### **Belle II: Status and Prospects**

周兴玉1

### 辽宁师范大学

# 全国第十八届重味物理和 CP 破坏研讨会 2021 年 11 月 13 日 @ 暨南大学

<sup>1</sup>zhouxy@Innu.edu.cn

<ロ>・ロ>・日本・ヨ>・ヨ> ヨークへの 1/22

### Outline

2



### Published results

- 1 Search for invisibly decaying Z'
- 2 Search for axionlike particles
- 3 Search for  $B^+ \rightarrow K^+ \nu \bar{\nu}$
- 4 Measurement of  $D^0$  and  $D^+$  lifetimes

### 3 Preliminary measurements on CKM parameters

- 1 Measurements of  $|V_{cb}|$  and  $|V_{ub}|$
- 2 Measurements of  $\sin(2\phi_1)$ ,  $\phi_2$ , and  $\phi_3$



### 4 Summary and prospects

## Introduction to Belle II – Experiment

Belle II operates at SuperKEKB at KEK in Tsukuba, Japan



- Plan to take 50  $ab^{-1}$  (50  $\times$  Belle) data  $\sigma(e^+e^- \rightarrow B\bar{B}/c\bar{c}/\tau\bar{\tau}) \approx 1.05/1.3/0.92 \text{ nb}$ 
  - Designed  $\mathscr{L}$ : 6.5  $\times$  10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup>

Achieved  $\mathscr{L}$ : 3.1 × 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> (New world record on 22/6/2021!)

#### Belle II at high intensity frontier:



Search for BSM physics



- Precisely measure SM parameters
- Reveal more properties of the strong interaction

#### Very rich physics topics:



- Bottomonium & Charmonium
- Charm Physics & T Physics
- Low Multiplicity Physics & Dark Sector Physics

イロト 不得 トイヨト 不同 )

For details, please see The Belle II Physics Book

### Introduction to Belle II - Collider & Dectector



Increase the luminosity:

Squeeze beam size ( $\times$  20, to 50 nm at the IP)

Increase the beam currents (imes 1.5)



Compared with Belle:

- Better vertexing (decay time) resolution
- Better momentum resolution

More sophisticated trigger

Compared with experiments at hadron colliders:

- Low-background production of huge amounts of  $B/D/\tau$  particles.
- Kinematic constrains from  $e^+e^-$  initial state offer unique precision in final states with multiple neutrinos or  $\pi^0$ s.

4/22

イロト イロト イヨト イヨト

### Introduction to Belle II – Data taking



- To date, Belle II has accumulated  $\sim 220~{\rm fb^{-1}}$  data.
- Most of the results shown in this talk are extracted from the data collected before and in 2020 Summer ( $\sim$  72 fb<sup>-1</sup>).
- The dark sector results only use the Phase 2 data ( $\sim$  0.5 fb<sup>-1</sup>) accumulated in 2018 Summer.

### Introduction to Belle II - Collaboration



- Belle II Collaboration: 26 countries, 123 institutions, 1126 members.
- Belle II China Group: 12+1 institutions, 67 members, ranking 5th in the collaboration (高能所、中科大、北大、北航、复旦、辽师、山大、苏大、南京师大、郑大、湖南师大、河南师大+南开).

### Outline

2

### Introduction to Belle II

### Published results

- 1 Search for invisibly decaying Z'
- 2 Search for axionlike particles
- 3 Search for  $B^+ \to K^+ \nu \bar{\nu}$
- 4 Measurement of  $D^0$  and  $D^+$  lifetimes
- 3 Preliminary measurements on CKM parameters
  1 Measurements of |V<sub>cb</sub>| and |V<sub>ub</sub>|
  2 Measurements of sin(2φ<sub>1</sub>), φ<sub>2</sub>, and φ<sub>3</sub>
- 4 Summary and prospects

## Published results – Search for invisibly decaying Z'

- *Z'*: massive gauge boson
- Originate from the  $L_{\mu} L_{\tau}$  extension of the SM
- potentially address anomalies in  $b \rightarrow s l^+ l^-$  and  $(g 2)_{\mu}$

Signal:  $e^+e^- \rightarrow \mu^+\mu^-(e^+\mu^-)$  + missing energy



No evidence for Z' $g_{Z'\ell\ell} < 5 \times 10^{-2} \dots 1$  for  $m_{Z'} \le 6 \text{ GeV}/c^2$ 

PRL.124.141801(2020)



### Published results — Search for axionlike particles

- Predicted by many extensions of the SM.
- Occur in most solutions of the strong CP problem.
- Can connect the SM particles to yet undiscovered DM particles.



PRL.125.161806(2020)



### Published results – Search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ (I)

The decay  $B^+ \to K^+ \nu \bar{\nu}$  involves the FCNC transition  $b \to s \nu \bar{\nu}$ .



- Its BF is predicted to be  $(4.6 \pm 0.5) \times 10^{-6}$  by the SM, and could be potentially enhanced by the BSM.
- offers a complementary probe into the BSM scenarios that are proposed to explain the tensions observed in  $b \rightarrow s l^+ l^-$ .
- helps constrain models that predict new particles, such as leptoquarks, axions, or dark matter particles.

イロト 不得 トイヨト イヨト

## Published results – Search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ (II)

Previous analyses: explicit tagging approach with limited signal efficiency.

- Semi-leptonic tag (0.2% @ Belle and BaBar)
- Hadronic tag (0.04% @ BaBar)

Belle II analysis: inclusive tagging approach with higher signal efficiency.

- Employ event shape, vertexing, and kinematical variables.
- Higher signal efficiency (4.3%), thus higher sensitivity at given luminosity.





#### PRL.127.181802(2021)

Competitive result with 63 fb $^{-1}$ !

$${\cal B}(B^+ o K^+ 
u ar{
u}) = (1.9^{+1.3}_{-1.3} ^{+0.8}_{-0.7}) imes 10^{-5}$$
 4. 1 × 10<sup>-5</sup> @90% CL



### Published results – Measurement of $D^0$ and $D^+$ lifetimes (I)

- Test non-pertubative QCD effective models, such as the heavy-quark expansion.
- Needed to compare measured decay branching fractions to predicted decay partial widths.
- Input to LHCb measurements, to get the abosolute limetimes of the D<sup>+</sup><sub>s</sub> meson and charmed baryons.
- Measured for the first time with the sub-percent precision by FOCUS – almost 20 years ago.
- No measurement from Belle, BaBar, and LHCb.

Excellent Belle II vertexing performance enables the high precision measurement of D<sup>0</sup> and D<sup>+</sup> lifetimes with early data.

> Decay-time resolution 2 times better than BaBar and Belle.



Signal  $D^0/D^+$  candidates from  $D^{*+}$  in  $e^+e^- \rightarrow c\bar{c}$ 12/22

#### arXiv:2108.03216 (Accepted by PRL)

Lifetimes are extracted by 2D fits to the decay times and their respective uncertainties.



World leading result:

| Our result                                         | WA               |
|----------------------------------------------------|------------------|
| $\tau$ (D <sup>0</sup> ) = (410.5 ± 1.1 ± 0.8) fs  | (410.1 ± 1.5) fs |
| $\tau$ (D <sup>+</sup> ) = (1030.4 ± 4.7 ± 3.1) fs | (1040 ± 7) fs    |

Much room to reduce statistical uncertainty and systematic uncertainty on detector alignment.

| Source             | Uncertainty (fs)    |                           |  |
|--------------------|---------------------|---------------------------|--|
|                    | $D^0 \to K^- \pi^+$ | $D^+ \to K^- \pi^+ \pi^+$ |  |
| Statistical        | 1.1                 | 4.7                       |  |
| Resolution model   | 0.16                | 0.39                      |  |
| Backgrounds        | 0.24                | 2.52                      |  |
| Detector alignment | 0.72                | 1.70                      |  |
| Momentum scale     | 0.19                | 0.48                      |  |
| Input charm masses | 0.01                | 0.03                      |  |
| Total systematic   | 0.8                 | 3.1                       |  |

イロト イ理ト イヨト イヨト

### Outline

Introduction to Belle II

### 2 Published results

- 1 Search for invisibly decaying Z'
- 2 Search for axionlike particles
- 3 Search for  $B^+ \to K^+ \nu \bar{\nu}$
- 4 Measurement of D<sup>0</sup> and D<sup>+</sup> lifetimes

### 3 Preliminary measurements on CKM parameters

- 1 Measurements of  $|V_{cb}|$  and  $|V_{ub}|$
- 2 Measurements of  $sin(2\phi_1)$ ,  $\phi_2$ , and  $\phi_3$



### **Measurements of CKM parameters**

 $V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{rd} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A^2\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$ 



Precise angles and sides of the unitarity triangle are crucial to test the SM and investigate the BSM physcis. Precision measurements of CKM parameters are keystones of Belle II experiment.

#### The Belle II Physics Book

| Observables             | Expected the. accu- | Expected         | Facility (2025) |
|-------------------------|---------------------|------------------|-----------------|
|                         | racy                | exp. uncertainty |                 |
| UT angles & sides       |                     |                  |                 |
| ¢1 [°]                  | ***                 | 0.4              | Belle II        |
| \$2 [°]                 | **                  | 1.0              | Belle II        |
| ¢3 [°]                  | ***                 | 1.0              | LHCb/Belle II   |
| V <sub>cb</sub>   incl. | ***                 | 1%               | Belle II        |
| Veb excl.               | ***                 | 1.5%             | Belle II        |
| V <sub>wh</sub> incl.   | **                  | 3%               | Belle II        |
| V <sub>wb</sub> excl.   | **                  | 2%               | Belle II/LHCb   |

Intensive activities ongoing over early data (~ 30-70 fb<sup>-1</sup>) to prepare measurements of UT angles and sides.

## Preliminary measurements on CKM parameters Measurements of $|V_{cb}|$ and $|V_{ub}|$

Both inclusive and exclusive approaches are used to measure  $|V_{cb}|$  and  $|V_{ub}|$ :  $|V_{ub}|: B \rightarrow X_u \ell_V, B \rightarrow \pi(\rho, \eta) \ell_V \ (\ell = e, \mu)$  $|V_{cb}|: B \rightarrow X_c \ell_V, B \rightarrow D^{(*)} \ell_V \ (\ell = e, \mu)$ 

#### Persistent tension between two approaches.





#### arXiv:2110.02648



arXiv:2008.08819 16/22

## Preliminary measurements on CKM parameters Measurement of $R(D^{(*)})$

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)} \ (\ell = e, \mu)$$



Combined result of  $R(D^{(*)}) \sim 3.1\sigma$ tension with the SM

New physics can contribute at tree level e.g. charged Higgs, leptoquark



## Preliminary measurements on CKM parameters Toward the measurement of $sin(2\phi_1)$

- Flagship measurement of B factories.
- Still very important input to CKM fit.
- Golden mode:  $B^0 o J/\psi K^0_S$

$$\begin{aligned} \mathcal{A}_f(\Delta t) = & \frac{\Gamma(\bar{B}^0 \to J/\psi K^0_S) - \Gamma(B^0 \to J/\psi K^0_S)}{\Gamma(\bar{B}^0 \to J/\psi K^0_S) - \Gamma(B^0 \to J/\psi K^0_S)} \\ = & S_f \sin(\Delta m_B \Delta t) + A_f \cos(\Delta m_B \Delta t) \end{aligned}$$

Assume no direct CPV: Af ~ 0





The precision will be improved by a factor of 5 with full Belle II data.

イロト イポト イヨト イヨト

## Preliminary measurements on CKM parameters Toward the measurement of $\phi_2$

Unique Belle II capability to study all the  $B \rightarrow \pi \pi$ ,  $\rho \rho$  partner decays to determine  $\phi_{\rho}$ 

B<sup>0</sup>→π<sup>0</sup>π<sup>0</sup>: very challenging because four γ's. Train BDT to suppress background photons. 3D fit of ΔE-Mbc-continuum suppression BDT. Unique Belle II reach.  $\mathfrak{B}(B^{0}\rightarrow\pi^{0}\pi^{0})=(0.98^{+0.48})_{-0.39}(stat) \pm 0.27(syst)) \times 10^{-6}$ arXiv:2107.02373

 $B^+ \rightarrow \rho^+ \rho^0$ :  $\pi$ -only final state, large background because of  $\rho$  mass width. Additional challenge of angular analysis $\rightarrow$ 6D fit including helicity angles.

 $\begin{array}{l} \text{longitudinal polarization fraction} \\ f_{L}(B^{+}{\rightarrow}\rho^{+}\rho^{0}) = (0.936^{+0.049}_{\phantom{-}0.041}(\text{stat}) \pm 0.021(\text{syst}) \ ) \\ \mathfrak{B}(B^{+}{\rightarrow}\rho^{+}\rho^{0}) = (20.6 \pm 3.2(\text{stat}) \pm 4.0(\text{syst}) \ ) \times 10^{-6} \\ \hline \\ \frac{\text{arXiv:}2109.11456}{100} \end{array}$ 

20% precision improvement wrt Belle on the same lumi!

On track to measure the CKM angle  $\phi_2$  at Belle II



## Preliminary measurements on CKM parameters Toward the measurement of $\phi_3$

- LHCb will have the upper hand.
- Belle II will contribute in modes with neutral particles in the final state.
- Using both Belle data (711 fb $^{-1}$ ) + Belle II data (128 fb $^{-1}$ )
- A model-independent Dalitz plot analysis of  $B^+ \rightarrow D(K_S h^+ h^-)K^+$

 $B^{-} \rightarrow D^{\theta} K^{-}$   $favored \qquad V^{*}_{US} \stackrel{\tilde{u}}{\sim} \stackrel{\tilde{u}}{\sim} K^{-}$   $B^{-} \underbrace{V^{*}_{US}}_{Cb} \stackrel{\tilde{u}}{\sim} D^{0}$   $\tilde{u}$ 



 $B^{*} \rightarrow \overline{D}^{\theta} K^{*}$ 

$$\frac{\mathcal{A}^{\text{suppr.}}(B^- \to \overline{D^0} K^-)}{\mathcal{A}^{\text{favor.}}(B^- \to D^0 K^-)} = r_B e^{i(\delta_B + \phi_3)}$$

arXiv:2110.12125 (Submitted to JHEP)

$$\phi_3 = (78.4 \pm 11.4 \pm 0.5 \pm 1.0)^\circ,$$
  

$$r_B^{DK} = 0.129 \pm 0.024 \pm 0.001 \pm 0.002,$$
  

$$\delta_B^{DK} = (124.8 \pm 12.9 \pm 0.5 \pm 1.7)^\circ.$$

(Thanks to BESIII strong phase measurement, the third uncertainty reduces from 4° to 1°)



- Will achieve a precision of  $\sim 4^{\circ}$  with 10 ab<sup>-1</sup> data, using  $B^+ \rightarrow D(K_S h^+ h^-)h^+$  alone.
- The use of other modes will significantly reduce the uncertainty.

イロト イポト イヨト イヨト

## Summary and prospects

- Belle II, as a new-generation B-factory experiment, has set sail to accumulate a huge data sample of 50 ab<sup>-1</sup> over the upcoming decade.
- Thanks to the excellent detector performance and the noval analysis approach, with the limited early data (< 100 fb<sup>-1</sup>), Belle II has produced a batch of world-leading physics results (Z', ALPs,  $B^+ \rightarrow K^+ \nu \bar{\nu}$ ,  $D^0/D^+$  lifetimes, etc.), as well as many preliminary results.
- Many interesting analyses, not mentioned here, are on the way to final measurements with more data.
- With the upcoming big data, Belle II will offer many unique precision probes into BSM physics, thus contributing to the progress of particle physics from the intensity frontier.

# Thanks for your attention!

### Backup – Preliminary results on CKM parameters Toward the measurement of $\phi_3$

The measurement is also performed on the Belle data sample alone and the results are reported in App. B. The statistical uncertainty in  $\phi_3$  is 11°, which is significantly improved from the 15° reported in the previous Belle analysis with the same data set [20]. The improvements are primarily due to the improved background rejection and  $K_S^0$  reconstruction, as well as the addition of  $B^+ \rightarrow D(K_S^0K^+K^-)h^+$  decays. The inclusion of Belle II data improves the precision of  $x_{\pm}^{DK}$  and  $y_{\pm}^{DK}$  parameters. However, the  $\phi_3$  statistical uncertainty does not improve despite introducing 17% more data. The reason is that the Belle II data favours a much smaller value of  $r_B^{DK}$ , which results in a central value of 0.129 for the combined fit compared to 0.144 for the Belle data alone. The uncertainty in  $\phi_3$  is inversely proportional to  $r_B$ , which explains the lack of improvement in  $\phi_3$  sensitivity when including the Belle II data. The world average value of  $r_B$  is 0.0996  $\pm$  0.0026 [5] so it is not unexpected the value of  $r_B$  will regress towards this value as additional data is included.

The statistical precision on  $\phi_3$  is worse than the current world-average value [5]. However, the precision is limited by the size of the data sample, so a future analysis with a Belle II data set corresponding to  $10 \text{ ab}^{-1}$  will provide measurements with a precision of approximately 4° from the  $B^+ \rightarrow D \left(K_S^0 \pi^+ \pi^-\right) h^+$  mode alone.<sup>6</sup> The use of other modes will give additional sensitivity to  $\phi_3$  [54].

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで