.4×10^{7}	Single Tag	
		τ+τ-	3.4	3.4×10^{9}		
4.0-7.0	3	300 points scan with 10 MeV step, 1 fb ⁻¹ /point				
> 5	2-7	several ab ⁻¹ high	energy data,	details dependent	on scan results	

A XYZ factory

_				1 1	
	XYZ	Y(4260)	$Z_c(3900)$	$Z_c(4020)$	X(3872)
_	No. of events	10^{10}	10 ⁹	10 ⁹	5×10^{6}

A Hyperon Factory

Decay mode	$\mathcal{B}(\text{units } 10^{-4})$	Angular distribution parameter α_{ψ}	Detection efficiency	No. events expected at STCF
$J/\psi \to \Lambda \bar{\Lambda}$	$19.43 \pm 0.03 \pm 0.33$	0.469 ± 0.026	40%	1100×10^{6}
$\psi(2S) \to \Lambda \bar{\Lambda}$	$3.97 \pm 0.02 \pm 0.12$	0.824 ± 0.074	40%	130×10^{6}
$J/\psi o \Xi^0 \bar{\Xi}^0$	11.65 ± 0.04	0.66 ± 0.03	14%	230×10^{6}
$\psi(2S) \to \Xi^0 \bar{\Xi}^0$	2.73 ± 0.03	0.65 ± 0.09	14%	32×10^{6}
$J/\psi o \Xi^-\bar{\Xi}^+$	10.40 ± 0.06	0.58 ± 0.04	19%	270×10^{6}
$\psi(2S) \to \Xi^-\bar{\Xi}^+$	2.78 ± 0.05	0.91 ± 0.13	19%	42×10^{6}

A light meson factory

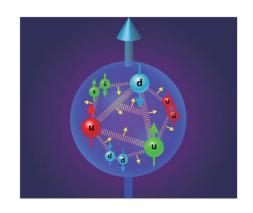
Decay Mode	$\mathcal{B}(\times 10^{-4})$ [2]	η/η' events
$J/\psi \to \gamma \eta'$	52.1 ± 1.7	1.8×10^{10}
$J/\psi \rightarrow \gamma \eta$	11.08 ± 0.27	3.7×10^9
$J/\psi o \phi \eta'$	7.4 ± 0.8	2.5×10^{9}
$J/\psi o \phi \eta$	4.6 ± 0.5	1.6×10^{9}

- **Belle-II** (50/ab) has more statistics
- LHCb have much more statistics, but huge background
- STCF is expected to have higher detection efficiency and low bkgs for productions at threshold
- ➤ Additionally, STCF excellent resolution, kinematic constraining 4

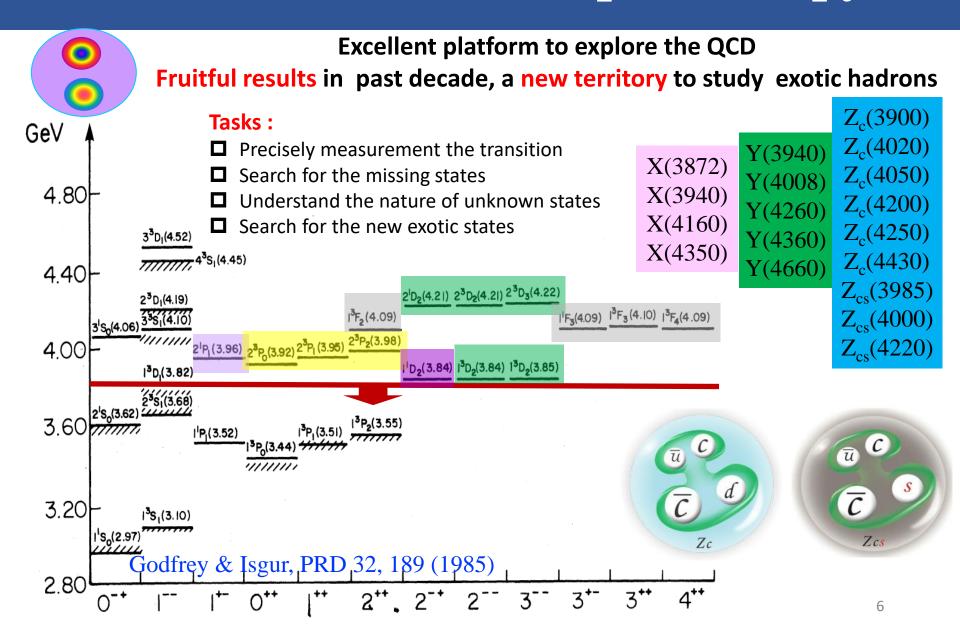
Highlighted physics at STCF

QCD and Hadronic Physics

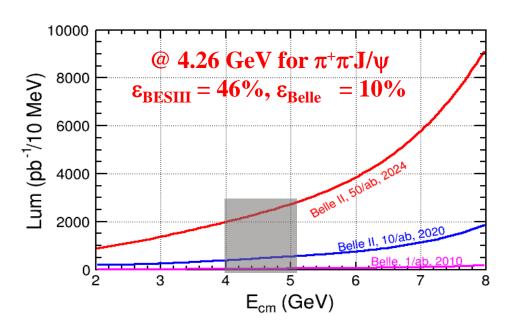
- Exotic states and hadron spectroscopy
- > Hadron structures
- ➤ Precision test of SM parameters


□Flavor Physics and CP violation

- \geq CKM matrix, $D^0 \overline{D}^0$ mixing
- > CP violation in lepton, hyperon, charm

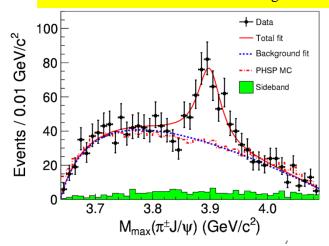

□New Physics Search

- Rare/Forbidden
- ➤ Dark particle search

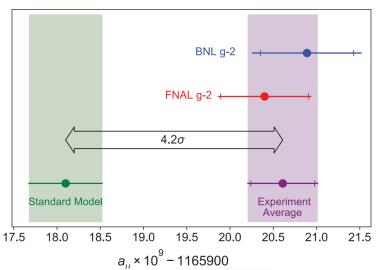


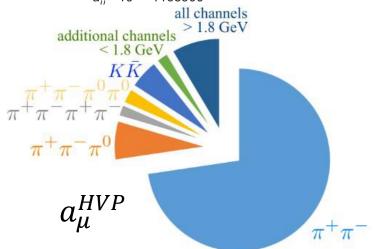
Charmonium (Like) Spectroscopy

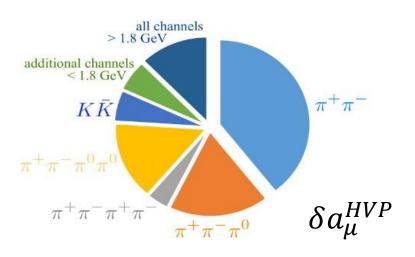
Charmonium(Like) Spectroscopy at STCF



- B factory: Total integrate effective luminosity between 4-5 GeV is 0.23 ab⁻¹ for 50 ab⁻¹ data
- T-C factory: scan in 4-5 GeV, 10 MeV/step, every point have 10 fb⁻¹/year, 5 time of Belle II for 50 ab⁻¹ data
- τ-C factory have much higher efficiency and low background than B Factory

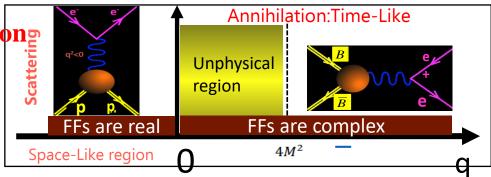

Belle with ISR: PRL110, 252002 967 fb-1 in 10 years running time


BESIII at 4.260 GeV: PRL110, 252001 0.525 fb⁻¹ in one month running time

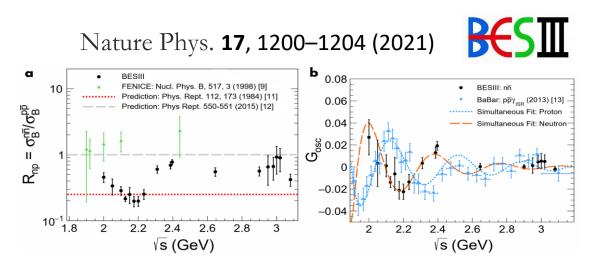


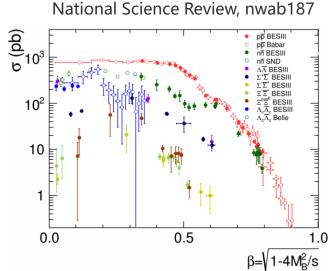
HVP Contribution to $(g-2)_{\mu}$

- 4.2 σ discrepancy => Strong indication for physics beyond the SM?
- Dominant uncertainty of SM prediction comes from Hadronic vacuum polarization (HVP)

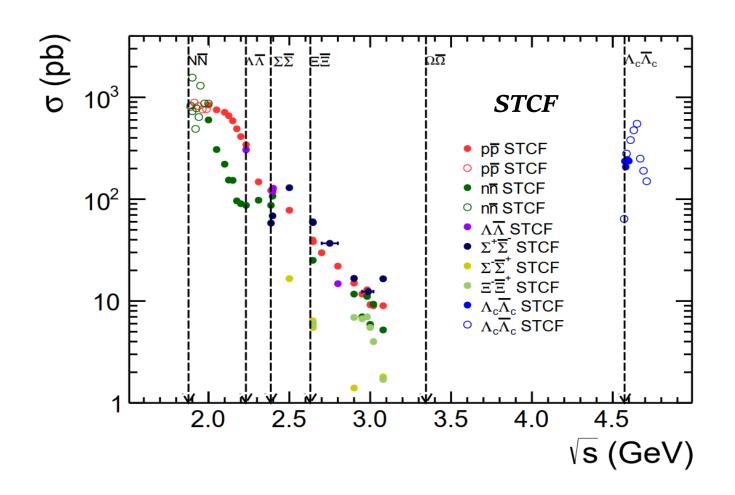


High Luminosity of STCF will largely improve the SM precisions!


Electromagnetic Form Factors


Fundamental properties of the nucleon charge, magnetization distribution

- testing ground for models of the nucleon internal structure

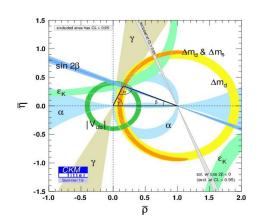


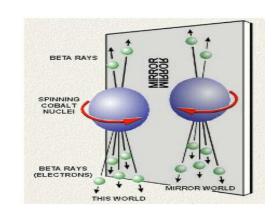
Mysteries observed from current experimental results in time-like

Electromagnetic Form Factors

Highlighted physics at STCF

QCD and Hadronic Physics


- Exotic states and hadron spectroscopy
- > Hadron structures
- > Precision test of SM parameters


□Flavor Physics and CP violation

- \triangleright CKM matrix, $D^0 \overline{D}^0$ mixing
- > CP violation in lepton, hyperon, charm

■New Physics Search

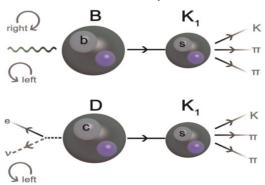
- Rare/Forbidden
- ➤ Dark particle search

Facilities for Charm Study

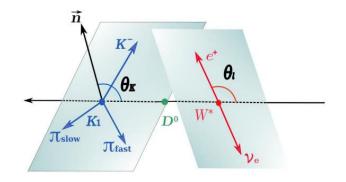
- ➤ LHCb: huge x-sec, boost, 9 fb⁻¹ now (×40 current B factories)
- ➤ B-factories (Belle(-II), BaBar): more kinematic constrains, clean environment, ~100% trigger efficiency
- > τ-charm factory: Low backgrounds and high efficiency, Quantum correlations and CP-tagging are unique
- > STCF:
- 4×10^9 pairs of $D^{\pm,0}$ and 10^8 D_s pairs per year
 - 10¹⁰ charm from Belle II/year
- Highlighted Physics programs
 - Precise measurement of (semi-)leptonic decay (f_D, f_{Ds}, CKM matrix...)
 - *D* decay strong phase (Determination of $\gamma/\phi 3$ angle)
 - $-D^0 \overline{D}^0$ mixing, CPV
 - Rare decay (FCNC, LFV, LNV....)
 - Excite charm meson states D_J, D_{sJ} (mass, width, J^{PC}, decay modes)
 - Charmed baryons (J^{PC}, Decay modes, absolute BF)

D_(s) (Semi-)Leptonic decay

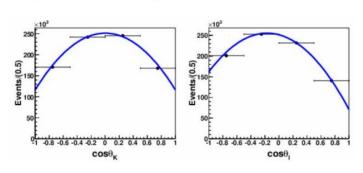
	BESIII	STCF	Belle II	
Luminosity	2.93 fb ⁻¹ at 3.773 GeV	$1 \text{ ab}^{-1} \text{ at } 3.773 \text{ GeV}$	$50 \text{ ab}^{-1} \text{ at } \Upsilon(nS)$	
$\mathcal{B}(D^+ \to \mu^+ \nu_\mu)$	5.1% _{stat} 1.6% _{syst} [8]	$0.28\%_{\mathrm{stat}}$	_	
f_{D^+} (MeV)	$2.6\%_{\text{stat}} 0.9\%_{\text{syst}} [8]$	$0.15\%_{\mathrm{stat}}$	Theory · 0.2%	(0.1% expected)
$ V_{cd} $	$2.6\%_{\text{stat}} 1.0\%_{\text{syst}}^{*} [8]$	$0.15\%_{\mathrm{stat}}$	111coly . 0.270	(0.170 expected)
$\mathcal{B}(D^+ \to \tau^+ \nu_{\tau})$	20% _{stat} 10% _{syst} [9]	$0.41\%_{\mathrm{stat}}$	_	
$\mathcal{B}(D^+ \to \tau^+ \nu_{\tau})$	21% _{stat} 13% _{syst} [9]	$0.50\%_{\mathrm{stat}}$	_	
$\mathcal{B}(D^+ \to \mu^+ \nu_\mu)$	21 /ostat 15 /osyst [7]	o.b o /o stat		
Luminosity	$3.2 \text{ fb}^{-1} \text{ at } 4.178 \text{ GeV}$	$1 \text{ ab}^{-1} \text{ at } 4.009 \text{ GeV}$	$50 \text{ ab}^{-1} \text{ at } \Upsilon(nS)$	
$\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu)$	2.8% _{stat} 2.7% _{syst} [10]	$0.30\%_{\mathrm{stat}}$	0.8% _{stat} 1.8% _{syst}	
$f_{D_s^+}$ (MeV)	$1.5\%_{\text{stat}} \ 1.6\%_{\text{syst}} \ [10]$	$0.15\%_{\mathrm{stat}}$	Theory · 0 2%	(0.1% expected)
$ V_{cs} $	1.5% _{stat} 1.6% _{syst} [10]	$0.15\%_{\mathrm{stat}}$	111eory . 0.2 /6	(0.170 expected)
$f_{D_s^+}/f_{D^+}$	$3.0\%_{\text{stat}} 1.5\%_{\text{syst}} [10]$	$0.21\%_{\mathrm{stat}}$	_	
$\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau})$	$1.9\%_{\mathrm{stat}}2.3\%_{\mathrm{syst}}^{\dagger}$	$0.24\%_{\mathrm{stat}}$	$0.6\%_{stat}$ $2.7\%_{syst}$	
$f_{D_s^+}$ (MeV)	$0.9\%_{\rm stat} 1.2\%_{\rm syst}^{\dagger}$	0.11% _{stat}	Theory: 0.2%	(0.1% expected)
$ V_{cs} $	$0.9\%_{\text{stat}}$ $1.2\%_{\text{syst}}^{3}$	$0.11\%_{\mathrm{stat}}$		
$\overline{f}_{D_s^+}^{\mu\&\tau}$ (MeV)	$0.9\%_{\mathrm{stat}}1.0\%_{\mathrm{syst}}^{\dagger}$	0.09% _{stat}	0.3% _{stat} 1.0% _{syst}	
$ \overline{V}_{cs}^{\mu\& au} $	$0.9\%_{\mathrm{stat}}1.0\%_{\mathrm{syst}}^{\dagger}$	$0.09\%_{\mathrm{stat}}$		
$\frac{\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau})}{\mathcal{B}(D_s^+ \to \nu_{\tau}^+ \nu_{\tau})}$	$3.6\%_{\mathrm{stat}}3.0\%_{\mathrm{syst}}^{\dagger}$	0.38% _{stat}	0.9% _{stat} 3.2% _{syst}	
$\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu)$			·	


^{*} assuming Belle II improved systematics by a factor 2

Measuring $b o s\gamma$ photon polarization in $D^0 o K_1(1270)e u_e$


arXiv:2107.06118v2 [hep-ex]

- The photon helicity in $b \rightarrow s\gamma$ is predominantly left-handed and its measurements plays a unique role in right-handed coupled in New Physics.
- Hadronic state helicity in $B \to K_1 (\to K\pi\pi) \gamma$ Phys. Rev. Lett. 112, 161801 (2014)


$$M_{K\pi\pi}$$
 in (1.1,1.3) GeV, $A_{UD} = (6.9 \pm 1.7) \times 10^{-2}$

- A novel method is provided to combine the $B \to K_1 \gamma$ and $D \to K_1 l^+ \nu$ to determine the photon helicity $\lambda_{\gamma} = \frac{4 \mathcal{A}_{UD}}{3 \mathcal{A}_{UD}'}$ Phys. Rev. Lett. 125, 051802 (2020)
- ightharpoonup Kinematics for $D^0 o K_1(1270)^- e^+
 u_e o K^- \pi^+ \pi^- e^+
 u_e$

\triangleright 2-D χ^2 fit to cos θ_K and cos θ_l

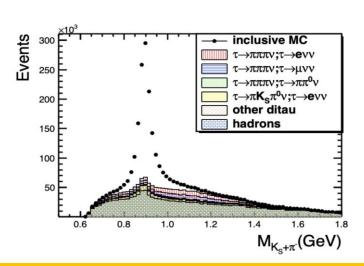
statistical sensitivity 1.8×10^{-2} @ $1ab^{-1}$ MC sample

CPV in τ decay

H. Y. Sang, et al., Chin. Phys. C 45, 053003 (2021)

B factory

-1.0


 \triangleright The CPV source in $K^0 - \overline{K}^0$ mixing produces a difference in tau decay rate

In Theory:
$$A_Q = \frac{B(\tau^+ \to K_S^0 \pi^+ \bar{\nu}_\tau) - B(\tau^- \to K_S^0 \pi^- \nu_\tau)}{B(\tau^+ \to K_S^0 \pi^+ \bar{\nu}_\tau) + B(\tau^- \to K_S^0 \pi^- \nu_\tau)} = (+0.36 \pm 0.01)\%$$

BaBar experiments : $A_{CP}(\tau^- \to K_S \pi^- \nu [\ge 0\pi^0]) = (-0.36 \pm 0.23 \pm 0.11)\%$

 2.8σ away from the SM prediction

Theorist try to reconcile the deviation, but not coverage even NP included

The CPV sensitivity with $1ab^{-1}$ @ 4.26 GeV^[1]:

$$A_{STCF} \sim 9.7 \times 10^{-4}$$

With 10 ab⁻¹ data:
 $A_{STCF} \sim 3.1 \times 10^{-4}$

merit = luminosity $\times \bar{w}_Z \times$ total cross section \propto luminosity $\times (w_1 + w_2)$ $\times \sqrt{1 - a^2} a^2 (1 + 2a)$,

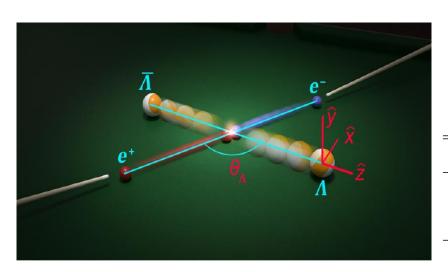
Possible choice to increase the Figure of merits: polarized beam

E = 2.087 GeV

0.5

1.0

tau-charm


0.9

8.0

0.7

-0.5

Polarization of A hyperons and CPV

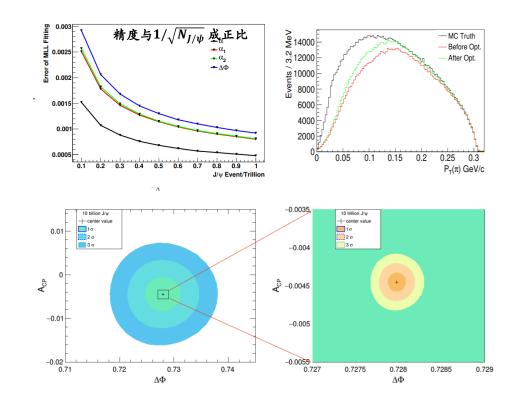
Nature Phys. **15**, 631–634 (2019)

1.31 B J/ ψ events Quantum correlation in Λ pair

Parameters	This work	Previous results
$lpha_{\psi}$	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027 ¹⁴
$\Delta\Phi$	$(42.4 \pm 0.6 \pm 0.5)^{\circ}$	-
α_{-}	$0.750 \pm 0.009 \pm 0.004$	0.642 ± 0.013 ¹⁶
$lpha_+$	$-0.758 \pm 0.010 \pm 0.007$	-0.71 ± 0.08 ¹⁶
$ar{lpha}_0$	$-0.692 \pm 0.016 \pm 0.006$	_
A_{CP}	$-0.006 \pm 0.012 \pm 0.007$	0.006 ± 0.021 ¹⁶
$\bar{\alpha}_0/\alpha_+$	$0.913 \pm 0.028 \pm 0.012$	_

2% level sensitivity for CPV test

SM prediction: 10⁻⁴~10⁻⁵


CP test
$$A_{CP} = \frac{\alpha_- + \alpha_+}{\alpha_- - \alpha_+}$$

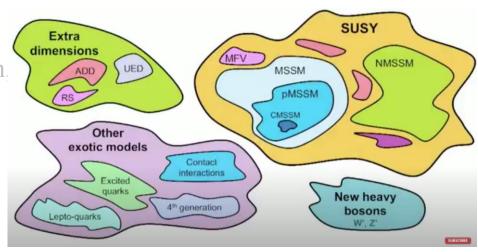
CPV in Hyperon Decays at STCF

- \square 4 trillion J/ ψ events $\Rightarrow A_{CP} \sim 10^{-4}$
 - Luminosity optimized at J/ψ resonance
 - Luminosity of STCF: × 100
 - 2 3 years data taking
 - No polarization beams are needed

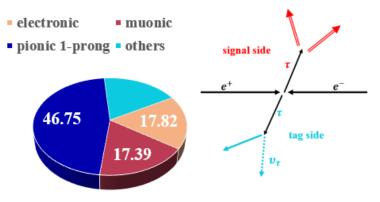
- ⇒ small beam energy spread
- \Rightarrow J/ ψ cross-section: \times 10 \Rightarrow $A_{CP} \sim$ 10⁻⁵?
- Challenge: Systematics control, spin procession effect in magnet

Highlighted physics at STCF

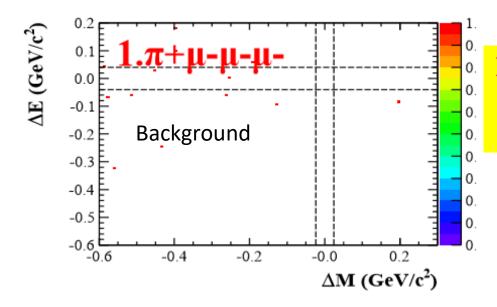
QCD and Hadronic Physics


- Exotic states and hadron spectroscopy
- > Hadron structures
- ➤ Precision test of SM parameters

□Flavor Physics and CP violation


- \geq CKM matrix, $D^0 \overline{D}^0$ mixing
- > CP violation in lepton, hyperon

□New Physics Search


- > Rare/Forbidden
- ➤ Dark particle search

LFV decay of $\tau \rightarrow lll$ at STCF

- \triangleright Signal side: $\tau \rightarrow 3 leptons$
- \blacktriangleright Tag side: $\tau \to e v \bar{v}, \; \mu v \bar{v}$, $\; \pi v + n \pi^0 \; (\mathcal{B}r = 82\%)$
- Almost background free, the sensitivity: \mathcal{B}_{UL}^{90} $(\tau \to \mu\mu\mu) \sim 1/\mathcal{L}$
- **>** Best efficiency ($\tau \rightarrow \mu \mu \mu$): 22.5% (including tag branching fraction)

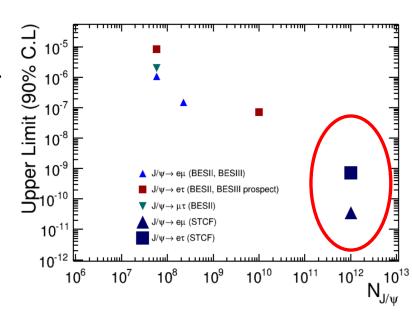
> STCF with 1ab⁻¹:

$$\mathcal{B}_{UL}^{90}(au o \mu\mu\mu) < \frac{N_{UL}^{90}}{2\varepsilon N_{ au au}} \sim 1.5 imes 10^{-9}$$

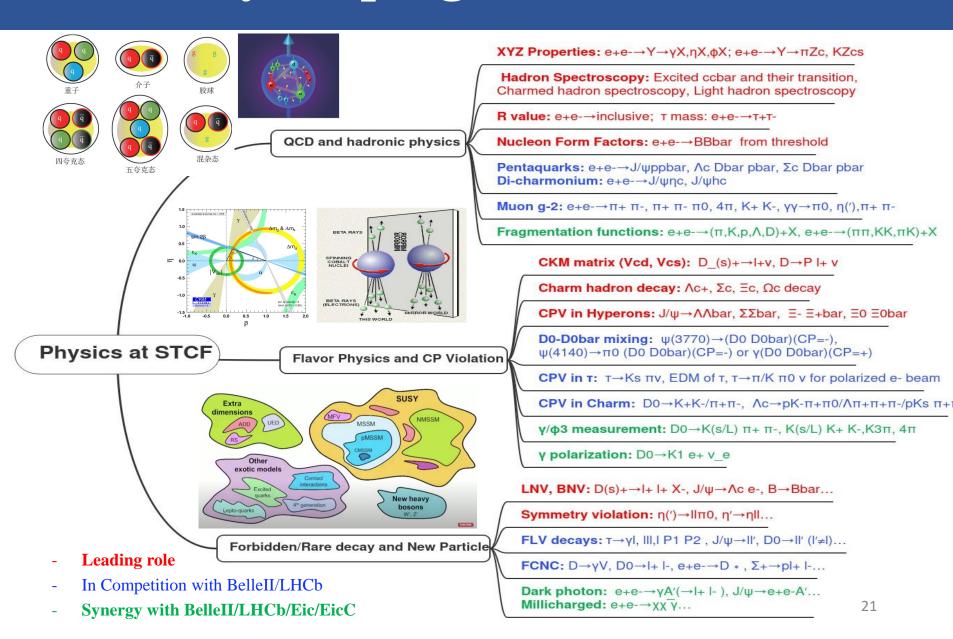
LFV decay of $J/\psi \rightarrow e\tau$ at STCF

□ The cLFV decays of vector mesons $V \rightarrow l_i l_j$ are also predicted in various of extension models of SM:

$$\square$$
 $\mathcal{B}_{UL}^{90}(J/\psi \to e\mu) < 10^{-13}$

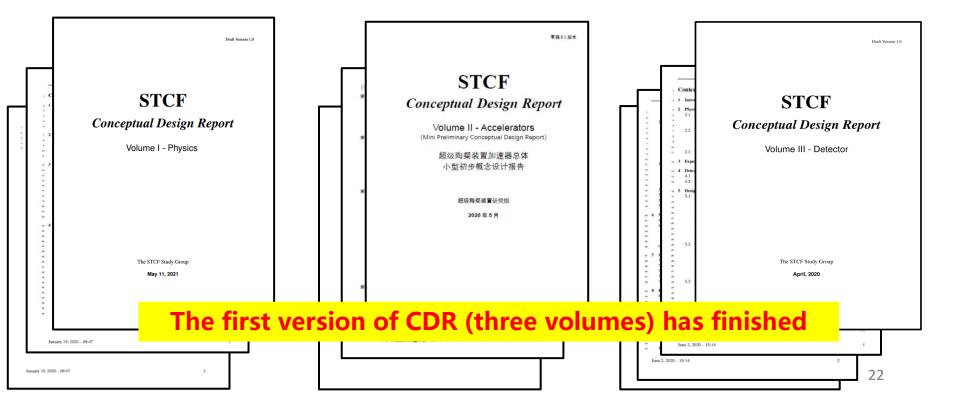

$$\square$$
 $\mathcal{B}_{UL}^{90}(J/\psi \to e(\mu)\tau) < 10^{-9}$

□ At STCF, 1 trillion J/ψ can be obtained per year, taken efficiency from BESIII, the upper limit can be predicted to be:

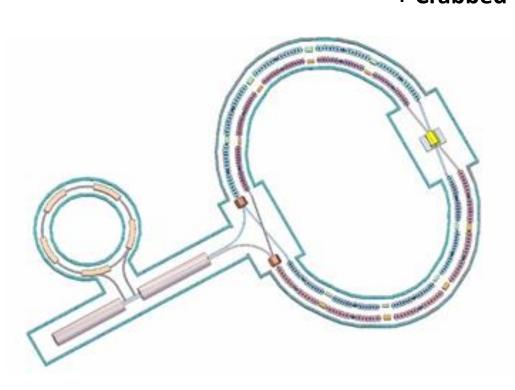

$$\square$$
 $\mathcal{B}_{UL}^{90}(J/\psi \to e\mu) < 3.6 \times 10^{-11}$

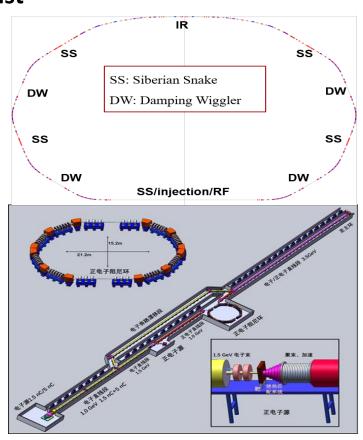
$$\square$$
 $\mathcal{B}_{IIL}^{90}(J/\psi \to e\tau) > 7.1 \times 10^{-10}$

□ The $\mathcal{B}_{UL}^{90}(J/\psi \to e\tau)$) can be further **optimized** with better PID.



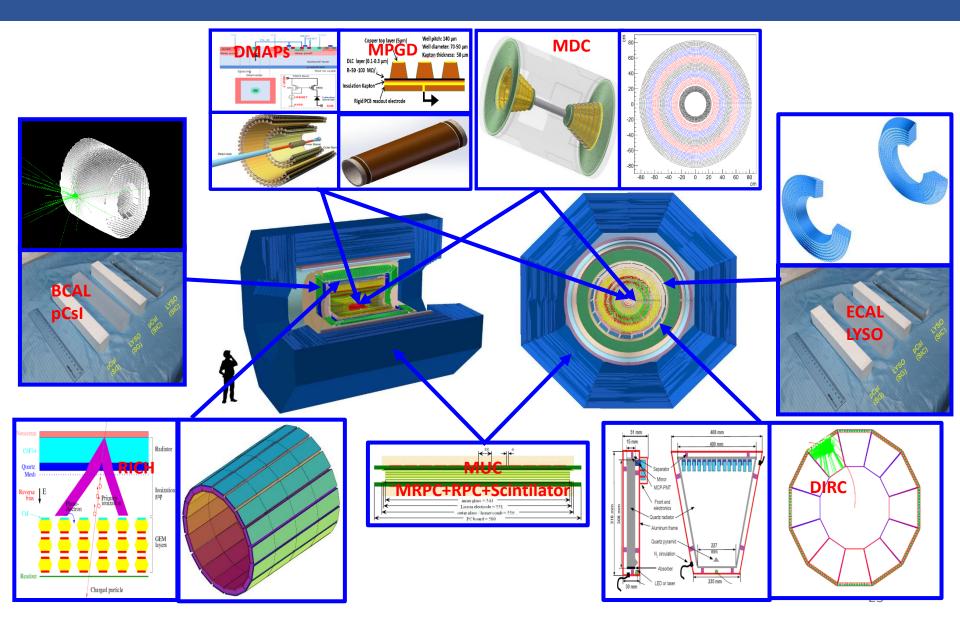
Physics program at STCF


Tentative Plan


	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031- 2040	2041- 2042
Form Group															
CDR															
TDR															
Construction															
In operation															
Upgrade															

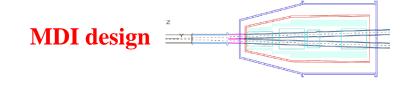
STCF Accelerator

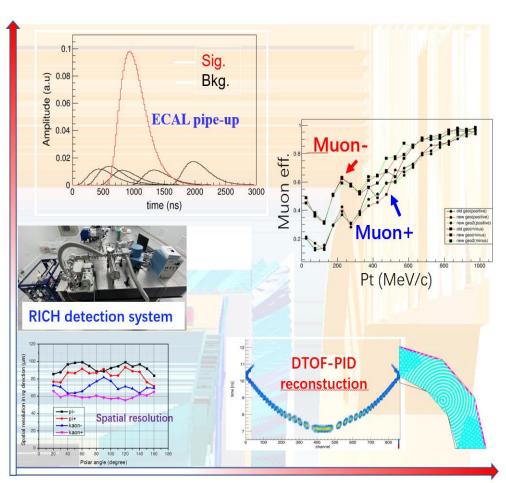
Interaction Region : Large Piwinski Angle Collision + Crabbed Waist

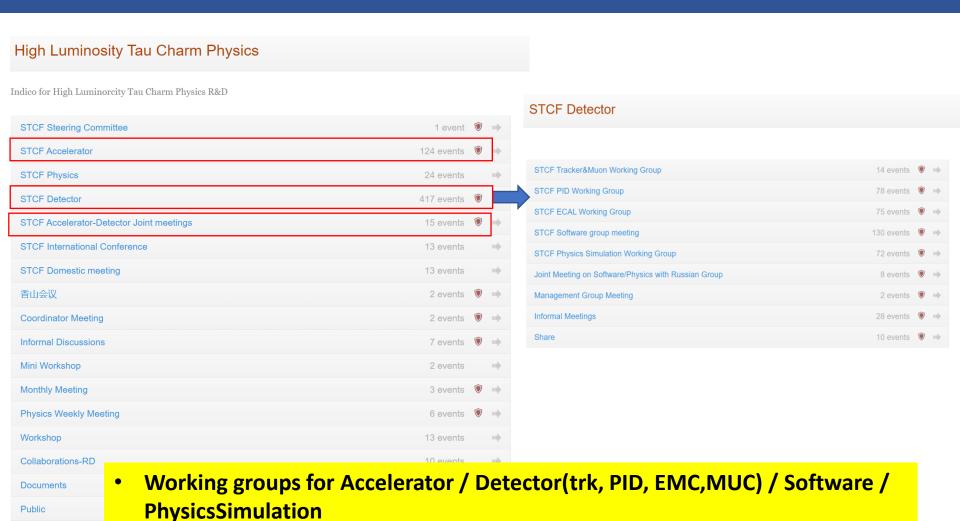

Injector:

- No booster, 0.5 GeV→1~3.5 GeV
- e+, a convertor, a linac and a damping ring, 0.5 GeV
- e-, a polarized e- source, accelerated to 0.5 GeV

Machine Parameters


Parameters	Phase1	Phase2
Circumference/m	600~800	600~800
Optimized Beam Energy/GeV	2.0	2.0
Beam Energy Range/GeV	1-3.5	1-3.5
Current/A	1.5	2.0
Emittance $(\varepsilon_x/\varepsilon_y)$ /nm·rad	6/0.06	5/0.05
$β$ Function @IP $(β_x^*/β_y^*)$ /mm	60/0.6	50/0.5(estimated)
Full Collision Angle 20/mrad	60	60
Tune Shift ξy	0.06	0.08
Hourglass Factor	0.8	0.8
Aperture and Lifetime	15σ, 1000s	15σ, 1000s
Luminosity @Optimized Energy/×10 ³⁵ cm ⁻² s ⁻¹	~0.5	~1.0


STCF detector


STCF detector

- MDI: CDR finished; beam/physics background estimation;
- Inner Tracker: MPGD CDR finished, in optimizing; Silicon tracker ongoing
- MDC: CDR finished
- PID: CDR finished; Prototyle of RICH (2nd version) and DTOF
- **ECAL**: CDR finished; optimizing crystal and electronics
- MUC: CDR finished; optimizing

Activities: group discussion

- Extensive discussions of each group every (two) week
- Accelerator-detector Joint meetings every two months

Activities: workshops

- Domestic Workshops (2011, 12, 13, 14, 16, 20)
- International Workshops (2015, 18, 19, 20)
- Workshop on future Super c-tau factories 2021 (international)

时间: 2021年11月15日-17日

地点: online

会议网页: https://indico.inp.nsk.su/event/62/

・ 超级陶粲装置研究进展研讨会 (国内)

时间: 2021年12月9日-13日

地点:中山大学,广州

会议网页: http://cicpi.ustc.edu.cn/indico/conferenceDisplay.py?ovw=True&confId=3752

Summary

- **Super** τ -c Facility (STCF):
 - \triangleright e⁺e⁻ collision with E_{cm} = 2 7 GeV, L > 0.5 × 10³⁵ cm⁻²s⁻¹
- **STCF** is one of the crucial precision frontier
 - > rich of physics program
 - \triangleright unique for physics with c quark and τ leptons,
 - important playground for study of QCD, exotic hadrons and search for new physics.
- ☐ Complementary to Belle-II and LHCb in understanding the QCD/EW models and searching for new physics
- □ Project organization is setup and a working group is toward for CDR/TDR

Thanks for your attention! Welcome to join the effort!

QCD and Hadronic Physics

Physics at STCF	Benchmark Processes	Key Parameters*	Remarks
XYZ properties	$e^+e^- \rightarrow Y \rightarrow \gamma X, \eta X, \phi X$ $e^+e^- \rightarrow Y \rightarrow \pi Z_c, KZ_{cs}$	$N_{Y(4260)/Z_c/X(3872)} \sim 10^{10} / 10^9 / 10^6$	Leading role
Pentaquarks, Di-charmonium	$e^{+}e^{-} \rightarrow J/\psi p \bar{p}, \Lambda_{c} \overline{D} \bar{p}, \Sigma_{c} \overline{D} \bar{p}$ $e^{+}e^{-} \rightarrow J/\psi \eta_{c}, J/\psi h_{c}$	$\sigma(e^+e^- \to J/\psi p\bar{p})\sim 4 \text{ fb};$ $\sigma(e^+e^- \to J/\psi c\bar{c})\sim 10 \text{ fb}$ (prediction)	In Competition with BelleII/LHCb
Hadron Spectroscopy	Excited $c\bar{c}$ and their transition, Charmed hadron spectroscopy, Light hadron spectroscopy	$N_{J/\psi/\psi(3686)/\Lambda_c}^{\sim} \sim 10^{12}/10^{11}/10^8$	Leading role
Muon g-2	$e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}, \pi^{+}\pi^{-}\pi^{0}, K^{+}K^{-}$ $\gamma\gamma \rightarrow \pi^{0}, \eta^{(\prime)}, \pi^{+}\pi^{-}$	$\Delta a_{\mu}^{HVP} \ll 40 \times 10^{-11}$	In Competition with BelleII
R value, τ mass	$e^+e^- \rightarrow inclusive$ $e^+e^- \rightarrow \tau^+\tau^-$	$\Delta m_{\tau} \sim 0.012 \text{ MeV}$ (with 1 month scan)	Leading role
Fragmentation functions	$e^+e^- \to (\pi, K, p, \Lambda, D) + X$ $e^+e^- \to (\pi\pi, KK, \pi K) + X$	$\Delta A^{Collins} < 0.002$	Synergy with Eic/EicC
Nucleon Form Factors	$e^+e^- \to B\bar{B}$ from threshold	$\delta R_{EM}{\sim}1\%$	Leading role

^{*}Sensitivity estimated based on $\mathcal{L} = 1 \text{ ab}^{-1}$

Flavor Physics and CP violation

Physics at STCF	Benchmark Processes	Key Parameters*	Remarks
CKM matrix	$D_{(s)}^+ \to l^+ \nu_l, D \to P l^+ \nu_l$	$\delta V_{cd/cs}{\sim}0.15\%;$ $\delta f_{D/D_s}{\sim}0.15\%$	Leading role
γ/ϕ_3 measurement	$D^0 \to K_S \pi^+ \pi^-, K_S K^+ K^- \dots$	$\Delta(\cos\delta_{K\pi}) \sim 0.007;$ $\Delta(\delta_{K\pi}) \sim 2^{\circ}$	Synergy with BelleII/LHCb
$D^0 - \overline{D}{}^0$ mixing	$\psi(3770) \to (D^0 \overline{D}{}^0)_{CP=-},$ $\psi(4140) \to \gamma(D^0 \overline{D}{}^0)_{CP=+}$	$\Delta x \sim 0.035\%;$ $\Delta y \sim 0.023\%$	In Competition with BelleII/LHCb
Charm hadron decay	$D_{(s)}, \Lambda_c^+, \Sigma_c, \Xi_c, \Omega_c$ decay	$N_{D/D_s/\Lambda_c} \sim 10^9/10^8/10^8$	Leading role
γ polarization	$D^0 \to K_1 e^+ \nu_e$	$\Delta A'_{UD} \sim 0.015$	Synergy with BelleII/LHCb
CPV in Hyperons	$J/\psi \to \Lambda \overline{\Lambda}, \Sigma \overline{\Sigma}, \Xi^{-}\overline{\Xi}^{-}, \Xi^{0}\overline{\Xi}^{0}$	$\Delta A_{\Lambda} \sim 10^{-4}$	Leading role
CPV in τ	$\tau \to K_s \pi \nu$, EDM of τ , $\tau \to \pi/K \pi^0 \nu$ for polarized e^-	$\Delta A_{\tau \to K_S \pi \nu} \sim 10^{-3}$; $\Delta d_{\tau} \sim 5 \times 10^{-19}$ (e cm)	In Competition with BelleII
CPV in Charm	$D^0 \to K^+ K^- / \pi^+ \pi^-,$ $\Lambda_c \to p K^- \pi^+ \pi^0 \dots$	$\Delta A_D \sim 10^{-3}$; $\Delta A_{\Lambda_c} \sim 10^{-3}$	In Competition with BelleII/LHCb

^{*}Sensitivity estimated based on $\mathcal{L} = 1$ ab⁻¹

Forbidden/Rare decay and New Particle Search

Physics at STCF	Benchmark Processes	Key Parameters* (U.L. at 90% C.L.)	Remarks
FLV decays	$\tau \rightarrow \gamma l, lll, lP_1P_2$ $J/\psi \rightarrow ll', D^0 \rightarrow ll'(l' \neq l)$	$\mathcal{B}(\tau \to \gamma \mu/\mu\mu\mu) < 12/1.5 \times 10^{-9};$ $\mathcal{B}(J/\psi \to e\tau) < 0.71 \times 10^{-9}$	In Competition with BelleII
LNV, BNV	$D_{(s)}^+ \to l^+ l^+ X^-, J/\psi \to \Lambda_c e^-,$ $B \to \bar{B}$	$\mathcal{B}(J/\psi\to\Lambda_c e^-)<10^{-11}$	Leading role
Symmetry violation	$\eta^{(\prime)} ightarrow ll \pi^0, \eta^\prime ightarrow \eta ll \dots$	$\mathcal{B}(\eta' \to ll/\pi^0 ll) < 1.5/2.4 \times 10^{-10}$	Leading role
FCNC	$D \rightarrow \gamma V, D^0 \rightarrow l^+ l^-, e^+ e^- \rightarrow D^*,$ $\Sigma^+ \rightarrow p l^+ l^$	$\mathcal{B}(D^0 \to e^+ e^- X) < 10^{-8}$	In Competition with BelleII
Dark photon, millicharged	$e^+e^- \to (J/\psi) \to \gamma A'(\to l^+l^-)$ $e^+e^- \to \chi \bar{\chi} \gamma$	Mixing strength $\Delta \epsilon_{A'} \sim 10^{-4}$; $\Delta \epsilon_{\chi} \sim 10^{-4}$	Synergy with BelleII/

^{*}Sensitivity estimated based on $\mathcal{L} = 1 \text{ ab}^{-1}$

Strategy & Activities

$CDR \rightarrow TDR \rightarrow project application \rightarrow construction \rightarrow commissioning$

- Strategy: focus on CDR (4 years) and TDR (7 years) depend on the available resources. the construction site open.
- Domestic Workshops (2011, 12, 13, 14, 16, 20, 21)
- International Workshops (2015, 18, 19, 20, 21)

Funding support for R&D

- Double First-Class university project foundation of USTC
- CAS international cooperation and exchange project
- National Science Foundation of China (Key/General programs)
- The 14th five-year planning, National Key Basic Research Program of China