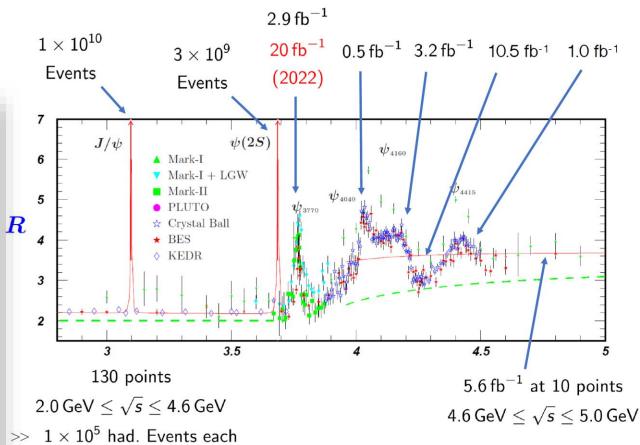
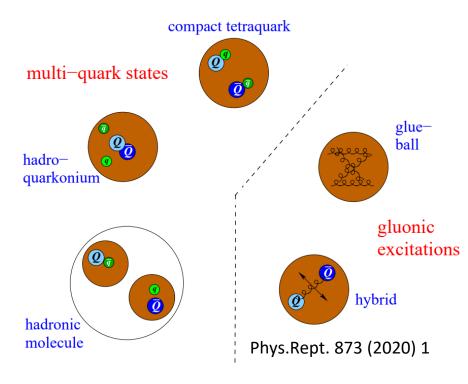

Recent results from **ESI** experiment


刘北江 中国科学院高能物理研究所 (On behalf of the BESIII collaboration)

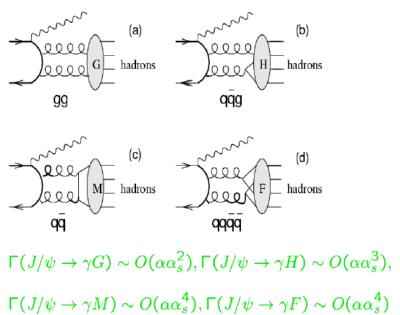
> HFCPV2021,暨南大学 2021.11.10-2021.11.14

World's largest τ – charm data sets in e^+e^- annihilation

Beijing Electron Positron Collider (BEPCII)



Selected topics


- Light hadrons: glueballs & more
- XYZ particles: Y(4260), X(3872), Zcs(3985)
- Charm decays: CKM, decay constants, form factors, LFU, $\Delta\delta_D$
- Baryons: form factors & polarization

Charmonium decays provide an ideal lab for light hadron physics

What's the role of gluonic excitation and how does it connect to the confinement?

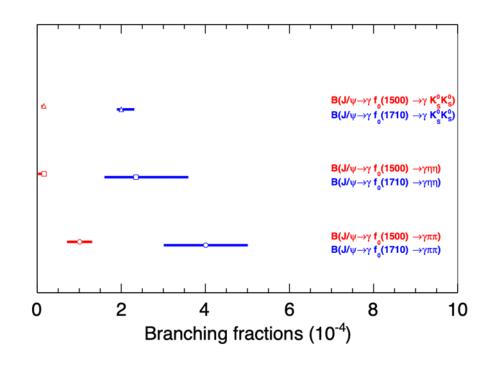
- Clean high statistics data samples
- Well defined initial and final states
 - Kinematic constraints
 - I(J^{PC}) filter
- "Gluon-rich" process

Scalar glueball candidate

$$\Gamma(J/\psi o\gamma G_{0^+})=rac{4}{27}lpharac{|p|}{M_{J/\psi}^2}|E_1(0)|^2=0.35(8)keV \ \Gamma/\Gamma_{tot}=0.33(7)/93.2=3.8(9) imes10^{-3}$$

CLQCD, Phys. Rev. Lett. 110, 021601 (2013)

Experimental results


$$ightharpoonup B(J/\psi \rightarrow \gamma f_0(1710) \rightarrow \gamma K \overline{K}) = (8.5^{+1.2}_{-0.9}) \times 10^{-4}$$

$$>$$
B(J/ $\psi \rightarrow \gamma f_0(1710) \rightarrow \gamma \pi \pi) = (4.0 \pm 1.0) \times 10^{-4}$

$$\triangleright$$
B(J/ $\psi \rightarrow \gamma f_0(1710) \rightarrow \gamma \omega \omega$)=(3.1±1.0)×10⁻⁴

$$\triangleright$$
B(J/ $\psi \rightarrow \gamma f_0(1710) \rightarrow \gamma \eta \eta$)=(2.35^{+0.13+1.24}_{-0.11-0.74})× 10⁻⁴

$$\Rightarrow$$
 B(J/ $\psi \rightarrow \gamma f_0(1710)$) > 1.7× 10⁻³

 $f_0(1710)$ largely overlapped with scalar glueball

Recent interpretations with coupled-channel analysis on BESIII results

Scalar isoscalar mesons and the scalar glueball from radiative J/ψ decays

Andrey V. Sarantsev, Igor Denisenko, Ulrike Thoma, Eberhard Klempt

A coupled-channel analysis of BESIII data on radiative J/ψ decays into $\pi\pi$, $K\bar{K}$, $\eta\eta$ and $\omega\phi$ has been performed. The partial-wave amplitude is constrained by a large number of further data. The analysis finds ten isoscalar scalar mesons. Their masses, widths and decay modes are determined. The scalar mesons are interpreted as mainly SU(3)-singlet and mainly octet states. Octet isoscalar scalar states are observed with significant yields only in the 1500-2100\,MeV mass region. Singlet scalar mesons are produced over a wide mass range but their yield peaks in the same mass region. The peak is interpreted as scalar glueball. Its mass and width are determined to M=1865 \er25 $^{+10}_{-30}$ {\rm MeV} and $\Gamma=370$ \er50 $^{+30}_{-20}$ {\rm MeV}, its yield in radiative J/ψ decays to $(5.8\pm1.0)~10^{-3}$.

Comments: 11 pages, 4 figures

Subjects: High Energy Physics - Phenomenology (hep-ph)

<u>DOI</u>: 10.1016/j.physletb.2021.136227 Cite as: arXiv:2103.09680 [hep-ph]

Scalar and tensor resonances in J/ψ radiative decays

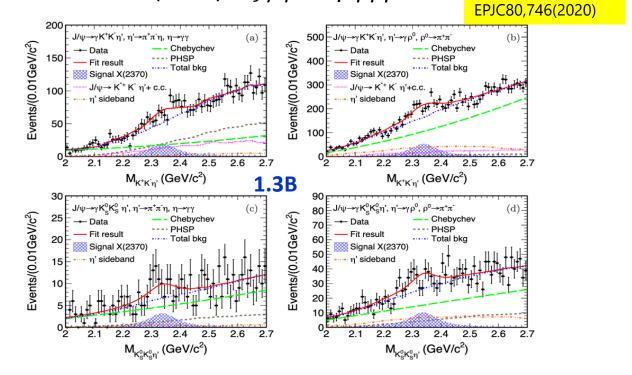
JPAC Collaboration: A. Rodas, A. Pilloni, M. Albaladejo, C. Fernandez-Ramirez, V. Mathieu, A. P. Szczepaniak

We perform a systematic analysis of the $J/\psi \to \gamma \pi^0 \pi^0$ and $\to \gamma K_S^0 K_S^0$ partial waves measured by BESIII. We use a large set of amplitude parametrizations to reduce the model bias. We determine the physical properties of seven scalar and tensor resonances in the 1-2.5 GeV mass range. These include the well known $f_0(1500)$ and $f_0(1710)$, that are considered to be the primary glueball candidates. The hierarchy of resonance couplings determined from this analysis favors the latter as the one with the largest glueball component.

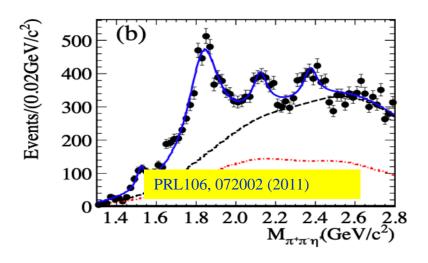
Comments: 17 pages, 11 figures + 28 pages of Supplemental Material

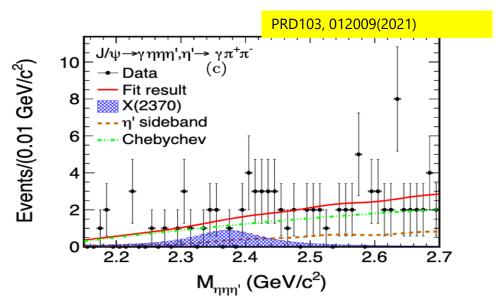
Subjects: **High Energy Physics - Phenomenology (hep-ph)**; High Energy Physics - Experiment (hep-

ex); Nuclear Theory (nucl-th)


Cite as: arXiv:2110.00027 [hep-ph]

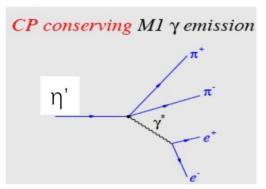
To-do:

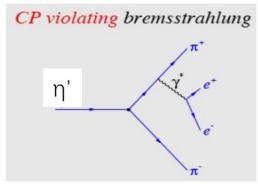

The X(2120) and X(2370)

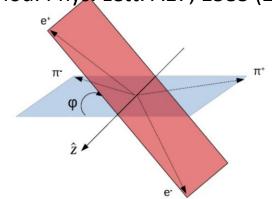

- Observed in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ at BESIII [PRL106, 072002 (2011)][PRL117, 042002(2016)]
- Combined analysis of $J/\psi \to \gamma K^+ K^- \eta'$ and $\gamma K_S K_S \eta'$

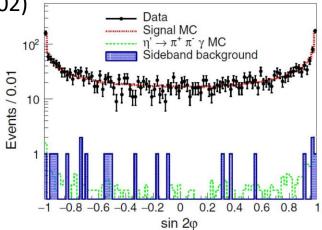
• Search for X(2370) in $J/\psi \rightarrow \gamma \eta \eta \eta'$

 $M_{X(2370)} = 2341.6 \pm 6.5 \text{(stat.)} \pm 5.7 \text{(syst.)} \text{ MeV}/c^2,$ $\Gamma_{X(2370)} = 117 \pm 10 \text{(stat.)} \pm 8 \text{(syst.)} \text{ MeV},$

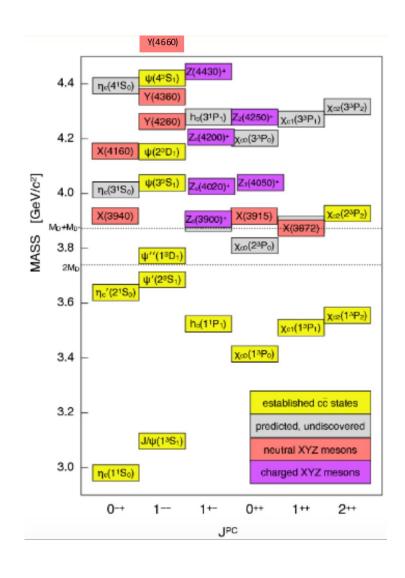

- Observation of $X(2370) \rightarrow K\overline{K}\eta'$, 8.3 σ
- No evidence of $X(2120) \rightarrow K\overline{K}\eta'$
- No evidence of $X(2370) \rightarrow \eta \eta \eta'$

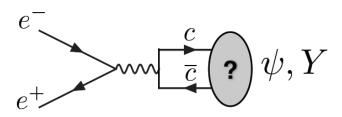

7


Search for CP violation in $\eta' \to \pi^+\pi^-e^+e^-$


- Test of a new sources of CP violation beyond the CKM phase and outside flavor-changing processes
- CP asymmetry arises from the interference between the CP conserving magnetic and CP-violating electric transition

Mod. Phys. Lett.A17, 1489 (2002), Mod. Phys. Lett. A17, 1583 (2002)

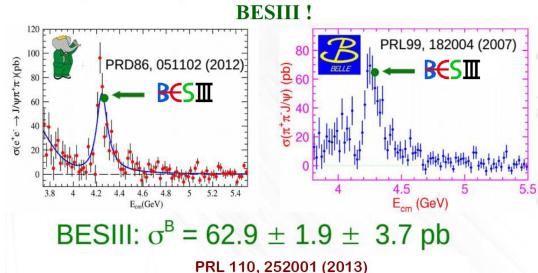

$$\mathcal{A}_{\varphi} = \frac{N(\sin 2\varphi > 0) - N(\sin 2\varphi < 0)}{N(\sin 2\varphi > 0) + N(\sin 2\varphi < 0)} = (2.9 \pm 3.7_{\text{stat}} \pm 1.1_{\text{syst}})\%$$

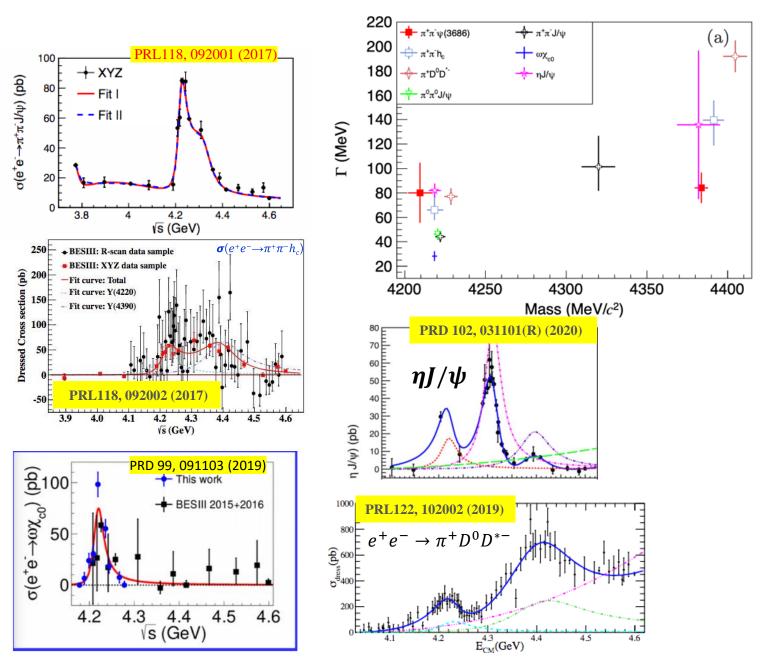

- Consistent with 0 within uncertainties, no CP-violation
- Comparable precision to measurement of CP-asymmetry in $K_L \to \pi^+\pi^-e^+e^-$ PRL. 84, 408(2000)

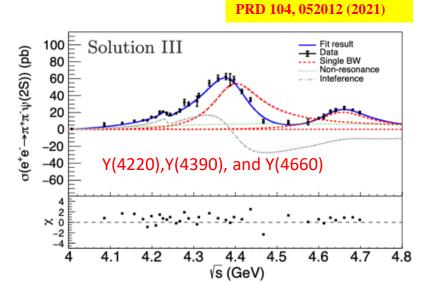
Selected topics

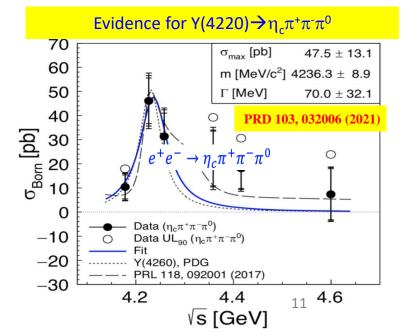
- Light hadrons: glueballs & more
- XYZ particles: Y(4260), X(3872), Zcs(3985)
- Charm decays: CKM, decay constants, form factors, LFU, $\Delta\delta_D$
- Baryons: form factors & polarization

Charmonium and exotics at BESIII

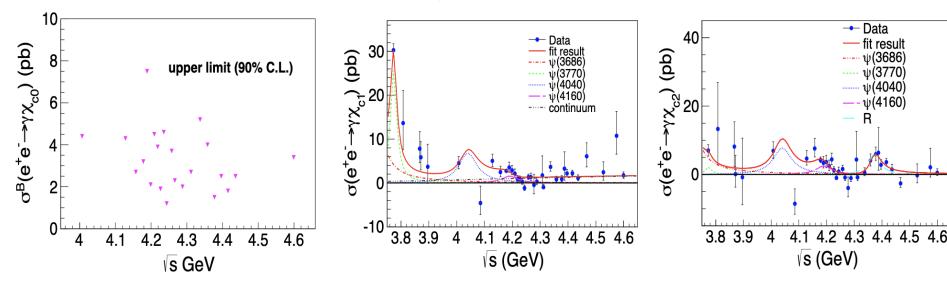



direct production of vectors: ψ , Y radiative and hadronic transitions to others


$$e^+e^- \rightarrow \pi^+\pi^- J/\psi$$


Compare running at Belle and BaBar, with one month at

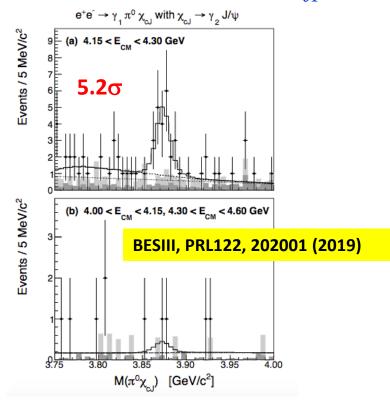
Y(4260) → Y(4220) and new Y's



$$e^+e^- o \gamma \chi_{cJ}$$
 at \sqrt{s} =3.8-4.6 GeV

- No signals for $e^+e^- o \gamma \chi_{c0}$
- Observations of $e^+e^- o \gamma \chi_{c1,2}$

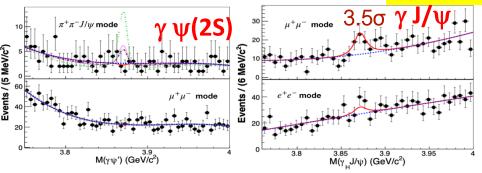
Phys.Rev.D 104 (2021), 092001

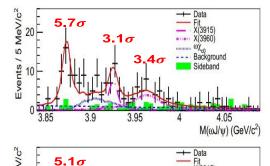

- $\gamma \chi_{c1}$: Well describe with conventional charmonium states
- $\gamma \chi_{c2}$: Along with conventional ones, an additional Y state is needed

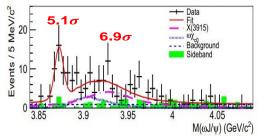
$$M = 4371.7 \pm 7.5 \pm 1.8 \text{ MeV}/c^2$$
, $\Gamma = 51.1 \pm 17.6 \pm 1.9 \text{ MeV}$

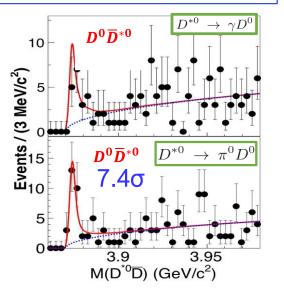
- \checkmark statistical significance of 5.8 σ
- ✓ consistent with the Y(4360)/Y(4390)

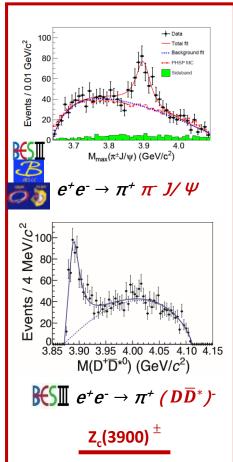
More X(3872) decay information

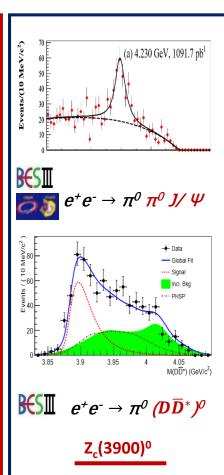

• Observation of X(3872) $\rightarrow \pi^0 \chi_{c1}$

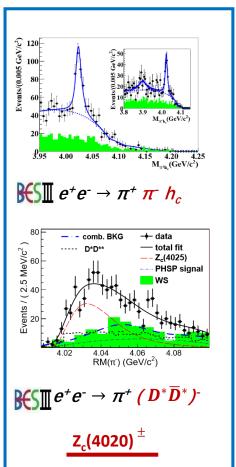

- Observation of X(3872) $\rightarrow \omega J/\psi$ BESIII, PRL 122, 232002 (2019)
- Observation of X(3872) $\rightarrow D^0 \overline{D}^{*0}$ BESIII, PRL 124, 242001 (2020)

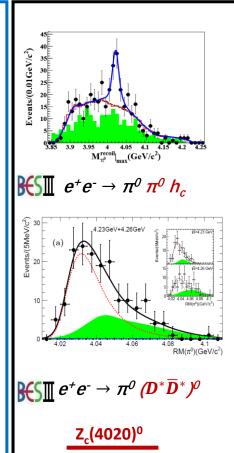

• Transition of $X(3872) \rightarrow \gamma J/\psi$, $\gamma \psi(2S)$

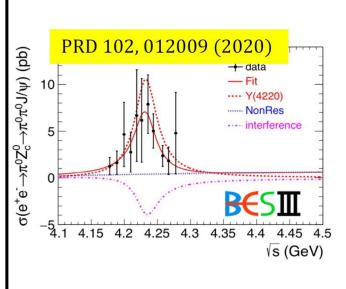

BESIII, PRL 124, 242001 (2020)

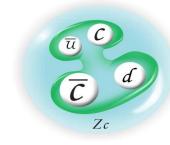

R= $\frac{\text{BF}(X(3872)\to\gamma\psi(2S))}{\text{BF}(X(3872)\to\gamma\text{J/}\psi)}$ <0.59 at 90% C.L., agrees with Belle(<2.1), while challenges Babar(3.4±1.1) and LHCb results (2.46±0.70)

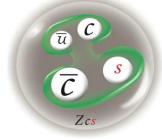







The Zc Family at BESIII

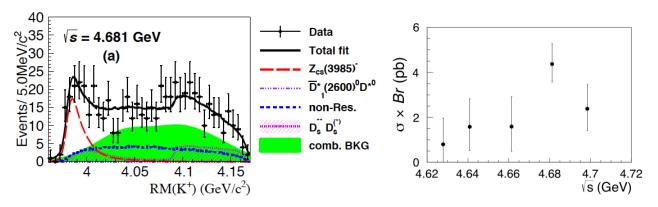


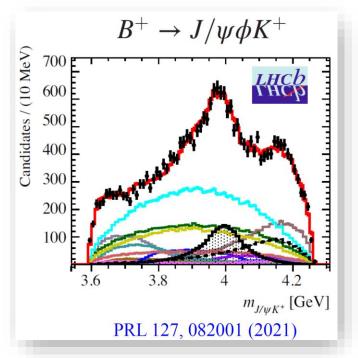

Which is the nature of these states?

If exists, there should be SU(3) counter-part

Zcs state with strangeness

Observation of the $Z_{cs}(3985)^{\pm}$


$$e^+e^- \to K^+(D_s^-D^{*0}+D_s^{*-}D^0)$$


5 4.1 4.1 RM(K⁺) (GeV/c²)

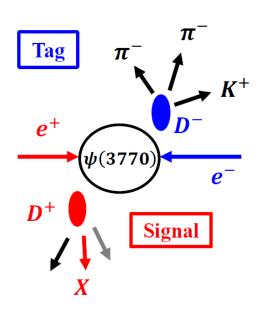
 $\sqrt{s} = 4.628 \text{ GeV}$

PRL126, 102001 (2021)

Simultaneous fit to the five energy points

(b) (b) (c) (b)	(c)	State	Si
Events/5	sti 5	$Z_{cs}(3985)$	5
4 4.05 4.1 RM(K ⁺) (GeV/c ²)	4 4.05 4.1 RM(K ⁺) (GeV/c ²)	$Z_{cs}(4000)$]
	ຶ່ວ √s = 4.698 GeV	$Z_{cs}(4220)$	5
% = 4.661 GeV (d)	⊕ 15 [(e) [[] [] [] [] [] [] [] [] []		

4.1 4.15 RM(K⁺) (GeV/c²)


ຶ່≥₁₅ √s = 4.641 GeV

State	Signif.	JP	Mass (MeV)	Width (MeV)
$Z_{cs}(3985)$	5.3σ	??	$3982.5^{+1.8}_{-2.6} \pm 2.1$	$12.8^{+5.3}_{-4.4} \pm 3.0$
$Z_{cs}(4000)$	15σ	1+	$4003 \pm 6^{+4}_{-14}$	131±15±26
$Z_{cs}(4220)$	5.9σ	1+	$4216 \pm 24^{+43}_{-30}$	$233 \pm 52^{+97}_{-73}$

High statistics analysis of $e^+e^- \to K^+K^-J/\psi$ is desirable

Selected topics

- Light hadrons: glueballs & more
- XYZ particles: Y(4260), X(3872), Zcs(3985)
- Charm decays: CKM, decay constants, form factors, LFU, $\Delta\delta_D$
- Baryons: form factors & polarization

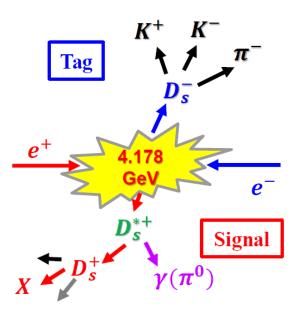
• Single tag (ST):

fully reconstruct one D

$$\Delta E = E_{D^{-}} - E_{\text{beam}}$$

$$M_{\text{BC}} = \sqrt{E_{\text{beam}}^{2} - |\vec{p}_{D^{-}}|^{2}}$$

□ Double tag (DT):


in the recoil ST $D_{(s)}^-$, analyze the signal $D_{(s)}^+$

$$\mathbf{M}\mathbf{M}^2 = \mathbf{E}_{\mathrm{miss}}^2 - |\vec{\mathbf{p}}_{\mathrm{miss}}|^2$$

$$E_{\text{miss}} = E_{\text{cm}} - \sqrt{\left|\vec{p}_{D_{(s)}^-}\right|^2 + M_{D_{(s)}}^2} - E_X$$

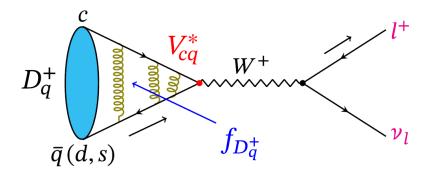
$$\vec{p}_{\text{miss}} = -\vec{p}_{D_{(s)}^-} - \vec{p}_X$$

$$U_{\text{miss}} = E_{\text{miss}} - |\vec{p}_{\text{miss}}|$$

• Single tag (ST):

fully reconstruct one D_s^-

$$M_{\text{rec}} = \sqrt{\left(E_{\text{cm}} - \sqrt{\left|\vec{p}_{D_s^-}\right|^2 + m_{D_s^-}^2}\right)^2 - \left|-\vec{p}_{D_s^-}\right|^2}$$


ST yield:
$$N_{\rm ST}^i = 2 \times N_{\rm D\overline{D}} \times B_{\rm ST}^i \times \varepsilon_{\rm ST}^i$$

DT yield:
$$N_{\rm DT}^i = 2 \times N_{\rm D\overline{D}} \times B_{\rm ST}^i \times B_{\rm sig} \times \varepsilon_{\rm ST \, vs. sig}^i$$

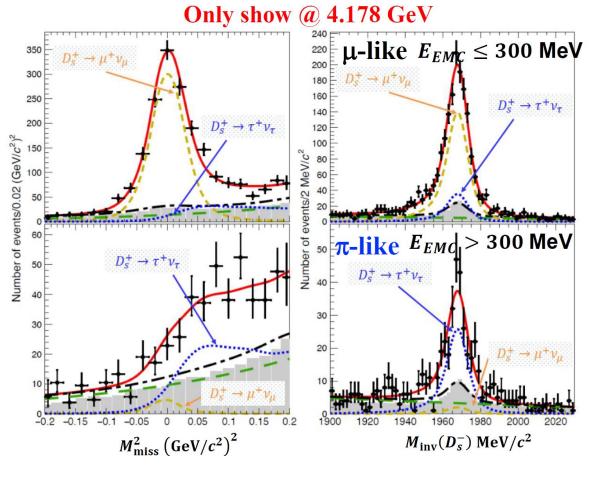
Average eff.:
$$\bar{\varepsilon}_{\text{sig}} = \sum_{i=1}^{N} (N_{\text{ST}}^{i} \times \varepsilon_{\text{ST vs.sig}}^{i} / \varepsilon_{\text{ST}}^{i}) / \sum_{i=1}^{N} N_{\text{ST}}^{i}$$

$$B_{\text{sig}} = \frac{N_{\text{DT}}^{\text{tot}}}{N_{\text{ST}}^{\text{tot}} \times \varepsilon_{\text{sig}}}$$

Pure leptonic decay

$$\Gamma(D_{(s)}^{+} \to l^{+}\nu) = \frac{G_F^2 f_{D_{(s)}^{+}}^2}{8\pi} \left| V_{cd(s)} \right|^2 m_l^2 m_{D_{(s)}^{+}} \left(1 - \frac{m_l^2}{m_{D_{(s)}^{+}}^2} \right)^2$$

• Decay constant $f_{D_{(s)}^+}$


Exp. decay rate + $\left|V_{cs(d)}\right|^{CKMfitter}$ \rightarrow calibrate LQCD @charm & extrapolate to Beauty

• CKM matrix element $|V_{cs(d)}|$

Exp. decay rate + LQCD → CKM matrix elements

$D_{\scriptscriptstyle S}^+ \to \mu^+ \nu_\mu$ and $D_{\scriptscriptstyle S}^+ \to \tau^+ \nu_\tau$ via $\tau^+ \to \pi^+ \bar{\nu}_\tau$

• An unbinned simultaneous maximum likelihood fit to two-dimensional distributions

Phys.Rev.D 104 (2021), 052009

For all data samples

$$N_{D_s^+ \to \mu^+ \nu_\mu}^{
m signal} = 2198 \pm 55$$

$$N_{D_s^+ \to \tau^+ \nu_{\tau}}^{\text{signal}} = 946_{-45}^{+46}$$

Data

Best fit

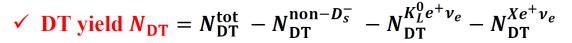
Sig: $D_s^+ \rightarrow \tau^+ v_{\tau} \text{ via } \tau \rightarrow \pi^+ v_{\tau}$

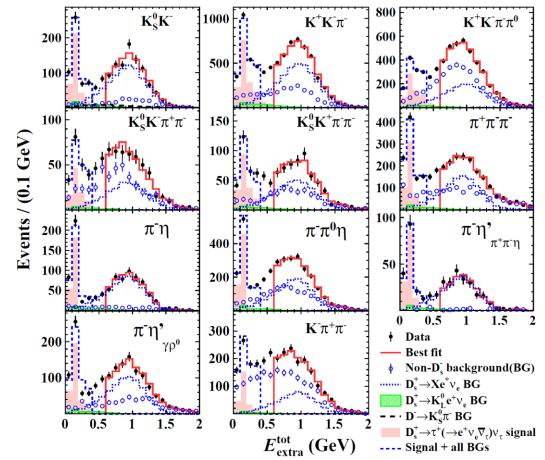
Sig: $D_{c}^{+} \rightarrow \mu^{+}\nu_{\mu}$

— - Total background

———— Bkgs: both tag and signal are wrong

40 × MC sample scaled


The most precise result to date


$$B(D_s^+ \to \mu^+ \nu_{\mu}) = (5.35 \pm 0.13_{\text{stat.}} \pm 0.16_{\text{syst.}}) \times 10^{-3}$$

$$B(D_s^+ \to \tau^+ \nu_{\tau}) = (5.21 \pm 0.25_{\text{stat.}} \pm 0.17_{\text{syst.}}) \times 10^{-2}$$
 ¹⁹

$D_{\scriptscriptstyle S}^+ \to \tau^+ \nu_{\tau} \ {\rm via} \ \tau^+ \to e^+ \nu_e \bar{\nu}_{\tau}$

 \checkmark $E_{\text{extra}}^{\text{tot}}$: the total energy of the good EMC showers, excluding those associated with the ST D_s^- candidates and those within 5° of the initial direction of the positron.

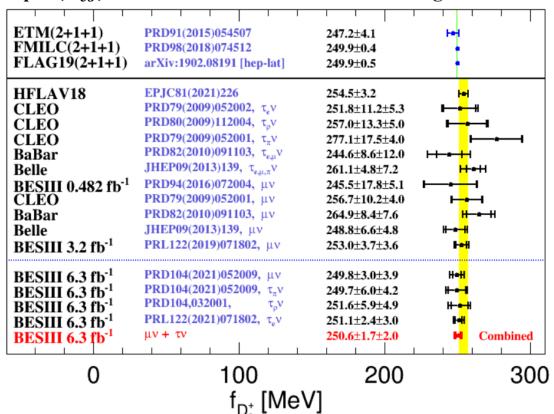
(in signal $E_{\text{extra}}^{\text{tot}} < 0.4 \text{ GeV}$)

Phys. Rev. Lett. 127 (2021) 171801

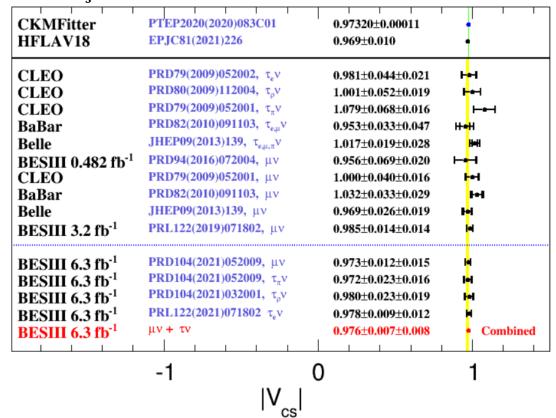
The most precise result to date

BESIII results					
${\cal B}(D_s^+ o au^+ u_ au)$	${\cal B}(D_s^+ o \mu^+ u_\mu)$				
$(5.29 \pm 0.25 \pm 0.20)\%$	-				
$(5.21 \pm 0.25 \pm 0.17)\%$	$(0.535 \pm 0.013 \pm 0.016)\%$				
$(5.27 \pm 0.10 \pm 0.12)\%$	-				
$(5.26 \pm 0.09 \pm 0.09)\%$	$(0.535 \pm 0.013 \pm 0.016)\%$				
	$\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau}) = (5.29 \pm 0.25 \pm 0.20)\% (5.21 \pm 0.25 \pm 0.17)\% (5.27 \pm 0.10 \pm 0.12)\%$				

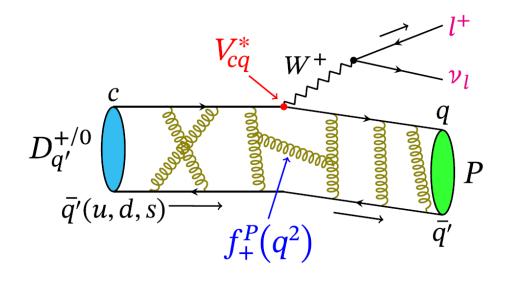
Combining our results with world averages


$$\mathcal{B}_{D_s^+ \to \tau^+ \nu_{\tau}} / \mathcal{B}_{D_s^+ \to \mu^+ \nu_{\mu}} = 9.72 \pm 0.37$$

SM prediction 9.75 ± 0.01

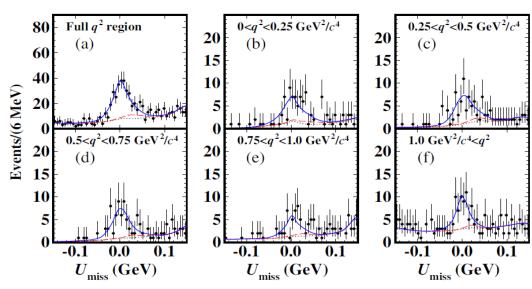

No LFU violation is found with the current precision

$$f_{D_S^+}|V_{CS}| = (244.4 \pm 2.3 \pm 2.9)MeV$$


Input $|V_{cs}| = 0.97320 \pm 0.00011$ from CKM global fit

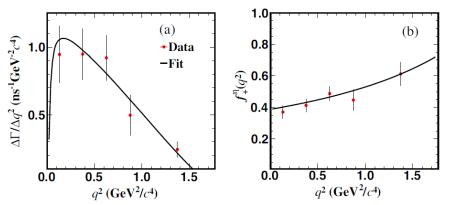
Input $f_{D_s^+} = 249.9 \pm 0.5$ from LQCD calculations (FLAVG19)

Semi-leptonic decay



$$\frac{d\Gamma}{dq^2} = X \frac{G_F^2 p^3}{24\pi^3} |f_+(q^2)|^2 |V_{cd(s)}|^2 (X = 1 \text{ for } K^-, \pi^-, \bar{K}^0, \eta^{(\prime)}; X = \frac{1}{2} \text{ for } \pi^0)$$

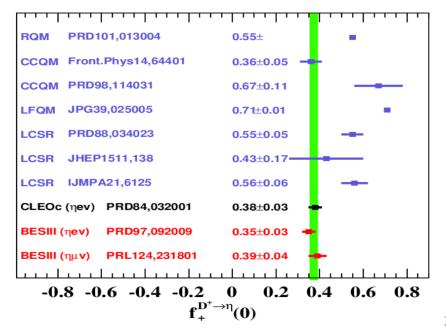
- Analyze exp. partial decay rates \rightarrow q² dependence of f₊^{K(π)}(q²), extract f₊^{K(π)}(0) with $|V_{cs(d)}|^{CKMfitter}$ as input ---- calibrate QCD
- Exp. + LQCD calculation of $f_{+}^{K}(0)$ and $f_{+}^{\pi}(0) \rightarrow V_{cs(d)}$ ---- constrain CKM


First observation of D⁺ $\rightarrow \eta \mu \nu_{\mu}$

2.93f
$$b^{-1}@E_{cm} = 3.773$$
GeV $e^+e^- \to \psi(3770) \to D\overline{D}$

No. of single tags: $(1522.5\pm2.1)X10^3$

No. of double tags: 234 ± 22

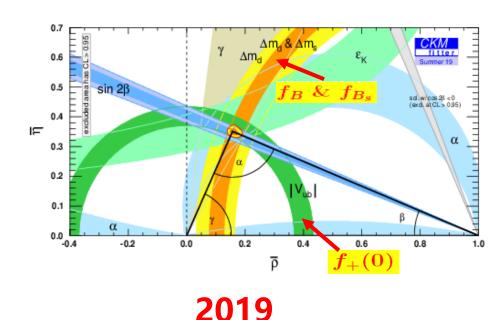

BESIII: PRL 124, 231801 (2020)

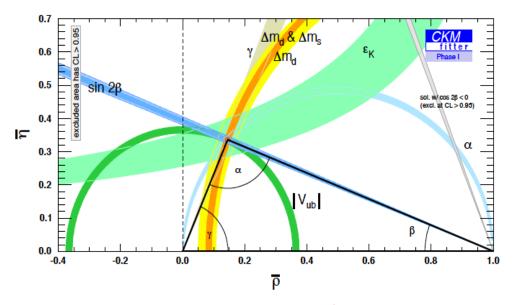
$$B[D^+ \to \eta \mu^+ \nu] = (0.104 \pm 0.010 \pm 0.005)\%$$

$$R_{D\eta}=\frac{\Gamma[D^+\to\eta\mu^+v]}{\Gamma[D^+\to\eta e^+v]}=0.\,91\pm0.\,13$$

(SM prediction: 0.93-0.96)

$$f_{+}^{D \to \eta}(0)|V_{cd}| = 0.087(08)(02)$$

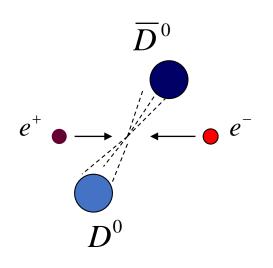

BESIII data @3770 MeV (2.93 fb⁻¹ \rightarrow 20 fb⁻¹)


 $\psi(3770) \rightarrow D^0 \overline{D^0}$ quantum correlation \rightarrow strong phase parameters between D⁰ and $\overline{D^0}$ decays \rightarrow inputs to measurement of γ

Belle II (arXiv:1808.10567): 1.5° with 50 ab⁻¹

LHCb (arXiv:1808.08865v2): < 1°, 50 fb⁻¹, phase-1 upgrade (2030),

< 0.4°, 300 fb⁻¹, phase-2 upgrade (> 2035)



>year of 2030 (BESIII 20 fb⁻¹ data as inputs)

BESIII White Paper, Chinese Phys. C 44 (2020) 040001

The correlated state

For a physical process producing $D^0 \, \overline{D}{}^0$ such as

$$e^+e^- \rightarrow \psi^- \rightarrow D^0 \overline{D}^0$$

The $D^0 \overline{D^0}$ pair will be a quantum-correlated state

$$C = -$$

$$\hat{C}|D^0\rangle = |\overline{D}^0|$$

For a correlated state with
$$C= \hat{C}ig|D^0ig
angle=ig|\overline{D}^0ig
angle$$
 $\psi_-=rac{1}{\sqrt{2}}(ig|D^0ig
angle-ig|\overline{D}^0ig
angle-ig|\overline{D}^0ig
angle)$

$$|\hat{C}||\overline{D}^0\rangle = |D^0|$$

CP tag at threshold
$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

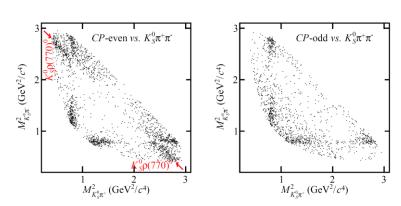
$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

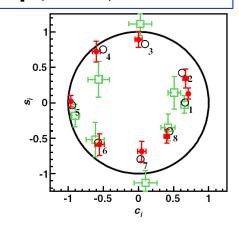
$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

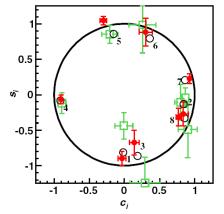
$$\begin{cases} K_{\rm S} & K_{\rm S} \\ K_{\rm S} & K_{\rm S} \end{cases}$$

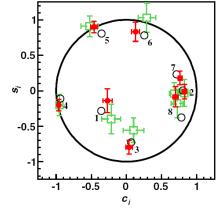
$$\frac{\left\langle K^{-}\pi^{+} \left| \overline{D}^{0} \right\rangle^{DCS}}{\left\langle K^{-}\pi^{+} \left| D^{0} \right\rangle^{CF}} \equiv -r_{K\pi} e^{-i\delta_{K\pi}}$$

$$\sqrt{2} A(D_{CP\pm} \to K^-\pi^+) = A(D^0 \to K^-\pi^+) \pm A(\overline{D^0} \to K^-\pi^+)$$

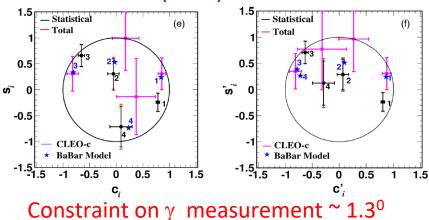

Strong phase measurements at **BESII**


$$lacksquare D
ightarrow K_{S/L}^0 \pi^+ \pi^-$$

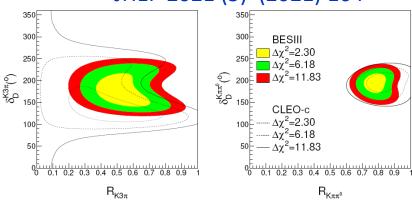

2.93f
$$b^{-1}@E_{cm} = 3.773$$
GeV $e^+e^- \to \psi(3770) \to D\overline{D}$


PRL 124 (2020)241802

Constraint on γ measurement ~ 0.9°

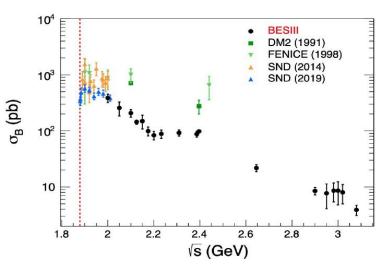


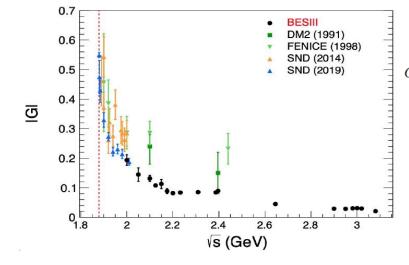


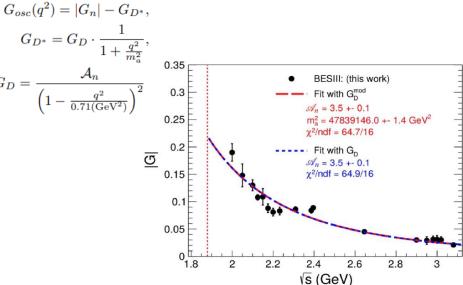

 $\blacksquare D \to K_{S/L}^0 K^+ K^-$

 $\blacksquare D \rightarrow K^-\pi^+\pi^+\pi^- \text{ and } K^-\pi^+\pi^0$

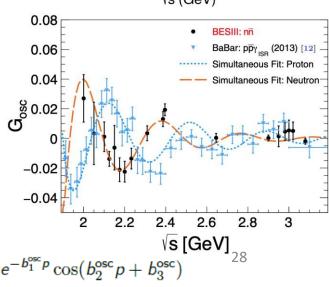
PRD102(2020)052008

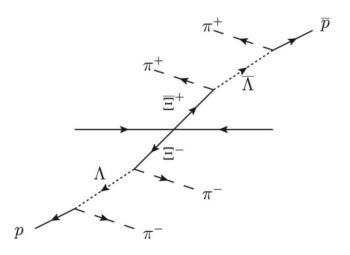

Constraint on γ measurement $\sim 6^{\circ}$


Selected topics


- Light hadrons: glueballs & more
- XYZ particles: Y(4260), X(3872), Zcs(3985)
- Charm decays: CKM, decay constants, form factors, LFU, $\Delta\delta_D$
- Baryons: form factors & polarization

Oscillation Structure in neutron Form Factor


Nature Physics 17, 1200 (2021)



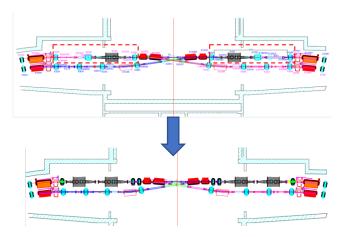
- a similar periodic structure of $|G_{eff}|$ as proton
- Simultaneous fit to $|G_{eff}|$ of neutron and proton yields a shared frequency 5.55 \pm 0.28 GeV^{-1}
- a large phase difference $\Delta b^{osc} = |b_{2n}^{osc} b_{2n}^{osc}| =$ $(125 \pm 12)^{\circ}$

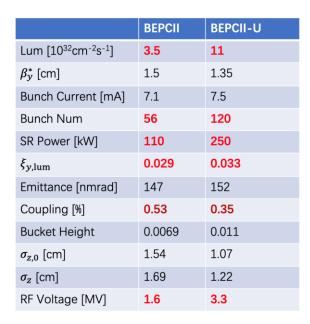
$$F(p) = b_0^{\text{osc}} e^{-b_1^{\text{osc}} p} \cos(b_2^{\text{osc}} p + b_3^{\text{osc}})$$

Weak phase and CP-symmetry tests in sequential decays of entangled $\Xi^{+}\Xi^{-}$ pairs

- First measurement of weak phase difference
- First direct measurement of ≡ decay parameters
- Independent measurement of Λ decay parameter
- Strong phase diff. consistent with zero

Parameter	This work	Previous result		
α_{ψ}	$0.586 \pm 0.012 \pm 0.010$	$0.58 \pm 0.04 \pm 0.08$ [39]		
$\Delta\Phi$	$1.213 \pm 0.046 \pm 0.016$ rad	_		
α_{Ξ}	$-0.376 \pm 0.007 \pm 0.003$	-0.401 ± 0.010 [21]		
φΞ	$0.011 \pm 0.019 \pm 0.009$ rad	$-0.037 \pm 0.014 \text{rad}$ [21]		
$\overline{\alpha}_{\Xi}$	$0.371 \pm 0.007 \pm 0.002$	_		
$\overline{\phi}_{\Xi}$	$-0.021 \pm 0.019 \pm 0.007$ rad	_		
α_{Λ}	$0.757 \pm 0.011 \pm 0.008$	$0.750 \pm 0.009 \pm 0.004$ [14]		
$\overline{lpha}_{\Lambda}$	$-0.763 \pm 0.011 \pm 0.007$	$-0.758 \pm 0.010 \pm 0.007$ [14]		
$\xi_p - \xi_s$	$(1.2 \pm 3.4 \pm 0.8) \times 10^{-2}$ rad	-		
$\delta_p - \delta_s$	$(-4.0 \pm 3.3 \pm 1.7) \times 10^{-2} \text{ rad}$	$(10.2 \pm 3.9) \times 10^{-2} \text{ rad}[17]$		
A_{CP}^{Ξ}	$(6.0 \pm 13.4 \pm 5.6) \times 10^{-3}$	Consistent with		
$\Delta\phi^\Xi_{\mathrm{CP}}$	$(-4.8 \pm 13.7 \pm 2.9) \times 10^{-3}$ rad	CP symmetry		
$A_{ ext{CP}}^{\Lambda}$	$(-3.7 \pm 11.7 \pm 9.0) \times 10^{-3}$	$(-6 \pm 12 \pm 7) \times 10^{-3}$ [14]		
$\langle \phi_{\Xi} \rangle$	$0.016 \pm 0.014 \pm 0.007 \text{ rad}$	Same precise as HyperCP wit		


Planned future data set


Table 7.1: List of data samples collected by BESIII/BEPCII up to 2019, and the proposed samples for the remainder of the physics program. The most right column shows the number of required data taking days in current $(T_{\rm C})$ or upgraded $(T_{\rm U})$ machine. The machine upgrades include top-up implementation and beam current increase.

Energy	Physics motivations	Current data	Expected final data	$T_{ m C}$ / $T_{ m U}$	-
1.8 - 2.0 GeV	R values	N/A	$0.1 \; \mathrm{fb^{-1}}$	60/50 days	-
	Nucleon cross-sections		(fine scan)		
2.0 - 3.1 GeV	R values	Fine scan	Complete scan	250/180 days	-
	Cross-sections	(20 energy points)	(additional points)		_
J/ψ peak	Light hadron & Glueball	$3.2 \; {\rm fb^{-1}}$	$3.2 \; {\rm fb^{-1}}$	N/A	_
	J/ψ decays	(10 billion)	(10 billion)		to be complete
$\psi(3686)$ peak	Light hadron & Glueball	$0.67 \; \mathrm{fb^{-1}}$	$4.5 \; {\rm fb^{-1}}$	150/90 days	in 2022-23
V	Charmonium decays	(0.45 billion)	(3.0 billion)		
$\psi(3770)$ peak	D^0/D^{\pm} decays	$2.9 \; {\rm fb^{-1}}$	20.0 fb^{-1}	610/360 days	
3.8 - 4.6 GeV	R values	Fine scan	No requirement	N/A	
	XYZ/Open charm	(105 energy points)			_
$4.180~\mathrm{GeV}$	D_s decay	$3.2 \; {\rm fb^{-1}}$	$6 \; {\rm fb^{-1}}$	140/50 days	
	XYZ/Open charm				_
	XYZ/Open charm				
4.0 - 4.6 GeV	Higher charmonia	$16.0 \; \mathrm{fb^{-1}}$	30 fb^{-1}	770/310 days	
	cross-sections	at different \sqrt{s}	at different \sqrt{s}		_
4.6 - 4.9 GeV	Charmed baryon/ XYZ	$0.56 \; \mathrm{fb^{-1}}$	$15 \; {\rm fb^{-1}}$	1490/600 days	
	cross-sections	at $4.6 \; \mathrm{GeV}$	at different \sqrt{s}		_
$4.74~{ m GeV}$	$\Sigma_c^+ \bar{\Lambda}_c^-$ cross-section	N/A	$1.0 \; {\rm fb^{-1}}$	100/40 days	_
$4.91~{ m GeV}$	$\Sigma_c \bar{\Sigma}_c$ cross-section	N/A	$1.0 \; {\rm fb^{-1}}$	120/50 days	_
$4.95~\mathrm{GeV}$	Ξ_c decays	N/A	$1.0 \; {\rm fb^{-1}}$	130/50 days	
		-	-		

Proposal of the upgrade BEPCII

- ✓ An upgrade of BEPCII (BEPCII-U) has been approved in July 2021: the optimized energy is 2.35 GeV with luminosity 3 times higher than current BEPCII and extend the maximum energy to 5.6 GeV
- > Add another cavity per beam to improve the RF power
- > Change optics slightly, increase number of bunches
- > Challenges: high beam intensities, backgrounds and aging effect in the detector
- ➤ Small risk: can continue running with better performance than BEPCII
- ➤ Timescale: 2.5 years construction + 0.5 year installation
- ➤ Installation: July December 2024 and the upgraded machine ready in Jan. 2025

Summary

- Data with unprecedented statistical accuracy from BESIII provides great opportunities to hadron physics and flavor physics. Will continue to run for ~10 years
- BESIII is in good status, inner detector upgrade in progress
- High-lumi. fine scan between 3.8 GeV and 5.6 GeV is planned
 BEPCII-U: 3x upgrade on luminosity
- To obtain a complete picture, different experiments with complementary information are needed
- Synergies between experiment and theory are essential

Thank you for your attention