Introduction

- "理论为先",所以需要理论家给我们提供各种在CEPC下可以用得上的,并有一定可操作性, 在一年内可以完成的与 "Higgs"有点关系的模型。
- 第二步、第三步难点在于稳定的人手。

CEPC Higgs white paper涉及内容

- Sub-precent level precision should be sensitive to some thing...
- H->Invisible/exotic decay (通过 H->ZZ->invisible)
- CP test (ZH->mumubb). (JHU)
- H-> long live particle
- 2HDM,etc...

	Estimated Precision				
Property	CEPC-v1		CEPC-v4		
m_H	$5.9 \mathrm{MeV}$		$5.9 \mathrm{MeV}$		
Γ_H	2.7%		2.8%		
$\sigma(ZH)$	0.5%		0.5%		
$\sigma(uar{ u}H)$	3.0%		3.2%		
Decay mode	$\sigma \times \mathrm{BR}$	BR	$\sigma imes \mathrm{BR}$	\mathbf{BR}	
$H \rightarrow b \bar{b}$	0.26%	0.56%	0.27%	0.56%	
$H \mathop{\rightarrow} c \bar{c}$	3.1%	3.1%	3.3%	3.3%	
$H \rightarrow gg$	1.2%	1.3%	1.3%	1.4%	
$H{\rightarrow}WW^*$	0.9%	1.1%	1.0%	1.1%	
$H{\rightarrow} ZZ^*$	4.9%	5.0%	5.1%	5.1%	
$H \rightarrow \gamma \gamma$	6.2%	6.2%	6.8%	6.9%	
$H{\rightarrow}Z\gamma$	13%	13%	16%	16%	
$H\!\rightarrow\!\tau^+\tau^-$	0.8%	0.9%	0.8%	1.0%	
$H{ m }{ m }\mu^+\mu^-$	16%	16%	17%	17%	
$\mathrm{BR}^{\mathrm{BSM}}_{\mathrm{inv}}$	_	< 0.28%	_	< 0.30%	

EF02: Kickoff meeting

https://indico.ihep.ac.cn/event/12025/

目前: 张昊、陈明水, 我 愿意来做联系人的事, 为大家服务。 欢迎更多人自愿来做。

Manage *

Snowmass	EF02

Wednesday, 24 June 2020 from 20:00 to 21:20 (Asia/Shanghai)

Description 腾讯会议: 141 293 329

agenda 上传文件密码: 1234

Wednesday, 24 June 2020

20:00 - 20:20	Introduction 20'	
20:20 - 20:40	h->RHN from LHC to CEPC 20' Speaker: Gao, Yu Material: Slides 🔂	
20:40 - 21:00	Composite Higgs at CEPC 20' Speaker: Prof. Jing Shu (ITP)	
21:00 - 21:20	anomalous H->ZZ at CEPC 20' Speaker: Dr. Hao Zhang (Technical Institute of Physics and Chemistry, CAS)	

Search for Massive neutrino at CEPC

高宇 (IHEP)

LHC has sensitivity on the $h \rightarrow Nv \rightarrow I l v v$

A.Das, B.Dev, C.S.Kim, 1704.00880

A.Das, Y.Gao, T.Kamon, 1704.00881

Zh过程

比起LHC, CEPC更加干净。

Composite Higgs

Suppose in NP Scale, we see substructure of Higgs

舒菁 (ITP)

Possible NP deviation

 $\delta = c rac{m_W^2}{M_{
m NP}^2}, \,\, c = \mathcal{O}(1)$

The precision of the Higgs measurement could probe the substructure of the Higgs

Investigate the Lorentz structure of the Yukawa interaction

张昊 (IHEP)

- Precisely Higgs
 Physics at CEPC —
 — beyond the *k* scheme.
- Investigate the CP property of the hbb Yukawa interaction via the interference effect in Higgs boson decay.

