Contribution ID: 29 Type: not specified

Probing neutrino magnetic moment at the Jinping neutrino experiment

Neutrino magnetic moment (ν MM) is an important property of massive neutrinos.

The recent anomalous excess at few keV electronic recoils observed by the XENON1T collaboration might indicate a $\sim 2.2 \times 10^{-11} \mu_B$ effective neutrino magnetic moment (μ_{ν}^{eff}) from solar neutrinos.

Therefore, it is essential to carry out the ν MM searches at a different experiment to confirm or exclude such a hypothesis.

We study the feasibility of doing ν MM measurement with 4 kton active mass at Jinping neutrino experiment (Jinping) using electron recoil data from both natural and artificial neutrino sources.

The sensitivity of μ_{ν}^{eff} can reach $< 1.2 \times 10^{-11} \mu_B$ at 90% C.L. with 10-year data taking of solar neutrinos. Besides the abundance of the intrinsic low energy background $^{14}{\rm C}$ and $^{85}{\rm Kr}$ in the liquid scintillator, we find the sensitivity to $\nu{\rm MM}$ is highly correlated with the systematic uncertainties of pp and $^{85}{\rm Kr}$.

Reducing systematic uncertainties (pp and 85 Kr) and the intrinsic background (14 C and 85 Kr)

can help to improve sensitivities below these levels and reach the region of astrophysical interest.

With a 3 mega-Curie (MCi) artificial neutrino source 51 Cr installed at Jinping neutrino detector for 55 days, it could give us a sensitivity to the electron neutrino magnetic moment (μ_{ν_e}) with $< 1.1 \times 10^{-11} \mu_B$ at 90\% C.L.

With the combination of those two measurements, the flavor structure of the neutrino magnetic moment can be also probed at Jinping.

Presentation type

Oral

Primary author: 岳, 保彪 (Sun Yat-Sen University)

Co-authors: LING, Jiajie (Sun Yat-sen University (中山大学)); LIAO, Jiajin (Sun Yat-Sen University)

Presenter: 岳, 保彪 (Sun Yat-Sen University)