未来正负电子对撞机实验中的 粒子流算法

李波 (西南科技大学)

2020.7.1

- Electron-positron collider experiments
- Particle flow calorimetry
 - High granularity calorimeter
 - Particle flow algorithm (PFA)
- The proposal for improving the PFA performance

Content

International Linear Collider

- Future e^+e^- colliders: CEPC, FCC-ee, CLIC, and ILC
- "An electron-positron Higgs factory is the highest priority next collider." (from the <u>future European Strategy for particle physics</u>)

ILC machine parameters

Baseline 500 GeV Machine

Centre-of-mass energy	$E_{ m CM}$	GeV	250	350
Collision rate	$f_{\rm rep}$	Hz	5	5
Electron linac rate	$f_{ m linac}$	Hz	10	5
Number of bunches	$n_{\rm b}$		1312	1312
Bunch population	\tilde{N}	$\times 10^{10}$	2.0	2.0
Bunch separation	$\Delta t_{\mathbf{b}}$	ns	554	554
Pulse current	$I_{ m beam}$	mA	5.8	5.8
Luminosity Fraction of luminosity in top 1% Average energy loss Number of pairs per bunch crossing	$L \ L_{0.01}/L \ \delta_{ m BS} \ N_{ m pairs}$	$ imes 10^{34}$ cm $^{-2}$ s $^{-1}$	0.75 87.1% 0.97% 62.4	1.0 77.4% 1.9% 93.6
	- · pairs			

With plan to upgrade L and $E_{\rm cm}$

Physics and detector

- ILC Physics goals:
 - Precision measurements
 - H: $e^+e^- \rightarrow HZ$ (250 GeV), $e^+e^- \rightarrow t\bar{t}H$ (500 GeV), $e^+e^- \rightarrow ZHH$ (500 GeV)
 - $\blacktriangleright Z: e^+e^- \to Z \text{ (91 GeV)}$
 - W: $e^+e^- \rightarrow WW$ (160 GeV, 350 GeV)
 - t: $e^+e^- \rightarrow t\bar{t}$ (350 GeV)
 - Search for: SUSY (if any) ...
 - Advantage: Cleanliness of signal

• Detector

- The most precise detector for studying the interaction of high energy particles.
- The particles must be reconstructed in multi-jet final states and identified with invariant mass.
 - High precision tracker
 - High granularity calorimeter

Two detectors

SiD

- High B with Si strip tracker
- 18 countries, 77 institutions, ~240 members
- B=5T, Si only tracker
- ECAL: R=1.27m

ILD

- Large R with TPC tracker
- 32 countries, 151 institutions, ~700 members
- B=3.5T, TPC + Si trackers
- ECAL: R=1.8m

The ILC collaboration (@LCWS2019)

ILD

ILD

Trackers

Particle flow calorimetry

• From energy flow to particle flow

- Particle flow calorimetry aims to reconstruct visible final state particles from the information recorded by detector
- High precision tracker and high granularity calorimeter are mandatories
- Jet energy resolution requirement: $\sigma_E/E = 3 \sim 4\%$ for 50 to 500 GeV jets

Why particle flow calorimetry?

Component	Detector	Energy fract.	Energy res
Charged particles $(X \pm)$	Tracker	$\sim 0.6 E j$	$10^{-4}E_{X^{\pm}}^{2}$
Photons (γ)	ECAL	$\sim 0.3 E_j$	$0.15\sqrt{E_{\gamma}}$
Neutral Hadrons (h^0)	HCAL	$\sim 0.1 E_j$	$0.55\sqrt{E_{h^{0}}}$

Double counting

Lost

TO TO THE REAL DONAL THE WAY TO THE WAY

- s. Jet energy res.
 - $< 3.6 \times 10^{-5} E_j^2$ $0.08 \sqrt{E_j}$ $0.17 \sqrt{E_j}$

 60% of jet energy is measured by tracker, which has a very good energy resolution.

- The cluster separation, especially the separation between charged cluster and neutral cluster, is the crucial aspect for particle flow calorimetry.
- The confusion (double counting and lost) should be made as small as possible.

Electromagnetic shower

Siw ECAL

arXiv:1306.6329

Silicon wafer matrix

- Cell size : $5 \times 5 \text{ mm}^2$
- Thickness: 30 layers, $24 X_0$
- Energy resolution: $0.15/\sqrt{E}$
- S/N ratio: 10:1 at 1 MIP level
- Total wafer surface: 3000 m²
- Leak-less water system for cooling

Hadronic shower

- Nuclear interaction length: $\lambda_I \approx 35 \text{ g/cm}^2 A^{1/3}$, usually much larger than X_0 (Iron: 16.8 cm)
- Leakage
- Invisible energy: ~ 30%
- The ratio of EM and hadronic components e/h > 1
- Hadronic calorimeter compensation; software compensation
- Dual readout: measure the e/h by Cherenkov light and scintillation

Software compensation

• Two HCAL options at ILD: Analog HCAL (AHCAL) and Semi-digital HCAL (SDHCAL)

Semi-Digital HCAL

- Self-supporting mechanical structure as absorber as well

ASIC DIF(detector Interface)

- 48 layers, $6\lambda_I$
- GRPC, cell size: $1 \times 1 \text{ cm}^2$
- One layer ASIC: 12 x 12
- Each ASIC: 64 ch., 9612 ch. in total
- Three thresholds readout (2 bits):
- (0.11, 5, 15) pC
- Power-pulsing electronics, power
 - reduction factor: ~100, 25μ W/ch.

Forward calorimetry

- BeamCal and LumiCal provide fast and precise measurements of the beam properties and luminosity and to ensure detector hermeticity.
- The expected radiation dose is up to 10 MGy per year for the nominal accelerator \bullet parameters at a center-of-mass energy of 500 GeV
- CVD diamond sensor is the primary candidate
- Radiation tolerance no frequent replacements
- Low dielectric constant low capacitance
- Low leakage current low readout noise
- Good insulating properties large active area
- Room temperature operation no cooling necessary
- Fast signal collection time no ballistic deficit
- Smaller signal than silicon larger energy to create eh-pair
- Silicon sensors is also considered

The necessity of Particle Flow Algorithm(PFA)

$e^+e^- \rightarrow q\bar{q}, E_{\rm cm} = 500 \,\,{\rm GeV}$ $ILD_15_02_vO2: SiWECAL + SDHCAL$

- Cluster building
- Track-cluster matching
- Energy correction
- PID

Particle flow calorimetry = High precision tracker + high granularity calorimeter + particle flow algorithm

The PFAs for e^+e^- collider experiments

- PandoraPFA: the standard PFA in ILCS oft. It derived a general pattern recognition package, PandoraSDK. NIMA 611 (2009) 25-40
- ARBOR, originated from LEP era; now used for the CEPC studies. arXiv:1403.4784, Eur. Phys. J. C78 (2018) no. 5, 426
- GARLIC (GAmma Reconstruction at LInear Collider experiment): MVA for PID. JINST 7 (2012) P06003

Event

preparation

- APRIL (Algorithm of Particle Reconstruction for the ILC, Lyon): use PandoraSDK as the framework, and the basic idea of ARBOR for clustering. arXiv:2002.09678

Jet energy composition

- Charged particles: ~ 60%
- Photons: ~ 30%

- Neutral hadrons: ~ 10%

PFAs

The code dependency of APRIL

- Algorithms developed by using the **PandoraSDK**
- Multi-algorithm approach Eur. Phys. J. C75 (9) (2015) 439
- Objects: track, hit, cluster, PFO
- **ILCSoft** (https://github.com/iLCSoft)
- *Marlin*: the reconstruction framework
- Tracking packages for all components of tracker
- Calorimeter digitizers (*SimDigital* for SDHCAL)
- *lcgeo*: the ILD detector model, which is based on DD4hep
- LCCalibration: automated energy calibration for calorimeters at ILC
- mlpack: *NeighborSearch* for nearby hits search; *DBSCAN* for the clustering of unusual hits

Clustering

Hits connection

'Small' parameters are chosen, so the clustering at this stage has small error on merging two clusters into a single one

- Reference direction

$$V_r = w_b \cdot \sum_i v_i^b + w_f \cdot \sum_i v_j^f$$

$$\kappa = \theta^{p_{\theta}} \cdot d^{p_d}$$

- θ : angle between connection and reference direction
- *d*: the connection length
- It is similar to the tracking method with neural network

The system energy *E* is a function of

$$\frac{-\cos^m \theta_{ijl}}{d_{ij} + d_{jl}}$$

In principle, this clustering method of ARBOR can be updated to NN method

The clustering in PandoraPFA Nucl. Instrum. Meth. A611 (2009) 25–40

A cluster merging procedure is needed after clustering. Without that,

Cluster merging in APRIL

- The idea of ARBOR clustering for hits is extended to the cluster merging by using
 - Distance between two clusters: d
- Cluster pointing angle: θ
- The cluster connection order is defined as that for hits

$$\kappa = \theta^{p_{\theta}} \cdot d^{p_d}$$

• The degree of clusters energy deviation from the track is evaluated before cluster merging

$$\chi = \frac{E_c - E_t}{\sigma_E}$$

E_t: track energy

 E_c : sum of clusters energy

For the σ_E of shower, it is approximate to take $0.15/\sqrt{E_c}$ in ECAL, $0.55/\sqrt{E_c}$ in HCAL

The built clusters

Shower starting point

MIP-like _____ (in ECAL for this case)

10 GeV charged pion 10 GeV photon

- -A cluster can be considered as a rigid body
- -The **barycenter** for a cluster is defined by the energy weighted hit positions as

$$\boldsymbol{o} = \frac{1}{E} \sum_{k} e_k \boldsymbol{r}_k$$

-Cluster principle **axes** are obtained from the eigen vectors of cluster inertial tensor I, which is defined by

$$I_{ij} = e_k \sum_k \left(\mathbf{r}_k^2 \delta_{ij} - \mathbf{r}_k^{(i)} \mathbf{r}_k^{(j)} \right)$$

-The shower starting point is calculable

Reclustering in PandoraPFA

- For jet energy greater than 50 GeV, the reclustering procedure can improve the reconstruction (shower separation)
 - However,
 - the performance depends on cluster energy. When the jet energy becomes high, the benefit form this seems trivial.
 - it scans 12 sets (10 parameters for each set) of clustering parameters, and take the minimal of

$$\chi^2 = (\frac{E_c - E_t}{\sigma_E})^2$$

The PID with MVA in GARLIC

Some of input variables of MVA

- Fractal dimension: related to the hit density

π^0 reconstruction with GARLIC

Affected by the clusters overlap!

Result with energy correction

2

and the second

Cluster separation

- The reconstruction of tree topology may help the power of separation.
- The high granularity calorimeter support this idea at the hardware side.
- The separation depends on cluster energy

CALICE note CAN054

Cluster separation

• These algorithms have consistent performance on cluster separation; • And Arbor has further updated its EM shower separation power.

Jet energy resolution - 1

where q = u, d, s $|\cos \theta_{q\bar{q}}| < 0.7$

Jet energy resolution $\frac{\text{RMS}_{90}(\text{E}_{j})}{\text{mean}_{90}(\text{E}_{j})} = \sqrt{2} \cdot \frac{\text{RMS}_{90}(\text{E}_{jj})}{\text{mean}_{90}(\text{E}_{jj})}$

ARPIL follows the procedures of JER calculation in Ref. NIMA 611 (2009) 25-40

• The error of each reconstruction stage is estimated according to MC truth (APRIL, 91.2 GeV)

Stage	Error
Clustering	0.05%
Nearby hits merging	0.15%
Cluster merging	0.30%
Track-cluster association and PFO creation	0.30%

- The initial clustering has relatively small error, as designed
- Further optimisation to the algorithm and parameters

Errors

Jet energy resolution - 2

- Without the reclustering procedure, the jet energy resolution by APRIL is not bad (3 4% for jet energy 40 140 GeV).
- A new cluster separation algorithm for APRIL is needed.

Jet energy resolution - 3

- The jet energy resolution is 3 4%
- 'Other' term: track-cluster matching, PID
- The jet energy suffers from the the 'confusion' term, which is due to the shower overlap
 - The 'confusion' term dominates for jet energy greater than 100 GeV
 - Based on the current PFAs, the high granularity of calorimeter is limited at high jet energy
- Keep in mind that
 - No detector noise is considered
 - Using jets on the barrel
 - Detector optimisation

• So, new ideas to improve the PFA performance?

Can we get better cluster separation?

- Although the calorimeter can be 5-d, the clustering methods in the PFAs are still 3-d (hit position) -Only local information is taken into account in the clustering
- The clustering parameters are tuned manually

The typical clustering result we now get from two overlapping clusters

This seems more reasonable.

How can we make it true?

Hit time

Energy reconstruction with Convnet

Simulation:

- training samples: K⁰_L, 2 100 GeV
- test samples: K⁰_L, 10, 20, ..., 80 GeV
- ILD_15_o2_v02 (SDHCAL), endcap
- ILCSoft v01-19-05

Hit map of 1k events

96% hits in this region

- Keras 2.2.0 (with tensorflow-1.8.0) - GPU: GeForce GTX 1080 Ti

- Convnet model

Layer (type)	Output Shape	Param #
conv3d_1 (Conv3D)	(None, 23, 23, 23, 16)	144
average_pooling3d_1 (Average	(None, 11, 11, 11, 16)	0
conv3d_2 (Conv3D)	(None, 10, 10, 10, 32)	4128
average_pooling3d_2 (Average	(None, 5, 5, 5, 32)	0
conv3d_3 (Conv3D)	(None, 4, 4, 4, 32)	8224
flatten_1 (Flatten)	(None, 2048)	0
dense_1 (Dense)	(None, 32)	65568
dense_2 (Dense)	(None, 1)	33
Total params: 78,097 Trainable params: 78,097 Non-trainable params: 0		

____ # ==== ====

²⁹ GeV

Result

with that from software compensation in SDHCAL

New algorithms for LCD at CLIC

- Detector model: Linear Collider Detector (LCD) at CLIC
- Several kinds of networks are tested:
- Dense Neural Network (DNN)
- 3D convolutional network (CNN)
- GoogLeNet (GN)
- ECAL: 25 layers, cell: $5.1 \times 5.1 \text{ mm}^2$
- HCAL: 60 layers, cell: $3 \times 3 \text{ cm}^2$

3D image of an EM shower

arXiv:1912.06794v3

ROC Curve for Classification

Photon Variable Energy Regression

Neural network for shower separation

- A so-called Gravitational Network (GravNets), with distanceweighted graph network architecture, is introduced
- Gaussian potential $V(d_{jk}) = \exp(-d_{jk}^2)$ for the connection

$$R_k = \frac{\sum_i E_i p_{ik}}{\sum_i E_i t_{ik}}$$

arXiv:1902.07987v2

Two 50 GeV charged pions (a) Truth

(b) Reconstructed

- Particle Flow Calorimetry = high granularity calorimeter (together with high precision tracker) + Particle Flow Algorithm.
- Particle Flow Calorimetry is important for the future electron-positron collider experiments.
- The study based on simulation shows that jet energy resolution is $3 \sim 4\%$. It needs the validation by experiment.
- The new ideas for improving the PFA.

Summary