

Institute of High Energy Physics Chinese Academy of Sciences

Snowmass 2021 EF01: Higgs Boson properties and couplings

Gang Li, <u>Jin Wang</u> on behalf of CEPC EF01

Sunday, June 28, 2020

Snowmass General Discussion

Snowmass: a vision for the future of particle physics

- 2
 - Goals of snowmass planning exercise in EF01:
 - identify key reference measurements of a precision Higgs program
 - provide compact summary of theoretical motivations
 - document the precision and physics potential
 - highlight the unique strengths of different future facilities
 - intrinsic advantages, unique capabilities to reconstructing particular decays etc.
 - complementary programs enhance the overall Higgs physics program
 - Various machines to be considered for accelerator and physics studies during the Snowmass process
 - Snowmass 2013: CLIC, ILC, HL-LHC, VLHC, TLEP, muon collider etc.
 - Snowmass 2021: CEPC, FCC-ee, ILC, CLIC, EIC, LHeC, HE-LHC, SPPC, FCC-hh, etc.
 - Timeline:
 - Letters of Interest (April 1 August 31, 2020)
 - **Contributed Papers** (April 1 July 31, 2021)

Studies done in CEPC-CDR

Property Estimated Precision		
m_H	5.9 MeV	
Γ_H	3.1%	
$\sigma(ZH)$	0.5%	
$\sigma(\nu\bar{\nu}H)$	3.2%	
Decay mode	$\sigma(ZH) \times BR$	BR
$H \to b\bar{b}$	0.27%	0.56%
$H \to c\bar{c}$	3.3%	3.3%
$H \to gg$	1.3%	1.4%
$H \to WW^*$	1.0%	1.1%
$H \to ZZ^*$	5.1%	5.1%
$H \to \gamma \gamma$	6.8%	6.9%
$H \to Z\gamma$	15%	15%
$H \to \tau^+ \tau^-$	0.8%	1.0%
$H \to \mu^+ \mu^-$	17%	17%
$H \to inv$	_	< 0.30%
	$\begin{tabular}{ c c c c } \hline Property \\ \hline m_H \\ \hline \Gamma_H \\ \sigma(ZH) \\ \sigma(\nu\bar{\nu}H) \\ \hline \hline \hline \\ $	$\begin{tabular}{ c c c c c } \hline Property & Estimated Prime m_H & 5.9 Me $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

Higgs boson production and decay angles of the $e^+e^- \rightarrow Z^* \rightarrow ZH \rightarrow \mu^+\mu^-b\bar{b}$ process

Snowmass General Discussion

Sunday, June 28, 2020

Focus of Snowmass 2021 in EF01

- Focus of Snowmass 2021 in EF01
 - fiducial differential cross sections: targeting phase space region matching experiment selections, in bins of interested variables
 - reduce sensitivity to SM modeling
 - isolate regions with higher BSM sensitivity
 - probe more precise theoretical corrections with finer SM measurements
 - CP violating Higgs couplings: targeting couplings sensitive to CP nature of Higgs with angular analyses or threshold scans
 - excellent null-test in SM
 - inputs to global EFT fits
 - different facilities have their unique features

Some typical reference differential analyses

p_T^{H} , N_{jets} Distributions

Н→үү

- 1-2% mass resolution
- S/B ~ 3% but $\rm N_{\rm reco\,H}$ ~ 7000

low-p $_{T}^{H}$: probe pQCD modeling, light-quark coupling **high-p** $_{T}^{H}$: new particles in ggF loop, top coupling

from Nicolas Berger

H→ 4I

- 1-2% mass resolution
- S/B ~ 2 but $N_{reco H}$ ~ 200

N_{jets}: Probe pQCD modeling, production mode composition

Some typical reference differential analyses

 $\begin{array}{l} \Delta \phi_{jj} \text{: Sensitive to CP-odd Higgs admixtures} \\ \rightarrow \text{Small modulation in the SM, opposite sign for CP-odd components} \end{array}$

→ See also ATL-PHYS-PUB-2019-008: measure CP admixture @ HL-LHC from H→ $\tau\tau$ angular distributions

 $\mathbf{m}_{_{34}}$: mass of subleading lepton pair (~m_{2*}), Probes H4I tensor structure (contact terms), light resonances

Interpretation of differential analyses

Snowmass General Discussion

Interpretation of differential analyses

Some reference Higgs CP violating analyses

- Other featured channels in CEPC
 - $e+e- \rightarrow ZH \Rightarrow HZZ, HZ\gamma, H\gamma\gamma couplings$
 - Current ZH->mumubb results could also be improved by exploring the kinematic distributions

About SPPC and FCC-hh

10

• Complementary Higgs precision measurements to lepton collider

- specially interesting in large Higgs pT regions
 - different hierarchy of production channels
 - improved S/B, reduced pile-up effects
 - potentially accurate probe of the H pt spectrum up to large pt
- standalone precise "ratios-of-BRs" measurements
 - independent of α_S , m_b , m_c , Γ_{inv} systematics
 - sensitive to BSM effects that typically influence BRs in different ways
- probe top Yukawa coupling where ttH/Z contributions are subdominant

Sunday, June 28, 2020

Summary

- A set of reference analyses will be established in EF01
- Currently focus on differential measurements and Higgs CP violating couplings
- CEPC should propose and work on channels that highlight our strengths collaborate between theorists and experimentalists
 - pT(H) differential analyses
 - CP violation studies in HZZ and other channels
 - running of Higgs mass measurements?
 - other ideas are very welcome
- SPPC initiatives?