Contribution ID: 23 Type: not specified

Fully heavy tetraquark bc\bar{b}\bar{c}

We study the existence of fully-heavy hidden-flavor $bc\bar{b}\bar{c}$ tetraquark states with various $J^{PC}=0^{\pm+},0^{--},1^{\pm\pm},2^{++}$, by using the moment QCD sum rule method augmented by fundamental inequalities. Using the moment sum rule analyses, our calculation shows that the masses for the S-wave positive parity $bc\bar{b}\bar{c}$ tetraquark states are about 12.2-12.4 GeV in both $[{\bf 3_c}]_{bc}\otimes[{\bf 3_c}]_{\bar{b}\bar{c}}$ and $[{\bf 6_c}]_{bc}\otimes[{\bf 6_c}]_{\bar{b}\bar{c}}$ color configuration channels. Except for two 0^{++} states, such results are below the thresholds $T_{\eta_c\eta_b}/T_{\Upsilon\psi}$ and $T_{B_cB_c}$, implying that these S-wave positive parity $bc\bar{b}\bar{c}$ tetraquark states are probably stable against the strong interaction. For the P-wave negative parity $bc\bar{b}\bar{c}$ tetraquarks, their masses in the $[{\bf 3_c}]_{bc}\otimes[{\bf 3_c}]_{\bar{b}\bar{c}}$ channel are around 12.9-13.2 GeV, while a bit higher in the $[{\bf 6_c}]_{bc}\otimes[{\bf 6_c}]_{\bar{b}\bar{c}}$ channel. They can decay into the $c\bar{c}+b\bar{b}$ and $c\bar{b}+b\bar{c}$ final states via the spontaneous dissociation mechanism, including the $J/\psi\Upsilon, \eta_c\Upsilon, J/\psi\eta_b, B_c^+B_c^-$ channels.

Presentation type

Oral

Primary author: Mr YANG, Zi-Yan (School of Physics, Sun Yat-Sen University)

Presenter: Mr YANG, Zi-Yan (School of Physics, Sun Yat-Sen University)