



# Study of the charmless baryonic decay of *b* hardons at LHCb

俞洁晟 湖南大学

## HFCPV 暨南大学

11 - 15 Nov 2021, Guangzhou, China

## Outline

### Introduction

# Charmless baryonic decay of *B* meson Two body decay Multibody decay

## $\succ$ Charmless baryonic decay of $B_c^+$

## $\succ$ Search for CPV in charmless decay of $\Lambda_b^0$

#### Conclusion and outlook



# LHCb data

LHCb Integrated Recorded Luminosity in pp, 2010-2018



RUN-I

1 fb<sup>-1</sup> of pp collisions at 7 TeV

2 fb<sup>-1</sup> of pp collisions at 8 TeV

RUN-II (2015~2018 13 TeV)

 $\sigma$ (RUN-II) $\approx 2\sigma$ (RUN-I)

All *b* hadrons: *B*<sup>0</sup>, *B*<sup>±</sup>, *B*<sup>0</sup><sub>s</sub>, *B*<sup>±</sup><sub>c</sub>...

|             | <b>B</b> <sup>0</sup> | <b>B</b> <sup>+</sup> | $B_{\rm s}^0$   | <i>b</i> baryons ( $\Lambda_b$ ) | $B_c^+$ |
|-------------|-----------------------|-----------------------|-----------------|----------------------------------|---------|
| Fraction(%) | 40                    | 40                    | 10              | 10                               | 0.1     |
| Component   | $\overline{b}$ d      | Бu                    | $\overline{b}s$ | bqq                              | Бc      |

## Two body charmless baryonic decays of **B**

- Provides information on the dynamics of B decays and tests QCD based models of the hadronization process
- Discriminate the available models and makes it possible to extract both tree and penguin amplitudes of charmless two body baryonic decays





- > B<sup>0</sup> → pp̄ and B<sup>+</sup> → pΛ̄ as input to predict all other B →  $\mathfrak{B}_1\mathfrak{B}_2$
- Baryonic B decays are also interesting in the study of CP violation
- Pure penguin modes are expected to be sensitive to new physics contributions

## First observation of $B^0 o p\overline{p}$ with RUN-I data



- $\succ \mathcal{B}(B^0 \rightarrow p\bar{p})$  is compatible with recent theoretical calculations
- - D Phys. Rev. D 91, 077501 (2015), Phys. Rev. D 95, 096004 (2017)
- →  $B_s^0 \rightarrow p\bar{p}$  would provide valuable information on whether contributions from the exchange (annihilation) processes
  - □ JHEP 04(2020)035

## Evidence for $B^+ o p\overline{\Lambda}$ with RUN-I data

- $\succ B^+ \rightarrow K^0_s \pi^+ \text{ as a normalization}$ mode
- $\mathcal{B}(B^+ \to p\overline{\Lambda}) = (2.4^{+1.0}_{-0.8} \pm 0.3) \times 10^{-7}$
- The first evidence for this decay process  $(4.1\sigma)$



$$\mathcal{B}(B^+ \to p\overline{\Lambda}) = \frac{N(B^+ \to p\overline{\Lambda})}{N(B^+ \to K^0_{\rm S}\pi^+)} \, \frac{\epsilon_{B^+ \to K^0_{\rm S}\pi^+}}{\epsilon_{B^+ \to p\overline{\Lambda}}} \, \frac{\mathcal{B}(K^0_{\rm S} \to \pi^+\pi^-)}{\mathcal{B}(\Lambda \to p\pi^-)} \, \mathcal{B}(B^+ \to K^0_{\rm S}\pi^+)$$

- Compatible with the theoretical predictions
   Phys. Rev. D 66 (2002) 014020, , Phys. Rev. D 89 (2014) 056003
- In tension with calculations based on QCD sum rules (Nucl. Phys. B 345 (1990) 137) and factorization (Phys. Rev. D 91 (2015) 077501)

#### Multibody charmless baryonic decays of B

- The decays of B mesons into multiple baryon final states are still far from being fully understood
- $\succ \mathcal{B}(B \to \mathfrak{B}_1 \mathfrak{B}_2 X) \gg \mathcal{B}(B \to \mathfrak{B}_1 \mathfrak{B}_2)$ , where  $\mathfrak{B}$  represents a generic baryon



reported by HFLAV

BFs of Charmless Baryonic Modes with Strange Baryons

#### **Threshold enhancement and CP asymmetry**

Many channels have the special feature: baryon-antibaryon pair peaks near threshold
PRD 88, 052015 (2013)



➤ 4σ CP asymmetry effect nearthreshold with sign-flip near the zero crossing of the cosine of the light meson angle in  $p\bar{p}$ frame ( $\Delta A_{cp} \sim 4.7\sigma$ ), pointing to interfering J=0 and J=1 type waves



## First observation of $B_s^0 o p\overline{\Lambda}K^-$ with RUN-I data

 $(10 \,\mathrm{MeV}/c^2)$ 

Candidates

> Theoretical prediction:  $\sim 10^{-6}$ 

- → Theorey predict a large CPV asymmetry: 10% in  $B^0 \rightarrow p \bar{\Lambda} \pi^-$ Int. J. Mod. Phys. A23 (2008) 3290
- > B<sup>0</sup> → pΛπ<sup>-</sup> as a normalization mode
  - $\mathcal{B}(B^0_s \to p\bar{\Lambda}K^-) + \mathcal{B}(B^0_s \to \bar{p}\Lambda K^+)$
  - =  $[5.46 \pm 0.61 \pm 0.57 \pm 050(B) \pm 0.32(f_s/f_d)]$ × 10<sup>-6</sup>
- >  $m(p\overline{A})$  are already efficiencycorrected and background-subtracted
- > Observed the  $p\bar{\Lambda}$  threshold enhancement





## First observation of $B^0_{(s)} o p\overline{p}h^+h^-$ with RUN-I data

#### Phys. Rev. D 96 (2017) 051103



| Decay channel                      | Yield $\mathcal{N}$ | Significance $[\sigma]$ | Branchin       | g fraction     | $/ 10^{-6}$   |            |
|------------------------------------|---------------------|-------------------------|----------------|----------------|---------------|------------|
| $B^0 \to p \overline{p} K K$       | $68\pm17$           | 4.1                     | $0.113 \pm 0.$ | $028 \pm 0.01$ | $1 \pm 0.008$ | 3          |
| $B^0 \to p \overline{p} K \pi$     | $4155\pm83$         | > 25                    | 5.9 $\pm 0.$   | $3 \pm 0.3$    | $\pm 0.4$     |            |
| $B^0 	o p \overline{p} \pi \pi$    | $902\pm35$          | > 25                    | $2.7 \pm 0.$   | $1 \pm 0.1$    | $\pm 0.2$     |            |
| $B_s^0 \to p\overline{p}KK$        | $635\pm32$          | > 25                    | 4.2 $\pm 0.$   | $3 \pm 0.2$    | $\pm 0.3$     | $\pm 0.2$  |
| $B_s^0 \to p \overline{p} K \pi$   | $246\pm39$          | 6.5                     | $1.30 \pm 0.$  | $21 \pm 0.11$  | $\pm 0.09$    | $\pm 0.08$ |
| $B^0_s \to p \overline{p} \pi \pi$ | $39\pm16$           | 2.6                     | $0.41 \pm 0.$  | $17 \pm 0.04$  | $\pm 0.03$    | $\pm 0.02$ |
| $B^0 \to J/\psi K^*(892)^0$        | $1216\pm45$         | —                       |                | —              |               |            |

2021/11/11

#### The $p\overline{p}$ threshold enhancement

#### Phys. Rev. D 96 (2017) 051103



m(pp̄) are already efficiency-corrected and background-subtracted

#### $\succ$ Vetoed $D^0$

➢ Confirmed the threshold enhancement of  $B_s^0 → p\overline{\Lambda}K^-$ 

## Charmless baryonic decay of $B_c^+$

Unique state that contains two heavy quarks of different flavors

#### Rich decay modes

- 1. *b* quark decay ~20%
- 2. c quark decay ~70%
- 3. annihilation decay ~10%



Charmless baryonic decay provide a good test-bed for the study of the W-exchange topology

## Search for $B_c^+ ightarrow p \overline{p} \pi^+$ with Run-I data

- > In the SM, theoretical prediction  $B_c^+$  annihilation decays  $:10^{-8} \sim 10^{-6}$
- Any significant enhancement could indicate the particles beyond the SM (like H<sup>+</sup>)



 $\gg B^+ \to p\bar{p}\pi^+ \text{as a normalization mode}$  $R_f \equiv \frac{\sigma(B_c^+)}{\sigma(B^+)} \times \mathcal{B}(B_c^+ \to f)$ 

 $> m(p\bar{p}) < 2.85 \text{ GeV}/c^2$ 

 $R_p < 3.6 \times 10^{-8}$ 



Phys. Lett. B 759 (2016) 313 14

#### Search for CPV in charmless decay of b baryon

- > CPV never observed in baryon decays to now
- LHCb has the unique possibility to search for CPV in b baryon decays where sizeable CPV effects are expected in the Standard Model
- ➤ Triple product asymmetries (TPA) used in search for CPV in Λ<sub>b</sub> →  $ph^-h^+h^-and \Xi_b \rightarrow p\pi^+K^-K^-$  The first evidence of CPV in the baryon sector(3.3 $\sigma$  in Λ<sub>b</sub> →  $p\pi^-\pi^+\pi^-$ )
   Nature Phys. 13 (2017) 391-396(detail in back up)
- Perform measurements in regions of phase space for increased sensitivity to localised CP violation effects. Different strong phases at play

# Search for direct CPV in $\Lambda_b^0 o ph^-$

- ➢ Predictions for the CP asymmetries in Λ<sup>0</sup><sub>b</sub> → ph<sup>-</sup> about 30%
  □ A. Ali, G. Kramer, and C.-D. L, Phys. Rev. D58 (1998) 094009
  □ Y. K. Hsiao and C. Q. Geng, Phys. Rev. D91(2015) 116007
  □  $A_{cp}(\Lambda_b \to p\pi^-) A_{cp}(\Lambda_b \to pK^-) \approx -0.26$   $A_{CP} = \frac{N_{\Lambda_b} N_{\overline{\Lambda}_b}}{N_{\Lambda_c} + N_{\overline{\Lambda}_b}}$
- The first measurements of these by CDF



| Decay                     | $\mathcal{N}_{b  ightarrow f}$ | $\mathcal{N}_{ar{b} ightarrowar{f}}$ | $\mathcal{A}(b 	o f)$        |
|---------------------------|--------------------------------|--------------------------------------|------------------------------|
| $B^0 \to K^+ \pi^-$       | $5313 \pm 109$                 | $6348 \pm 117$                       | $-0.083 \pm 0.013 \pm 0.004$ |
| $B_s^0 \to K^- \pi^+$     | $560 \pm 51$                   | $354\pm46$                           | $+0.22 \pm 0.07 \pm 0.02$    |
| $\Lambda_b^0 \to p \pi^-$ | $242\pm24$                     | $206 \pm 23$                         | $+0.06 \pm 0.07 \pm 0.03$    |
| $\Lambda_b^{0} \to pK^-$  | $271\pm30$                     | $324 \pm 31$                         | $-0.10 \pm 0.08 \pm 0.04$    |

- The asymmetries were found to be compatible with zero within an uncertainty of 8 to 9%
- $\square A_{cp}(\Lambda_b^0 \to p\pi^-) A_{cp}(\Lambda_b^0 \to pK^-) = 0.16 \pm 0.12$

## Search for direct CPV in $\Lambda_b^0 o ph^-$ with RUN-I data



2021/11/11

Phys. Lett. B 787 (2018) 124-133

## **Search for CPV using TPA**



2021/11/11

## **Sensitivity to CPV**

A<sub>Î</sub>, A<sub>Ī</sub>, a<sub>CP</sub><sup>Î-odd</sup> and a<sub>P</sub><sup>Î-odd</sup> are insensitive to
 particle/antiparticle production asymmetries
 detector-induced charge asymmetries
 reduced systematic uncertainties

 $\succ$  Complementary approach to  $A_{CP}$  analysis

$$A_{CP} = \frac{N_{\Lambda_b} - N_{\overline{\Lambda}_b}}{N_{\Lambda_b} + N_{\overline{\Lambda}_b}}$$

#### Sensitive to potential new physics effects:

■ W. Bensalem, A. Datta, and D. London, New physics effects on triple product correlations in Ab decays, Phys. Rev. D66 (2002) 094004, arXiv:hep-ph/0208054

#### CPV measurements in $\Lambda_b \rightarrow p \pi^- \pi^+ \pi^-$



2021/11/11

20

#### **Measurement asymmetries in phase space regions**



Scheme B: on  $\Phi$  angle between decay planes  $\pi^+\pi^-_{slow}$  and  $p\pi^-_{fast}$ 



Phys. Rev. D 102 (2020) 051101

No CP-violation

Violation of P symmetry is observed

## **Conclusions and Outlook**

- Many results on b hardon charmless baryonic decay by LHCb
  - $\square$  First observation of  $B^0 \rightarrow p\bar{p}$ , evidence for  $B^+ \rightarrow p\bar{\Lambda}$
  - $\square$  First observation of  $B^0_{(s)} \rightarrow p\bar{p}h^+h^-$
  - $\square \ \mathcal{B}(B_c^+ \to p\bar{p}\pi^+) < 3.6 \times 10^{-8} \ \text{@90\% CL}$
  - $\square$  No direct CPV in  $\Lambda^0_b \to ph^-$
  - $\square$  No CPV in  $\Lambda_b \rightarrow p \pi^- \pi^+ \pi^-$
- More analyses based on RUN-I and RUN-II data are still under way
  - **\square** Search for  $B_s^0 \rightarrow p\bar{p}, B^+ \rightarrow p\bar{\Lambda}$
  - **\square** Search for  $B^0_{(s)} \rightarrow p\bar{p}p\bar{p}, B^+ \rightarrow \bar{\Lambda}pp\bar{p}$
  - $\square$  CPV of  $B^0_{(s)} \rightarrow p\bar{p}h^+h^-$
  - $\square$  Search for  $\Lambda^0_b \to \Lambda p \bar{p} \dots$

# Thank you!



#### CPV measurements in $\Lambda_b o p \pi^- \pi^+ \pi^-$ , $\Lambda_b o p \pi^- K^+ K^-$

Run-I, 3 fb<sup>-1</sup>



#### **Measurement asymmetries in phase space regions**



Scheme B: on  $\Phi$  angle between decay planes  $\pi^+\pi^-_{slow}$  and  $p\pi^-_{fast}$ 



Combined  $3.3\sigma$  deviation from CP symmetry The first evidence of CPV in the baryon sector

## **Multivariate analysis**



> IPS(B<sub>c</sub><sup>+</sup>), IPS(J/ $\psi$ ), IPS(H), IPS( $\mu^{\pm}$ ), PT(J/ $\psi$ ), PT(H), PT( $\mu^{\pm}$ ), Bc\_ $\tau$ , Bc\_L,  $\chi^2_{DTF}(B_c^+)$