Status of CEPC HCAL

Haijun Yang (SJTU) for CEPC Calo Working Group

CEPC Day July 24, 2020

Requirements of CEPC Calorimeters

Physics process	Measurands	Detector subsystem	Performance requirement	
$ZH, Z \to e^+e^-, \mu^+\mu^-$ $H \to \mu^+\mu^-$	$m_H, \sigma(ZH) \ { m BR}(H o \mu^+\mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$	
H o b ar b/car c/gg	${ m BR}(H o bar b/car c/gg)$	Vertex	$egin{aligned} \sigma_{r\phi} = \ 5 \oplus rac{10}{p(ext{GeV}) imes ext{sin}^{3/2} heta} (ext{\mu m}) \end{aligned}$	
$H \to q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{ m jet}/E = 3 \sim 4\%$ at $100~{ m GeV}$	
$H o \gamma \gamma$	${\rm BR}(H o \gamma \gamma)$	ECAL	$\Delta E/E = rac{0.20}{\sqrt{E({ m GeV})}} \oplus 0.01$	

CEPC HCAL: Geometry and Layout

- AT ICAL BUTTER

- ➤ Inner radius in X-Y plane R_{in} = 2300mm
- Outer radius R_{out} = 3340mm
- ➤ Inner & outer of HCAL endcap in Z-axis are 2670mm and 3710mm

PFA Calorimeters

Outline

■Status of AHCAL

- Measurements of new NDL SiPMs
- Light output and uniformity test of AHCAL tiles
- Assembly of scintillator testing platform
- Testing of KLauS chips

■Status of SDHCAL

- TMVA-ParticleID with TB data
- 5D HCAL with position(x,y,z), energy and timing
- GRPC Construction and Test

CEPC AHCAL Prototype

Requirement of JER

$$\frac{\sigma}{E} = \frac{60\%}{\sqrt{E}} \oplus 3\%$$

- Absorber: 2 cm Stainless steel $(0.12\lambda_1, 1.14X_0)$;
- Sensitive detector: Scintillator (cell: 4x4cm²);
- SiPMs: HMAMMATSU vs NDL;
- ➤ About 40 layers, readout channels: 12960
- Dimension: 72 cm*72 cm (cell: 4x4cm²)

New structure of 4cm x 4cm x 3mm

BMR: Boson Mass Resolution at di-jet
BMR*sqrt(2) = Jet Energy Resolution

BMR - HCAL Cell Size

SiPM: NDL 22-1313-15S

To get more light output combined with new design of AHCAL tiles of $4x4cm^2$.

Breakdown[V]	19
PDE@400nm [%]	45
Transverse dimension $[mm^2]$	4.45×3.65
Thickness [mm]	0.95
Number of Pixel	7400×4

SiPM: Light Output

Testing parameters

Voltage: 23V

Scintillator:

Thermal polymerization

> SiPMs: NDL 22-1313-15S

Stable point:

- ightharpoonup Gain:2.44× 10⁵
- DCR:330,574 Hz
- > CT: 8.5%
- Dark current:1.48 uA

SiPM: Comparison of NDL

Company	NDL				
Type	1010C	3030C	125	15	22-15
Active area $[mm^2]$	1	9	1	1	1.69
Pixel number	10000	90000	6400	4300	7400
Breakdown[V]	27.5	27.5	21.5	19.5	19
Overvoltage[V]	6.5	6.5	3	4	4
Dark counts[kHz]	550	5150	470	380	330
Crosstalk[%]	4.4	8	8.1	9.7	8.5
Gain[10 ⁵]	1.295	1.3	1.91	3.01	2.44

→ Comparing with NDL 1010-15, new type NDL SiPM 22-1313-15S decreases of Crosstalk, DCR and Gain!

SiPM: Comparison with HAMAMATSU

13360-1325PE

Voltage: 58V

Scintillator:

Thermal

Polymerization

Light ouput: 16.4 p.e.

12571-025P

Voltage: 67.4V

Scintillator:

Thermal Polymerization

Light output: 14.3 p.e.

NDL-22-1313-15S has light output: 22 p.e.

Scintillator: Uniformity Test

Uniformity testing region

Scintillator(PS): Uniformity of Tiles

Injection molding scintillators within a batch (Polystyrene)

Number of SiPM: 1

Voltage:23V

Tiles: PS

Injection craft:

Massive production

High efficiency

Consistency

Two obviously different light output within a same batch of PS tiles.

Light Output Uniformity within a Tile

➤ SiPM: NDL-1010C

Voltage: 33V

Scintillator : TP tile

Voltage: 23V

Scintillator: PS tile

> Light output is uniform in cavity of tiles read out by 2 diagonal SiPMs.

Scintillator Testing Platform (STP)

STP of AHCAL

Quickly check the uniformity among detector cells

14

KLauS Chips

KLauS vs SPIROC2 (SP2)

- Used in AHCAL
- > By University Heidelberg, Omega
- > Transistor: 180nm (SP2 350nm)
- Power consumption: full operation 3.6mW sum = 3.6mW * 36 chns = 130mW (SP2 ≈300mW)
- ➤ Auto/Ext Trigger
- > 36 channels
- Dynamic Range: 450pC (SP2 320pC)
- Pe/Noise Ratio = 35 (SP2 11)
- ➤ ADC: 10/12bits
- ➤ 4 Gain modes (SP2 2 gain modes)
- Dead time 500ns (SP2 ~ms)
- ✓ The KLauS testing board can work now.

Baseline and Std. distribution

SDHCAL based on RPC

(0. $12\lambda_I$, 1. $14X_0$)

Stainless steel Absorber(15mm)

Stainless steel wall(2.5mm) $GRPC(6mm \approx 0 \lambda_I, X_0)$ Stainless steel wall(2.5mm) 144 ASICs= 9216 channels/1m²
Display

ASIC HARDROC (64 ch)
3-threshold: 110fC, 5pC, 15pC

SDHCAL TB: Particle identification

> Apply BDT to SDHCAL TB data analysis

SJTU+IPNL, arXiv:2004.02972
Accepted by JINST

- → BDT helps to improve the hadron/e/mu PID, purify TB samples.
- → Keep 98% of pion efficiency and to reject >99.4% of mu.

SDHCAL TB: Particle identification

> Apply BDT to SDHCAL TB data analysis

SJTU+IPNL, arXiv:2004.02972
Accepted by JINST

- → BDT helps to improve the hadron/e/mu PID, purify TB samples.
- → Keep 98% of pion efficiency and to reject >99% of electron.

SDHCAL TB: Particle Identification

> Apply BDT to SDHCAL TB data analysis

SJTU+IPNL, arXiv:2004.02972 Accepted by JINST

→ BDT significantly enhance pion selection efficiency of TB samples comparing to standard method, especially at energy up to 40 GeV.

SDHCAL TB: Low Energy

- → SDHCAL TB at CERN using low energy (3-11 GeV) pion beam.
- → Data and MC simulation for pion samples agree well

SDHCAL TB: Energy Resolution

SJTU+IPNL, CALICE note under preparation

SDHCAL: New Design with 5D

- Purpose: five dimension (5D) SDHCAL:
 - Energy, position (X, Y, Z), timing
- Add MRPC layers in SDHCAL prototype
 - Same size as standard RPC
- Front-end board for MRPC readout
 - Charge and timing measurement simultaneously
 - **PETIROC2A** (32 channels, size: 2.8x2.8cm2)
 - < 20ps time jitter

Design of PCB with Petiroc2A by SJTU

Readout System for Petiroc2A based PCB

Xilinx ZCU102 has been purchased, readout system is under development.

https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html

GRPC Construction and Test

GRPC construction in Cleanroom

➤ Now: RPC size 35cm×50 cm

Next step: Large size RPC 1m×1m

Summary and Future Plan

AHCAL

- The scintillator cell size is 4cmx4cmx3mm and the light output of both PS and TP tiles can satisfy our requirement.
- New NDL SiPMs 22-1313-15S looks promising
- PS tile production, wrapping, testing is under preparation

SDHCAL

- TMVA-BDT improves PID for SDHCAL TB data samples
- Design of FEE and PCB with PETIROC2A for MRPC 5D measurements is ongoing
- Construction and test of GRPC is ongoing

Thanks for your attention!

Backup

Schematic of CEPC Detector

CEPC HCAL Geometry

- ➤ Inner radius in X-Y plane R_{in} = 2300mm
- Outer radius R_{out} = 3340mm
- ➤ Inner & outer of HCAL endcap in Z-axis are 2670mm and 3710mm

RWELL Detector development

RWELL: Resistive WELL

a) Hole Diameter: 500μm

b) Pitch: 1mm

c) Thickness: 400µm

d) Sensitive area: 25cm× 25cm

From USTC group

DLC deposition and Thermal bonding

- Key issues for RWELL:
- Resistive layer-DLC(Diamond like carbon)
- 2. Bonding method

DLC is deposited on a PCB substrate by the magnetron sputtering method

DLC deposition procedure

Step 1, Place the gluing film

Step 2, Pre-heating

Step 3, Thermal boding

Thermal bonding procedure

Gain Test

• Test setup:

- Gain uniformity is not good. Possible reason:
 - 1. Gas flow
 - 2. Uniformity due to the thermal bonding procedure

Rate Capability

• RWELL is irradiated with 8 keV X-ray, and gain of the detector is almost no reduction@ 300kHz/cm^2 (Initial gain G0: \sim 5500).

• Detector discharge while irradiated at a higher rate

SDHCAL based on RPC

Electronics Readout

ASICs: HARDROC2

64 channels

Trigger less mode

Memory depth: 127 events

3 thresholds

Range: 10 fC-15 pC

Gain correction → uniformity

Printed Circuit Boards (PCB) were designed to reduce the cross-talk with 8-layer structure and buried vias.

Tiny connectors were used to connect the PCB two by two so the 24X2 ASICs are daisychained. 1×1m² has 6 PCBs and 9216 pads.

DAQ board (DIF) was developed to transmit fast commands and data to/from ASICs.

Readout ASIC

Readout ASIC	Channels	Dynamic Range	Threshold	Consumption
GASTONE	64	200fC	Single	2.4mW/ch
VFAT2	128	18.5fC	Single	1.5mW/ch
DIRAC	64	200fC for MPGD	Multiple	1mW/ch, 10μW/ch
DCAL	64	20fC~200fC	Single	
HARDROC2	64	10fC~10pC	Multiple	1.42 mW/ch, 10 μ W/ch
MICROROC	64	1fC~500fC	Multiple	335μW/ch, 10μW/ch

Considered the multi-thresholds readout, dynamic range and power consumption, MICROROC is an appropriate readout ASIC

MICROROC Parameters

- ☐ Thickness: 1.4mm
- □ 64 Channels
- □ 3 threshold per channel
- □ 128 hit storage depth
- Minimum distinguishable

charge:2fC

Active Cooling

- ➤ CEPC is designed to operate at continuous mode with beam crossing rate: 2.8×10⁵ Hz. Power pulsing will not work at CEPC.
- Compare to ILD, the power consumption of VFE readout electronics at CEPC is about two orders of magnitude higher, hence it requires an active cooling
 - Evaporative CO₂ cooling in thin pipes embedded in Copper exchange plate.
 - For CMS-HGCAL design: heat extraction of 33 mW/cm², allows operation with 6×6 mm² pixels with a safety margin of 2
- To be modelled for Mokka simulation
- Transverse view of the slab with one absorber and two active layers.
- → The silicon sensors are glued to PCB with VFE chips, cooled by the copper plates with CO₂ cooling pipes.

Active Cooling Simulation and Test

- Resistors: 4*6*10 per PCB
- Total resistance of a group of 10 parallel-connected resistors: 470Ω
- ASICs in SDHCAL: ~0.064W/chip
 - → ~5.5V on resistors
- Requirements for the power supply:
 - Voltage range: >0~5.5V
 - Output power: >1.536W/PCB
 - Adjustable/programmble

Resistance(Ω)	4.7k
Power rating(W)	0.0625(~17V)
Max operating voltage(V)	50
Max overload voltage(V)	100
Max operating T(°C)	155
Min operating T(°C)	-55
Temperature coefficient	\pm 100ppm/°C

Active Cooling Simulation

Cooling maybe necessary if operating at continuous mode (CEPC)

C: sans power pulsing

- A water-based cooling system inside copper tubes in contact with the ASICs to absorb excess heat.
- Temperature distribution in an active layer of the SDHCAL.

Water cooling : $h = 10000 \text{ W/m}^2/k$

Thermal load: 80 mW/chip

27.147 (max) - 24.591 (min) = 2.556 °C

cooling system embedded in the stainless steel absorber.

Active Cooling Simulation

ANSYS Simulation of RPC+PCB With copper plate & water tubes

Temperature test of RPC+PCB

Active Cooling Simulation

- 10 layers, flow rate: 1m/s
- With cooling at 6th layer:
- With cooling each layer:
 - uniform among layers
 - cooling power: ~1.53W/layer

no cooling

cooling at 6th layer

cooling at each layer

PCB with resistors to mimic HARDROC ASIC heat source for cooling design and test.

41

Active Cooling Module

- Cooling plates: water pipes imbedded in metal plates
 - o cooling ability: ~kW/m²
 - safety(water is not so good)
- Stainless steel
 - poor heat transmission
 - difficult to produce → high cost
 - can work as the absorber
- Aluminum
 - good heat transmission
 - easy to produce
 - 5 times the radiation length than steel

Cooling plates

Schematic of CEPC Detector

