EF01: Higgs Couplings and properties

G. Li

EF01 focus more on FCC-hh, such as HH No much discussion on e+e- experiment

Jur	ne 20	20					
		24 Jun	EF01 meeting				
Мау	May 2020						
		27 May 13 May	Joint EF01 & EF02 discussion EF01 kick-off meeting				

Higgs study: primary goal of the CEPC

- 9 Br's $c\bar{c}, b\bar{b}, \mu\mu, \tau\tau, gg, \gamma\gamma, \gamma Z, ZZ, WW (d\bar{d}, u\bar{u}, s\bar{s}, e^+e^-, t\bar{t})$
- σ_{ZH} , $\sigma_{\nu\bar{\nu}H}$, mass, differential distributions,
 - Combination: couplings, width, CP, ...
- Exotic decays of Higgs
- Precision study, also interplay with EF02
 - Precision measurements lead discovery

Higgs study: guiding star of DET/SW/ANA optimization

How to get the best precisions Approach to the stats. limits

Property	Estimated Pre	ecision
m_H	5.9 MeV	/
Γ_H	3.1%	
$\sigma(ZH)$	0.5%	CDR
$\sigma(uar{ u}H)$	3.2%	CEPC_v4
Decay mode	$\sigma(ZH) \times BR$	BR
$H \rightarrow b\bar{b}$	0.27%	0.56%
$H \to c \bar{c}$	3.3%	3.3%
$H \rightarrow gg$	1.3%	1.4%
$H \to WW^*$	1.0%	1.1%
$H \to Z Z^*$	5.1%	5.1%
$H \to \gamma \gamma$	6.8%	6.9%
$H \to Z \gamma$	15%	15%
$H \to \tau^+ \tau^-$	0.8%	1.0%
$H \to \mu^+ \mu^-$	17%	17%
$H \to \mathrm{inv}$	—	< 0.30%

More suggestions ?

- We should focus on e+e- colliding
- More new ideas, methods, new topics to extract more information from 1M Higgs events
 - Machine learning
 - Differential analysis
 - Exotics decay
 -
 - An example: simultaneous analysis (slowly moving forward)

Simultaneous analysis

• Tagging method to get denominator: constraint

$$\sum N_i = N$$

- All Higgs decays selected simultaneously
- Multinomial distribution: smaller stat. uncert.

- --- ---

$$B_i = rac{n_i/\epsilon_{ii}}{N}$$

Multinomial dist. in Higgs decays

Physics performance characterized by a single parameter which can be parameterized with hardware/software performances

$$P = f(\sigma_p, \sigma_{E_\gamma}, PID, JID, JER, \ldots)$$

 $= |E|^2 \propto rac{1}{|\Sigma_B|^2}$ Single parameter, easy to optimize $\Sigma_B = rac{ec{\sigma}_B ec{\sigma}_B^T}{N^4 |E|^2}$

In the Higgs branching ratio measurements

Solve N_i by minimizing the chi² with constraint

$$\chi^2 = \sum_i rac{(\sum \epsilon_{ij} N_j - n_i)^2}{\sigma_{n_i}^2} + rac{(\sum_l N_l - N)^2}{\sigma_N^2}$$

Higgs -> cc, bb, mm, tt, gg, aa, aZ, ZZ, WW 1 2 3 4 5 6 7 8 9

		,								、	
$\begin{pmatrix} n_1 \end{pmatrix}$		ϵ_{11}	ϵ_{12}	ϵ_{13}	ϵ_{14}	ϵ_{15}	ϵ_{16}	ϵ_{17}	ϵ_{18}	ϵ_{19}	$\bigwedge N_1$
n_2		ϵ_{21}	ϵ_{22}	ϵ_{23}	ϵ_{24}	ϵ_{25}	ϵ_{26}	ϵ_{27}	ϵ_{28}	ϵ_{29}	N_2
n_3		ϵ_{31}	ϵ_{32}	ϵ_{23}	ϵ_{34}	ϵ_{35}	ϵ_{36}	ϵ_{37}	ϵ_{38}	ϵ_{39}	N_3
n_4		ϵ_{41}	ϵ_{42}	ϵ_{33}	ϵ_{44}	ϵ_{45}	ϵ_{46}	ϵ_{47}	ϵ_{48}	ϵ_{49}	N_4
n_5	=	ϵ_{51}	ϵ_{52}	ϵ_{43}	ϵ_{54}	ϵ_{55}	ϵ_{56}	ϵ_{57}	ϵ_{58}	ϵ_{59}	N_5
n_6		ϵ_{61}	ϵ_{62}	ϵ_{53}	ϵ_{64}	ϵ_{65}	ϵ_{66}	ϵ_{67}	ϵ_{68}	ϵ_{69}	N_6
n_7		ϵ_{71}	ϵ_{72}	ϵ_{63}	ϵ_{74}	ϵ_{75}	ϵ_{76}	ϵ_{77}	ϵ_{78}	ϵ_{79}	N_7
n_8		ϵ_{81}	ϵ_{82}	ϵ_{73}	ϵ_{84}	ϵ_{85}	ϵ_{86}	ϵ_{87}	ϵ_{88}	ϵ_{89}	N_8
$\left(\begin{array}{c} n_9 \end{array} \right)$		$\left(\epsilon_{91} \right)$	ϵ_{92}	ϵ_{83}	ϵ_{94}	ϵ_{95}	ϵ_{96}	ϵ_{97}	ϵ_{98}	ϵ_{99}	$\setminus N_9$

Neglect e,u,d, and s decays and add constraint

$$\sum_{i} N_i = N^{tag} \text{ or } \sum_{i} B_i = 1$$

$$B_i = rac{N_i}{N}$$

Ideal case:

eeH, qqh as good as uuH No background, perfect detector, multinomial, and constraint

$$\sigma_{n_i} = \sqrt{Np(1-p)\epsilon_{ii}}$$

		MLT		POS
Bcc	2.713%	0.650% (0.655%	0.664%)
Bbb	57.799%	0.086%	0.094%	0.144%)
Bmm	0.023%	7.190% (7.197%	7.198%)
Btt	6.319%	0.413% (0.421%	0.435%)
Bgg	8.619%	0.347% (0.356%	0.373%)
Baa	0.227%	2.294% (2.296%	2.299%)
BaZ	0.150%	2.818% (2.820%	2.822%)
BZZ	2.647%	0.658%	0.664%	0.673%)
BWW	21.496%	0.198%/(0.209%	0.236%
		570		

More realistic: eeH, qqh as good as uuH 100% background, no cross talk, multinomial uncertainties, and constraint

$$\sigma_{n_i} = \sqrt{Np(1-p)\epsilon_{ii}}$$

		MLT		POS
Bcc	2.713%	0.773% (0.779%	0.790%)
Bbb	57.799%	0.102% (0.111%	0.171%)
Bmm	0.023%	8.547%	8.559%	8.560%)
Btt	6.319%	0.492% (0.501%	0.518%)
Bgg	8.619%	0.413% (0.424%	0.443%)
Baa	0.227%	2.728% (2.731%	2.734%)
BaZ	0.150%	3.350% (3.353%	3.356%)
BZZ	2.647%	0.783% (0.789%	0.800%)
BWW	21.496%	0 235% (0.249%	0 281%)