SnowMass EF05-07: QCD Draft ideas of Lol

Zhao Li, on behalf of Group of EF05-07, Jun-28-2020

近期的活动

SnowMass EF05-07: QCD 碰头会

24 June 2020 Asia/Shanghai timezone

Overview

Scientific Programme

Timetable

Contribution List

Author List

My Conference

https://meeting.tencent.com/s/fa8f863cH9Sd

会议 ID: 248 543 429 会议密码: 271828

1. Exclusive Z decays (radiative and non-leptonic, test of factorization theorem free of power corrections), Qin Qin

- 2. Exotic hadrons, Zhen Hu
- 3. Alpha_s projection (c.f. FCC-ee).
- 4. Gluon/quark differentiation

Starts 24 Jun 2020 21:00 Ends 24 Jun 2020 23:00 Asia/Shanghai

No material yet

№ 68% 💽 下午2:02

中国移动 ". 🏢 🕱 🐸 💆 👰

く 聊天信息(24)

李海涛

秦溱

G

李钊

肖杰

刘晓辉

马滟青

张昊

杨李林

李强

胡震

梁志均(...

王健

刘真

袁朝zh...

孟凡强

群聊名称 SnowMass EF05-07: QCD > 群二维码

群公告

这个群的目标是聚集对cepc和snowmass QCD相关 topic感兴趣的同事,进行相关讨论并形成合力做出实 质进展。本阶段目标是进行一次在线meeting讨论可...

Exclusive Z decays at the CEPC Proposed by Shan Cheng and Qin Qin

Decay mode	Branching ratio	CEPC Uncertainty
$Z \to J/\psi\gamma$	$8.02 \times 10^{-8} [29]$	$\sim 1.8\%$
$Z \to \Upsilon(1S)\gamma$	$5.39 \times 10^{-8} [29]$	$\sim 3.4\%$
$Z o ho^0 \gamma$	$4.19 \times 10^{-9} \ [29]$	$\sim 1.8\%$
$Z o \omega \gamma$	$2.82 \times 10^{-8} [29]$	$\sim 0.8\%$
$Z o \phi \gamma$	$1.04 \times 10^{-8} \ [29]$	$\sim 1.6\%$
$Z \to \pi^0 \gamma$	$9.80 \times 10^{-12} \ [29]$	$< 3.4 \times 10^{-8}$
$Z \to \eta \gamma$	$0.1 - 1.7 \times 10^{-10} [30]$	$\sim 12\% - 50\%$
$Z \to \eta' \gamma$	$3.1 - 4.8 \times 10^{-9} [30]$	$\sim 2.7 - 3.4\%$

 $10^{12} Z$

CEPC as a Tera-Z factory

[Grossman,Konig,Neubert,1501.06569] [Alte,Konig,Neubert,1512.09135]

```
\mathcal{B}(Z \to \pi^+ \pi^-) = (0.83 \pm 0.06) \times 10^{-12}
```

 $\mathcal{B}(Z \to K^+ K^-) = (1.74 \pm 0.06) \times 10^{-12}$

[Cheng,Qin,1810.10524]

Test of Factorization

• In B meson decays, **dirty**:

large, but unknown power corrections

• In Z decays, **clean**:

power corrections are ignorable

$\sim \mathcal{O}(\Lambda_{\rm QCD}^n/m_b^n)$

 $\sim \mathcal{O}(\Lambda_{\rm QCD}^n/M_Z^n)$

Extraction of Distribution Amplitudes

$$\phi_M(x,\mu) = 6x(1-x) \left[1 + \sum_{n=1}^{\infty} a_n^M(\mu) C_n^{(3/2)}(2x-1) \right]$$

$a_2^M(\mu)$	Theoretical value	CEPC precision
$ ho^0$	0.17 ± 0.07	± 0.02
ω	0.15 ± 0.12	± 0.01
ϕ	0.23 ± 0.08	± 0.02

Proposals

different theoretical methods

- to find channels with bigger branching ratios
- to test consistency between different theoretical methods

NLO calculations

* study more non-leptonic channels like $\pi\rho$, $\rho\rho$ via

Exotic Hadrons Proposed by Zhen Hu

Exotic Hadrons

夸克模型是标准模型的一个重要组成部分,其传统的介子(两夸 克)和重子(三夸克)框架取得了巨大的成功。夸克模型同时 预言了奇特介子(四夸克)、奇特重子(五夸克)、更多夸克 组成的复合粒子、或者有胶子的直接参与的复合粒子等,统称 奇特强子。对奇特强子的深入探索可以揭示多体低能强相互作 用的性质,促进非微扰强相互作用理论的进展,帮助我们理解 物质世界的多种构成形式,因此对强子和奇特强子的研究本身 具有十分重要的意义。

Exotic Hadrons

中国近年来在奇特强子理论和实验研究中均取得了一些重要成果。 理论方面,赵光达院士早在1980年就提出了四夸克模型,迄今为 止,中国理论家已经在格点QCD、QCD求和规则、有效场论等多 个方面讨论了多夸克态粒子的性质。实验方面,中国LHCb组对于 五夸克态的发现做出了重要贡献,中国CMS组对于全重味四夸克 态的寻找也取得了关键进展。因此,在CEPC上开展奇特强子的 研究,有助于继续加强中国在理论和实验方面的贡献。

Exotic Hadrons

下一步的计划是联合中国相关领域的理论家和实验家, 挑选一两个适合在CEPC上进行研究的奇异强子态及衰 变道,对ee对撞下的产生机制和产生截面做更深入的 理解和计算, 对实验测量方法做更细致的分析和模 拟,如反冲质量法等。同时与HL-LHC,FCC,ILC等 做横向比较。

α_s determination and non-perturbative modeling with energy-energy correlator

Proposed by Jun Gao and Hua-Xing Zhu

α_s determination and non-perturbative modeling with energy-energy correlator

- kardos, Kluth, Somogyi, Tulipant, Verbytskyi, 1804.09146
- Theoretical accuracy: NNLO + NNLL (back-to-back)
- Hadronization corrections:
- non-perturbative modeling/Monte Carlo

$$0102 (hadr.) \pm 0.00257 (ren.) \pm 0.00078 (res.),$$

Towards ultimate theory accuracy:

NNLO + N3LL resummation

高俊,朱华星, in progress

α_{s} determination and non-perturbative modeling with energy-energy correlator

log(Q) dependence from perturbative corrections

Power corrections in Q from non-perturbative hadronization

conservation sum rule incorporated;

Q: important to have energy scan in a wide range at CEPC

- Sensitive to non-perturbative modeling
- in the back-to-back limit

- Dokshitzer, Marchesini, Webber,
- hep-ph/9905339

- Goal: (a) Investigating better non-perturbative modeling of hadronization, with energy
- (b) Disentangle perturbative and non-perturbative corrections with data from multiple

高俊,朱华星, in progress

Gluon/quark differentiation By using substructure of jets or Machine Learning, one can discriminate gluon jet and quark jet, or even different flavors.

Proposed by unknown

Thank you!