$C P$ violation phase in BSM amplitudes

Xia WAN（万霞）
Shaanxi Normal University
Nov．13， 2021

Collaborate with Ke－Yao Feng，You－Kai Wang，2111．XXXXX

HFCPV2021，暨南大学
Nov．11，2021－Nov．13， 2021

Outline

- Introduction
- BSM amplitudes in SMEFT and their decomposition relations
- BSM amplitudes from on-shell scattering amplitudes
- Summary

$C P$ violation in $S M$

$$
\begin{gathered}
\mathcal{L}_{\text {Yukawa }}=\lambda_{d}^{i j}\left(\bar{q}_{i} H\right) d_{j}+\lambda_{u}^{i j}\left(\bar{q}_{i} \tilde{H}\right) u_{j}+\lambda_{e}^{i j}\left(\bar{l}_{i} H\right) e_{j}+\text { h.c. } \\
U(3)^{5} \quad q^{i} \rightarrow U_{q}^{i j} q^{j}, u^{i} \rightarrow U_{u}^{i j} u^{j}, d^{i} \rightarrow U_{d}^{i j} d^{j}, l^{i} \rightarrow U_{l}^{i j} l^{j}, e^{i} \rightarrow U_{e}^{i j} e^{j} \\
\mathcal{L}_{\text {Yukawa }}=Y_{d}^{i j}\left(\bar{q}_{i} H\right) d_{j}+Y_{u}^{i j}\left(\bar{q}_{i} \tilde{H}\right) u_{j}+Y_{e}^{i j}\left(\bar{l}_{i} H\right) e_{j}+\text { h.c.. }
\end{gathered}
$$

Spurions $\quad Y_{u} \rightarrow U_{q} Y_{u} U_{u}^{\dagger} \quad, \quad Y_{d} \rightarrow U_{q} Y_{d} U_{d}^{\dagger} \quad, \quad Y_{e} \rightarrow U_{l} Y_{e} U_{e}^{\dagger}$,

$$
\begin{array}{r}
\left\langle Y_{d}\right\rangle^{i j}=y_{d}^{i j} \propto m_{d}^{i j},\left\langle Y_{e}\right\rangle^{i j}=y_{e}^{i j} \propto m_{e}^{i j},\left\langle Y_{u}\right\rangle^{i j}=\left(V^{\dagger} y_{u}\right)^{i j} \propto\left(V^{\dagger}\right)^{i k} m_{u}^{k j} \\
u_{L}^{i} \rightarrow\left(V^{\dagger}\right)^{i k} u_{L}^{k} \quad \text { CKM matrix }
\end{array}
$$

CKM matrix originates from Yukawa couplings, so as weak CP violation.

CP violation in SM

$$
\begin{aligned}
L_{\theta} & =\theta \frac{g^{2}}{32 \pi^{2}} F_{a}^{\mu \nu} \tilde{F}_{a \mu \nu} . \\
L_{\mathrm{Mass}} & =\bar{q}_{i R} M_{i j} q_{j L}+h . c .
\end{aligned}
$$

below 1 GeV

Chiral rotation $\quad q_{f} \rightarrow e^{i \alpha \gamma_{5} / 2} q_{f}$

$$
\bar{\theta}=\theta+\operatorname{Arg} \operatorname{det} M
$$

Stong CP phase relates to Yukawa coupling.

CP violation in beyond SM

- In new physics beyond SM, a CP-violating Higgs is common.
e.g. Two-Higgs-Doublet Model, MSSM Model
$\Phi_{i}=\binom{\varphi_{i}^{+}}{\left(v_{i}+\eta_{i}+i \chi_{i}\right) / \sqrt{2}}$
$\left(\begin{array}{l}h_{1} \\ h_{2} \\ h_{3}\end{array}\right)=R\left(\begin{array}{l}\eta_{1} \\ \eta_{2} \\ A\end{array}\right)$

$$
\begin{array}{|l}
\begin{array}{|l|}
\left\langle\phi_{1}\right\rangle_{\mathrm{vac}}=2^{-1 / 2} \rho_{1} e^{i \theta} \\
\text { and } \\
\left\langle\phi_{2}\right\rangle_{\mathrm{vac}}=2^{-1 / 2} \rho_{2} . \\
\text { Spontaneous CPD violation }
\end{array} \\
\hline
\end{array}
$$

Baryogenesis

- Matter-antimatter asymmetry.

$$
\eta \equiv \frac{n_{B}-n_{\bar{B}}}{n_{\gamma}} \sim 10^{-10}
$$

- Sakharov's conditions:

1. Baryon number violation.
2. C and CP violation.
3. Interactions out of thermal equilibrium.

$$
\begin{aligned}
& A_{\mathrm{CP}}=\left(m_{t}^{2}-m_{c}^{2}\right)\left(m_{t}^{2}-m_{u}^{2}\right)\left(m_{c}^{2}-m_{u}^{2}\right)\left(m_{b}^{2}-m_{s}^{2}\right)\left(m_{b}^{2}-m_{d}^{2}\right)\left(m_{s}^{2}-m_{d}^{2}\right) J \\
& J=\operatorname{Im}\left(V_{u b} V_{c b} V_{u b}^{*} V_{c d}^{*}\right) \simeq s_{12} s_{23} s_{13} \sin \delta_{\mathrm{KM}} \simeq 3 \times 10^{-5} \quad \text { c. Jarlskog, z.Phys. c29(1985) 491-497 }
\end{aligned}
$$

$$
\delta_{\mathrm{CP}} \sim \frac{A_{\mathrm{CP}}}{T_{C}^{12}} \sim 10^{-20}
$$

Model independent ways

- Standard Model Effective Field Theory (SMEFT).

- On-shell scattering amplitude.

No fields, Lagrangian, Feynman rules. Basic block is particle state.

This talk focus on analytical structures of BSM amplitudes, more relative research about CP-violating Higgs phenomenology see 1705.00267, 1712.00267, 1902.04756

SMEFT

LHC golden channels

$$
\begin{aligned}
\mathcal{L}^{i n t} & =-\frac{c_{V V}}{v} H V^{\mu \nu} V_{\mu \nu}-\frac{\tilde{c}_{V V}}{v} H V^{\mu \nu} \tilde{V}_{\mu \nu} \\
\xi & \equiv \tan ^{-1}\left(\tilde{c}_{V V} / c_{V V}\right) \quad \text { CP violation phase angle }
\end{aligned}
$$

$$
\mathcal{O}_{\Phi D}^{6}=\left(\Phi^{\dagger} D^{\mu} \Phi\right)^{*}\left(\Phi^{\dagger} D^{\mu} \Phi\right)
$$

$$
\mathcal{O}_{\Phi W}^{6}=\Phi^{\dagger} \Phi W_{\mu \nu}^{I} W^{I \mu \nu}, \mathcal{O}_{\Phi B}^{6}=\Phi^{\dagger} \Phi B_{\mu \nu} B^{\mu \nu}, \mathcal{O}_{\Phi W B}^{6}=\Phi^{\dagger} \tau^{I} \Phi W_{\mu \nu}^{I} B^{\mu \nu}
$$

$$
\mathcal{O}_{\Phi \tilde{W}}^{6}=\Phi^{\dagger} \Phi \tilde{W}_{\mu \nu}^{I} W^{I \mu \nu}, \mathcal{O}_{\Phi \tilde{B}}^{6}=\Phi^{\dagger} \Phi \tilde{B}_{\mu \nu} B^{\mu \nu}, \mathcal{O}_{\Phi \tilde{W} B}^{6}=\Phi^{\dagger} \tau^{I} \Phi \tilde{W}_{\mu \nu}^{I} B^{\mu \nu}
$$

BSM amplitudes I

$$
\begin{aligned}
& \langle i j\rangle=\overline{u_{-}\left(p_{i}\right)} u_{+}\left(p_{j}\right),[i j]=\overline{u_{+}\left(p_{i}\right)} u_{-}\left(p_{j}\right), \\
& \langle i j\rangle[j i]=2 p_{i} \cdot p_{j}, s_{i j}=\left(p_{i}+p_{j}\right)^{2}, \\
& \epsilon_{\mu}^{ \pm}\left(p_{i}, q\right)= \pm \frac{\left\langle q^{\mp}\right| \gamma_{\mu}\left|p_{i}^{\mp}\right\rangle}{\sqrt{2}\left\langle q^{\mp} \mid p_{i}^{ \pm}\right\rangle},
\end{aligned}
$$

BSM amplitudes II

$$
\begin{aligned}
& \mathcal{M}\left(2_{\ell^{-}}^{-}, 3_{\ell^{+}}^{+}, 4_{\gamma}^{-}\right)=f_{V}^{-}\left(s_{23}\right) \times \frac{2 c_{\gamma V}^{S}}{v} e^{-i \xi}[23]\langle 24\rangle^{2}, \\
& \mathcal{M}\left(2_{\ell^{-}}^{-}, 3_{\ell^{+}}^{+}, 4_{\gamma}^{+}\right)=f_{V}^{-}\left(s_{23}\right) \times \frac{2 c_{\gamma V}^{S}}{v} e^{i \xi}\langle 23\rangle[34]^{2}, \\
& \mathcal{M}\left(2_{\ell^{-}}^{+}, 3_{\ell^{+}}^{-}, 4_{\gamma}^{+}\right)=f_{V}^{+}\left(s_{23}\right) \times \frac{2 c_{\gamma V}^{S}}{v} e^{i \xi}\langle 23\rangle[24]^{2}, \\
& \mathcal{M}\left(2_{\ell^{-}}^{+}, 3_{\ell^{+}}^{-}, 4_{\gamma}^{-}\right)=f_{V}^{+}\left(s_{23}\right) \times \frac{2 c_{\gamma V}^{S}}{v} e^{-i \xi}[23]\langle 34\rangle^{2}, \quad f_{\bar{V}}^{-}(s)=\sqrt{2} e l_{V} P_{V}(s) \text { and } f_{V}^{+}(s)=-\sqrt{2} e_{V} P_{V}(s) \\
& \mathcal{M}\left(2_{\ell^{-}}^{-}, 3_{\ell^{+}}^{+}, 4_{\ell^{-}}^{-}, 5_{\ell^{+}}^{+}\right)=f_{V}^{-}\left(s_{23}\right) f_{V}^{-}\left(s_{45}\right) \times \frac{2 C_{V V}^{S}}{v}\left(\underline{\left.e^{i \xi}\langle 23\rangle\langle 45\rangle[35]^{2}+e^{-i \xi}[23][45]\langle 24\rangle^{2}\right)}\right. \\
& \mathcal{M}\left(2_{\ell^{-}}^{-}, 3_{\ell^{+}}^{+}, 4_{\ell^{\prime}}^{+}, 5_{\ell^{+}}^{-}\right)=f_{V}^{-}\left(s_{23}\right) f_{V}^{+}\left(s_{45}\right) \times \frac{2 c_{V V}^{S}}{v}\left(e^{i \xi}\langle 23\rangle\langle 45\rangle[34]^{2}+e^{-i \xi[23][45]\langle 25\rangle^{2}}\right) \\
& \mathcal{M}\left(2_{\ell^{-}}^{+}, 3_{\ell^{+}}^{-}, 4_{\ell^{-}}^{-}, 5_{\ell^{+}}^{+}\right)=f_{V}^{+}\left(s_{23}\right) f_{V}^{-}\left(s_{45}\right) \times \frac{2 c_{V V}^{S}}{v}\left(e^{i \xi}\langle 23\rangle\langle 45\rangle[25]^{2}+e^{-i \xi[23][45]\langle 34\rangle^{2}}\right) \\
& \mathcal{M}\left(2_{\ell^{-}}^{+}, 3_{\ell^{+}}^{-}, 4_{\ell^{\prime}}^{+}, 5_{\ell^{+}}^{-}\right)=f_{V}^{+}\left(s_{23}\right) f_{V}^{+}\left(s_{45}\right) \times \frac{2 C_{V V}^{S}}{v}\left(e^{i \xi}\langle 23\rangle\langle 45\rangle[24]^{2}+e^{-i \xi[23][45]\langle 35\rangle^{2}}\right)
\end{aligned}
$$

CP-odd observables could be constructed when four external particles.

Analytical structures

$$
\mathcal{M}\left(2_{\gamma}^{+}, 3_{\gamma}^{+}\right)=\frac{2 c_{\gamma \gamma}^{S}}{v} e^{i \xi}[23]^{2}
$$

What is the principle?
What is the relations?

Decomposition relations I

$$
\mathcal{L}^{i n t}=-\frac{c_{V V}}{v} H V^{\mu \nu} V_{\mu \nu}-\frac{\tilde{c}_{V V}}{v} H V^{\mu \nu} \tilde{V}_{\mu \nu}
$$

$\Gamma^{\mu \nu}\left(k, k^{\prime}\right)=-i \frac{4}{v}\left[c_{V V}\left(k^{\nu} k^{\prime \mu}-k \cdot k^{\prime} g^{\mu \nu}\right)+\tilde{c}_{V V} \epsilon^{\mu \nu \rho \sigma} k_{\rho} k_{\sigma}^{\prime}\right]$
$\Gamma^{\mu \nu}\left(k, k^{\prime}\right)$
$=\Gamma^{\mu \nu}\left(p_{2}+p_{3}, k^{\prime}\right)=\Gamma^{\mu \nu}\left(p_{2}, k^{\prime}\right)+\Gamma^{\mu \nu}\left(p_{3}, k^{\prime}\right)$
$=\hat{\AA}^{\mu \nu}\left(p_{2}+p_{3}, p_{4}+p_{5}\right)=\Gamma^{\mu \nu}\left(p_{2}, p_{4}\right)+\Gamma^{\mu \nu}\left(p_{2}, p_{5}\right)+\Gamma^{\mu \nu}\left(p_{3}, p_{4}\right)+\Gamma^{\mu \nu}\left(p_{3}, p_{5}\right)$.

Decomposition relations II

$$
\begin{aligned}
& \mathcal{M}\left(2_{\ell^{-}}^{-}, 3_{\ell^{+}}^{+}, 4_{\gamma}^{-}\right)=-i \Gamma^{\mu \nu}\left(p_{2}+p_{3}, p_{4}\right) J_{\mu}^{+}\left(s_{23}\right) \epsilon^{-}(4, q) \\
&=-i \Gamma^{\mu \nu}\left(p_{2}, p_{4}\right) f_{V}^{l}\left(s_{23}\right)[23] \epsilon^{-}(2,3) \epsilon^{-}(4, q) \\
&-i \Gamma^{\mu \nu}\left(p_{3}, p_{4}\right) f_{V}^{l}\left(s_{23}\right)\langle 23\rangle \epsilon^{+}(3,2) \epsilon^{-}(4, q) \\
&= f_{V}^{l}\left(s_{23}\right) \times\left([23] \mathcal{M}\left(2_{\gamma}^{-}, 4_{\gamma}^{-}\right)+\langle 23\rangle \mathcal{M}\left(3_{\gamma}^{+}, 4_{\gamma}^{-}\right)\right), \\
&=0
\end{aligned}
$$

$\mathcal{M}\left(2_{\ell^{-}}^{-}, 3_{\ell^{+}}^{+}, 4_{\gamma}^{-}\right)=f_{V}^{-}\left(s_{23}\right) \times \frac{2 c_{\gamma V}^{S}}{v} e^{-i \xi}[23]\langle 24\rangle^{2}$

Decomposition relations III

$$
\begin{aligned}
& \mathcal{M}\left(2_{\ell^{-}}^{-}, 3_{\ell^{+}}^{+}, 4_{\ell^{\prime}}^{-}, 5_{\ell^{\prime}+}^{+}\right) \\
& =-i \Gamma^{\mu \nu}\left(p_{2}+p_{3}, p_{4}+p_{5}\right) J_{\mu}^{+}\left(s_{23}\right) J_{\mu}^{+}\left(s_{45}\right) \\
& =f_{V}^{l}\left(s_{23}\right) f_{V}^{l}\left(s_{45}\right) \times(\\
& -i \Gamma^{\mu \nu}\left(p_{2}, p_{4}\right)[23][45] \epsilon^{-}(2,3) \epsilon^{-}(4,5) \\
& -i \Gamma^{\mu \nu}\left(p_{2}, p_{5}\right)[23]\langle 45\rangle \epsilon^{-}(2,3) \epsilon^{+}(5,4) \\
& -i \Gamma^{\mu \nu}\left(p_{3}, p_{4}\right)\langle 23\rangle[45] \epsilon^{+}(3,2) \epsilon^{-}(4,5) \\
& =f_{V}^{l}\left(s_{23}\right) f_{V}^{l}\left(s_{45}\right) \times(\\
& {[23][45] \mathcal{M}\left(2_{\gamma}^{-}, 4_{\gamma}^{-}\right)+[23]\langle 45\rangle \mathcal{M}\left(2_{\gamma}^{-}, 5_{\gamma}^{+}\right)} \\
& \left.+\langle 23\rangle[45] \mathcal{M}\left(3_{\gamma}^{+}, 4_{\gamma}^{-}\right)+\langle 23\rangle\langle 45\rangle \mathcal{M}\left(\overline{\overline{3}}_{\gamma}^{+}, 5_{\gamma}^{+}\right)\right), \\
& =0 \\
& \left.-i \Gamma^{\mu \nu}\left(p_{3}, p_{5}\right)\langle 23\rangle\langle 45\rangle \epsilon^{+}(3,2) \epsilon^{+}(5,4)\right) \\
& \mathcal{M}\left(2_{\ell^{-}}^{-}, 3_{\ell^{+}}^{+}, 4_{\ell^{\prime}}^{-}, 5_{\ell^{\prime}+}^{+}\right)=f_{V}^{-}\left(s_{23}\right) f_{V}^{-}\left(s_{45}\right) \times \frac{2 c_{V V}^{S}}{v}\left(e^{i \xi}\langle 23\rangle\langle 45\rangle[35]^{2}+e^{-i \xi}[23][45]\langle 24\rangle^{2}\right)
\end{aligned}
$$

Summary of decomposition relations

- The HVV vertex are bilinear to the momenta of vector bosons. (SMEFT dimension-6 operators)
- Leptons are assumed to be massless. The propagators are gauge-independent.

On-shell scattering amplitudes

Fields

Lagrangian

Drawbacks

- Field definition
- Gauge redundancy

How about constructing amplitude directly?

Cross sections

On-shell scattering amplitudes

How about constructing amplitude directly?

Cross sections

On-shell scattering amplitudes

$$
\begin{aligned}
& \left.\left|i_{\alpha}\right\rangle \equiv \lambda_{i \alpha} \equiv u_{+}\left(p_{i}\right) \equiv\left|i^{+}\right\rangle, \quad \mid i^{\dot{\alpha}}\right] \equiv \tilde{\lambda}_{i}^{\dot{\alpha}} \equiv u_{-}\left(p_{i}\right) \equiv\left|i^{-}\right\rangle, \quad \text { Weyl Spinors } \\
& \left\langle i^{\alpha}\right| \equiv \lambda_{i}^{\alpha} \equiv u_{-}\left(p_{i}\right) \equiv\left\langle i^{-}\right|, \quad\left[i_{\alpha} \mid \equiv \tilde{\lambda}_{i \dot{\alpha}} \equiv u_{+}\left(p_{i}\right) \equiv\left\langle i^{+}\right|,\right. \\
& \langle i j\rangle \equiv \lambda_{i}^{\alpha} \lambda_{j \alpha}, \quad[i j] \equiv \tilde{\lambda}_{i \dot{\alpha}} \tilde{\lambda}_{j}^{\dot{\alpha}} \\
& p_{\alpha \dot{\alpha}} \equiv p_{\mu} \sigma_{\alpha \dot{\alpha}}^{\mu}=\lambda_{\alpha} \tilde{\lambda}_{\dot{\alpha}}
\end{aligned}
$$

Little Group Scaling: $\quad \lambda_{\alpha} \rightarrow t \lambda_{\alpha}, \tilde{\lambda}_{\dot{\alpha}} \rightarrow t^{-1} \tilde{\lambda}_{\dot{\alpha}}$

$$
\left.\left.\left.A_{n}\left(\{|1\rangle, \mid 1], h_{1}\right\}, \ldots,\left\{t_{i}|i\rangle, t_{i}^{-1} \mid i\right], h_{i}\right\}, \ldots\right)=t_{i}^{-2 h_{i}} A_{n}\left(\ldots\{|i\rangle, \mid i], h_{i}\right\} \ldots\right)
$$

Dimensional analysis

Massless three-particle amplitude

$$
\begin{aligned}
& \left(p_{1}+p_{2}\right)^{2}=\langle 12\rangle[12]=p_{3}^{2}=0 \\
& p_{1}+p_{2}+p_{3}=0 \quad \Rightarrow \quad\left(p_{2}+p_{3}\right)^{2}=\langle 23\rangle[23]=p_{1}^{2}=0 \\
& \left(p_{3}+p_{1}\right)^{2}=\langle 31\rangle[31]=p_{2}^{2}=0
\end{aligned}
$$

One solution:

$$
\begin{aligned}
& {[12]=[23]=[31]=0 \quad \Rightarrow \quad \tilde{\lambda}_{1} \propto \tilde{\lambda}_{2} \propto \tilde{\lambda}_{3}} \\
& A\left(1^{h_{1}} 2^{h_{2}} 3^{h_{3}}\right)=\langle 12\rangle^{n_{3}}\langle 23\rangle^{n_{1}}\langle 31\rangle^{n_{2}}
\end{aligned}
$$

Little Group Scaling:

$$
\begin{aligned}
& -2 h_{1}=n_{2}+n_{3} \\
& -2 h_{2}=n_{3}+n_{1} \\
& -2 h_{3}=n_{1}+n_{2}
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& n_{1}=h_{1}-h_{2}-h_{3} \\
& n_{2}=h_{2}-h_{3}-h_{1} \\
& n_{3}=h_{3}-h_{1}-h_{2}
\end{aligned}
$$

Dimensional analysis

$$
A\left(1^{h_{1}} 2^{h_{2}} 3^{h_{3}}\right)= \begin{cases}\langle 12\rangle^{h_{3}-h_{1}-h_{2}}\langle 23\rangle^{h_{1}-h_{2}-h_{3}}\langle 31\rangle^{h_{2}-h_{3}-h_{1}}, & h \leq 0 \\ {[12]^{h_{1}+h_{2}-h_{3}}[23]^{h_{2}+h_{3}-h_{1}}[31]^{h_{3}+h_{1}-h_{2}},} & h \geq 0\end{cases}
$$

$$
H \rightarrow \gamma \gamma
$$

One massive two massless three-particle amplitude

BCFW recursion relation I

$$
\begin{aligned}
& \mid \hat{2}]=\mid 2], \quad \mid \hat{4}]=\mid 4]+z \mid 2], \quad|\hat{4}\rangle=|4\rangle, \quad|\hat{2}\rangle=|2\rangle-z|4\rangle \\
& \mathcal{M}\left(1_{\gamma}^{-}, 2_{\ell^{-}}^{-}, 3_{\ell^{+}}^{+}\right)=\tilde{e} \frac{\langle 12\rangle^{2}}{\langle 23\rangle} \\
& \mathcal{M}\left(1_{H}, 2_{\ell^{-}}^{-}, 3_{\ell^{+}}^{+}, 4_{\gamma}^{-}\right)=\tilde{e} P_{\gamma}\left(s_{23}\right) \times \frac{2 c_{\gamma V}^{S}}{v} e^{-i \xi} \frac{\langle\hat{I} \hat{4}\rangle^{2}[\hat{I} 3]^{2}}{[\hat{2} 3]}, \\
& \mathcal{M}\left(1_{\gamma}^{-}, 2_{\ell^{-}}^{+}, 3_{\ell^{+}}^{-}\right)=\tilde{e} \frac{\langle 13\rangle^{2}}{\langle 23\rangle} \\
& \begin{array}{c}
=\tilde{e} P_{\gamma}\left(s_{23}\right) \times \frac{2 c_{\gamma V}^{S}}{v} e^{-i \xi}[23]\langle 24\rangle^{2}, \\
\mathcal{M}\left(2_{\ell^{-}}^{-}, 3_{\ell^{+}}^{+}, 4_{\gamma}^{-}\right)=f_{V}^{-}\left(s_{23}\right) \times \frac{2 c_{\gamma V}^{S}}{v} e^{-i \xi}[23]\langle 24\rangle^{2}
\end{array} \\
& \mathcal{M}\left(1_{\gamma}^{+}, 2_{\ell^{-}}^{-}, 3_{\ell^{+}}^{+}\right)=\tilde{e} \frac{[13]^{2}}{[23]} \\
& \mathcal{M}\left(1_{\gamma}^{+}, 2_{\ell^{-}}^{+}, 3_{\ell^{+}}^{-}\right)=\tilde{e} \frac{[12]^{2}}{[23]}
\end{aligned}
$$

BCFW recursion relation II

A $\quad P_{\gamma}\left(s_{23}\right) \mathcal{M}\left(1_{H}, \hat{4}_{\ell^{-}}^{-}, 5_{\ell^{+}}^{+}, \hat{I}_{\gamma}^{-}\right) \mathcal{M}\left(\hat{I}_{\gamma}^{+}, \hat{2}_{\ell^{-}}^{-}, 3_{\ell^{+}}^{+}\right)$
C $\quad P_{\gamma}\left(s_{45}\right) \mathcal{M}\left(1_{H}, \hat{2}_{\ell^{-}}^{-}, 3_{\ell^{+}}^{+}, \hat{I}_{\gamma}^{+}\right) \mathcal{M}\left(\hat{I}_{\gamma}^{-},{\hat{\ell^{\prime}}}_{-}^{-}, 5_{\ell^{\prime}}^{+}\right)$
$=\frac{2 c_{\gamma \gamma}^{S}}{v} e^{-i \xi} P_{\gamma}\left(s_{23}\right) P_{\gamma}\left(s_{45}\right)[\hat{4} 5]\langle\hat{4} \hat{I}\rangle^{2} \frac{[\hat{I} 3]^{2}}{[\hat{2} 3]}$
$=\frac{2 c_{\gamma \gamma}^{S}}{v} e^{i \xi} P_{\gamma}\left(s_{45}\right) P_{\gamma}\left(s_{23}\right)\langle\hat{2} 3\rangle[3 \hat{I}]^{2} \times \frac{\langle\hat{I} \hat{4}\rangle^{2}}{\langle\hat{4} 5\rangle}$
$=\frac{2 c_{\gamma \gamma}^{S}}{v} e^{-i \xi} P_{\gamma}\left(s_{23}\right) P_{\gamma}\left(s_{45}\right)[45][23]\langle 24\rangle^{2}$,

$$
=\frac{2 c_{\gamma \gamma}^{S}}{v} e^{i \xi} P_{\gamma}\left(s_{45}\right) P_{\gamma}\left(s_{23}\right)\langle 23\rangle\langle 45\rangle[35]^{2}
$$

$\mathbf{B}_{P_{\gamma}\left(s_{23}\right) \mathcal{M}\left(1_{H}, \hat{4}_{\ell^{\prime}-}^{-}, 5_{\ell^{\prime}}^{+}, \hat{I}_{\gamma}^{+}\right) \mathcal{M}\left(\hat{I}_{\gamma}^{-}, \hat{2}_{\ell^{-}}^{-}, 3_{\ell^{+}}^{+}\right)=0 \quad \text { D }{ }_{P_{\gamma}\left(s_{45}\right) \mathcal{M}\left(1_{H}, \hat{2}_{\ell^{-}}^{-}, 3_{\ell^{+}}^{+}, \hat{I}_{\gamma}^{-}\right) \mathcal{M}\left(\hat{I}_{\gamma}^{+}, \hat{4}_{\ell^{\prime}}^{-}, 5_{\ell^{\prime}}^{+}\right)=0}}^{\mathcal{M}\left(2_{\ell^{-}}^{-}, 3_{\ell^{+}}^{+}, 4_{\ell^{\prime}-}^{-}, 5_{\ell^{+}}^{+}\right)=f_{V}^{-}\left(s_{23}\right) f_{V}^{-}\left(s_{45}\right) \times \frac{2 c_{V V}^{S}}{v}\left(e^{i \xi}\langle 23\rangle\langle 45\rangle[35]^{2}+e^{-i \xi}[23][45]\langle 24\rangle^{2}\right)}$

Summary of on-shell recursion relations

- No assumption for vertex, especially vertex bilinear to momenta of vector bosons.
- Only massless propagator is considered. Massless propagator, massless leptons.
- Do not consider boundary conditions.

Summary

- CP violation in new physics is needed, they have close relation with Higgs.
- BSM amplitudes of $H \rightarrow \gamma \gamma, H \rightarrow \gamma 2 \ell, H \rightarrow 4 \ell$ are given in SMEFT.
- Decomposition relations are derived, which explains the behavior of CP violation phase.
- Recursion relations are derived through on-shell scattering amplitude approach, consistent results are obtained. Probably it is a first time using on-shell approach to calculate a realistic massive process.

Thanks for your attention．

Thanks to Chi－Hao Fu（ 傅致豪），Kang Zhou（周康），Bo Feng（冯波）．
Thanks to HFCPV committee．

