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Reference 

Lots of tutorials/info on the web... 

Online book by Nielsen ("Neural Networks and Deep Learning") at 
https://neuralnetworksanddeeplearning.com

Much more detailed book: “Deep Learning” by Goodfellow, Bengio, 
Courville; MIT press; see also http://www.deeplearningbook.org

Andrew Ng https://www.deeplearning.ai

Lectures by F. Marquardt https://machine-learning-for-physicists.org

HEPML https://github.com/iml-wg

…

, where some of the slides come from 

https://neuralnetworksanddeeplearning.com/
http://www.deeplearningbook.org/
https://www.deeplearning.ai/
https://machine-learning-for-physicists.org/
https://github.com/iml-wg
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What’s Machine Learning: Working Definitions

Machine Learning: Field of study that gives computers the 

ability to learn without being explicitly programmed.

- Arthur Samuel, 1959

Machine Learning: A set of rules that allows systems to 

learn directly from examples, data and experience.

- Royal Society, 2017

“Learning” is the process of transforming information into 

expertise or knowledge; “Machine learning” is automated 

learning.

- Paraphrased from Jordan et al., 2015



Learning
• Supervised Learning 

• Data: (x, y) x is data, y is label 

• Goal: Learn a function to map x -> y

• Examples: Classification, regression, object 

detection, semantic segmentation, image 

captioning, etc. 

• Unsupervised Learning 

• Data: x Just data, no labels! 

• Goal: Learn some underlying hidden structure of 

the data

• Examples: Clustering, dimensionality reduction, 

feature learning, density estimation, etc.  



Machine Learning

• Model: reflects our knowledge of the system

• Learning: From “data” to “model”, cast as an 
optimization problem

• Inference: From “model” to “answers”

• “Fitting data with complex functions”

• Focus on predicting, rather than the 
parameters of model

• Model generalization

Predictive: Descriptive:

classification

regression

clustering

dimensionality reduction



Artificial Neural Network



Deep Neural Networks

• As data complexity grows, need exponentially large number of neurons in a 
single-hidden-layer network to capture all the structure in the data

• Deep neural networks have many hidden layers

– Factorize the learning of structure in the data across many layers

• Difficult to train, only recently possible with large datasets, fast computing (GPU) 
and new training procedures / network structures (like dropout)





Very brief history of artificial neural networks



Widely applied



Early applications in HEP

E.g. Peterson (1988) “Track finding with Neural Networks”

http://www.sciencedirect.com/science/article/pii/0168900289913004


In early 2000’s

• simple feed-forward neural 
networks were largely displaced 
by Boosted Decision Trees 
(BDTs)

• MiniBooNe compared 

performance of different boosting 

algorithms and neural networks for 

particle ID (2005)

• D0 claimed first evidence for 

single top quark production (2006) 

CDF (2008)



Since 2014, go “deep”

not only out-performed BDT, but also did not require 

engineered features to achieve the performance



Work flow

nature detector

reconstruction event selection
Statistical 
inference

event 
generator

simulation of 
detector 
response

Classify 

signal/background

Hypothesis testing

Parameter estimationhits final state particle :

Cluster hits

Classify clusters as particles

Infer/regress properties



Accelerator/detector design



AI-optimized detector design for the future Electron-Ion Collider: 
the dual-radiator RICH case   

JINST 15 P05009(2020)

Bayesian optimization x Gradient Boosted Regression Trees (GBRT)



Machine learning for orders of magnitude speedup in multiobjective
optimization of particle accelerator systems

Auralee Edelen, Nicole Neveu, Matthias Frey, Yannick Huber, Christopher Mayes, and Andreas Adelmann
Phys. Rev. Accel. Beams 23, 044601 (2020)

When considering the computation 

time required to generate the 

training data and to train the NN, 

the overall improvement is still 

substantial (O(100) )



Simulation



Universal Monte Carlo Event Generator, 
arXiv:2008.03151

theory-free

FAT-GAN



Generative Adversarial Networks GAN

Distinguish real samples 

from fake samples

Transform noise into 

a realistic sample



CaloGAN

• CaloGAN models a 3-layer calorimeter 
detector inspired by that of the ATLAS LHC 
experiment

3x96

12x12

12x6
• Custom NN design

• sparsity
• high dynamic range
• highly location-dependent

features

• Particle physics uses detailed micro-physics detector 
simulations (e.g. with Geant4) 

• >~50% LHC computing budget  (109 CPU hours) 

• Much of this compute time in calorimeter ‘shower’

Michela Paganini, Luke de Oliveira,
Benjamin Nachmann
https://arxiv.org/abs/1705.02355

Training NN’s is slow, but evaluation is fast

https://arxiv.org/abs/1705.02355


Average energy deposition per calorimeter layer in the GEANT4 
training dataset (top) and in the GAN generated dataset (bottom)

• Realistic average and 
individual images

• Conditional generation 
based on physical 
attributes 

• Allowing parameter 
interpolation and 
extrapolation

CaloGAN - results
Michela Paganini, Luke de Oliveira,
Benjamin Nachmann
https://arxiv.org/abs/1705.02355

https://arxiv.org/abs/1705.02355




Real Time Analysis and Triggering

JINST 13 (2018) 07, P07027

inference of deep neural networks in FPGAs for

low-latency application





Cluster reconstruction of CGEM-IT

B. Liu et al., EPJ Web Conf. 214, 06033 (2019)

Using XGBOOST as a regressor to measure the initial

ionizing particle position X from Q and T of the fired strips 



Tracking: Charged particle reconstruction

Scaling performance and limits in computation budget 

call for faster algorithms

Challenging for HL-LHC



A very active field

track reconstruction in LHCb’s Vertex Locator





Classification with Convolutional Neural Networks

• CNN – shared non-linear filters; reduce weights; exploit locality 
and symmetries: now popular in many science studies

[Nvidia][CS231n]



Classification with Convolutional Neural Networks

• CNN – shared non-linear filters; reduce weights; exploit locality 
and symmetries: now popular in many science studies

• E.g. LHC-CNN: Unroll cylindrical detector data for image1;  
classify known (QCD) vs new physics (RPV supersymmetry)
• Use 3 channels for EM and HCal Calorimeters and number of tracks2 and 

whole detector image 64x64 bins (~0.1 η/ɸ towers) or 224x224
• Use our own large (Pythia+Delphes) simulated data samples
• (3 or 4) alternating convolutional and pooling layers with batch norm.

Bhimji, Farrell, Kurth, Paganini, Prabhat,
Racah
https://arxiv.org/abs/1711.03573 

ɸ

η

1 As also in de Oliviera et. al. (arXiv:1511.05190) and others
2  Similar to Komiske, Metodiev, and Schwartz arXiv:1612.01551

ATLAS-CONF-2016-057

https://arxiv.org/abs/1711.03573
https://arxiv.org/abs/1511.05190
https://arxiv.org/abs/1612.01551


CNN performance

– Use re-implementation of 
existing physics selections on jet 
variables from ATLAS-CONF-
2016-057 as a benchmark

– Also compare to boosted 
decision tree (GBDT) and 1-layer 
NN (MLP)

– Input to these jet variables used 
in the physics analysis (Sum of 
Jet Mass, Number of Jets, Eta 
between leading 2 jets) and 
four-momentum of first 5 jets Potential to increase signal efficiency (from 0.41 

to 0.77) at same background rejection as 
selections without using jet variables
(approximate significance increase of 1.8x)

Further improvement from using 3-channels: Energy in E-Cal, H-Cal and No. tracks

WB, Steve Farrell Thorsten Kurth, Michela
Paganini, Prabhat, Evan Racah
https://arxiv.org/abs/1711.03573

http://cds.cern.ch/record/2206149
https://arxiv.org/abs/1711.03573


Graph CNNs

• Use detector deposits rather than an image in a 
GraphCNN: Represent signals as nodes of a graph with 
similarity as edge weights

• E.g. IceCube: Classify neutrino signal vs cosmic rays
– Deal with non-uniform detector

– Avoid sparse images

• Graph vertices are active sensors in event and edges 
learned function of sensors’ coords

– Adjacency matrix: gaussian kernel of sensor distance 

– Graph ‘Convolution’ and pooling analogous to CNN

• Compared with ResNet-18 3D CNN with data on grid and  
physics baseline (tuned cuts on stochasticity )

https://arxiv.org/abs/1809.06166

https://arxiv.org/abs/1809.06166


Domain aware / physics informed / physics inspired ML algorithms

Physics inspired DNNs provided a 

modest performance boost over 

standard fully connected DNNs

“Physics Inspired” DNN: “Deep Learned Top Tagging with Lorentz Layer, SciPost 

Phys. 5, 028 (2018)”



Neutrino Flavor Classification



Understanding the Network: Feature Embedding with t-SNE

https://indico.io/blog/visualizing-with-t-sne/

Nature  560,  41 (2018)

The various types of event are 

clustered into distinct regions 

in the horizontal direction, 

while the multiplicity of the 

particles in each event is 

found to be correlated with the 

location of the events in the 

vertical direction.



Paperscape uses a simple physical model 

(similar to t-SNE)

An other example





The determination of Parton Distribution Functions (PDFs)



Simulation-based (`likelihood-free') Inference

• In HEP/NP often have detailed simulation 
(forward model) of physics and detector

• Ideally could ‘invert’ this to perform inference 
on real data – not easily done

• ‘Invert’ via probabilistic program (PPL) and 
embedding approach

• PPL: Sample from distribution (already in HEP 
sim. E.g. SHERPA) and Condition on 
observation

• Inference Compilation (IC): NN for inference

Atilim Gunes Baydin, Bradley Gram-Hansen (Oxford) 

Lukas Heinrich, , Kyle Cranmer (NYU)  Wahid Bhimji, 

Prabhat (NERSC) Gilles Louppe (Liege), Lei Shao (Intel), 

Frank Wood (UBC) https://arxiv.org/abs/1807.07706

mH κf

px 

py 

pz 

Decay 

channel 

Rejection 

sampling 

Rejection 

sampling 

Calorimeter 

• Initially applied to tau decay: predict 

particle decay channel; momentum 

etc. with full posterior and code traces
• Deep interpretability of particle decay 

chain and detector interactions

https://arxiv.org/abs/1807.07706


More …
Anomaly Detection

E.g. Hardware monitoring, Comput.Softw.Big Sci. 3 (2019) 1, 3

Model-Independent Searches for New Physics, EPJC 79, 289 (2019)

Computing Resource Optimization

E.g. J.Phys.Conf.Ser. 1525 (2020) 1, 012042



MLHEP(physics)

Why Does Deep and Cheap Learning Work So Well?,

arXiv:1608.08225

Interaction Networks for Learning about Objects, Relations and 

Physics, arXiv:1612.00222

Covariance in Physics and Convolutional Neural Networks,

arXiv:1906.02481

…

Incorporation of domain knowledge



One of ML Challenges in HEP

Robustness to systematic uncertainties

• develop techniques that are more data efficient by incorporating 
domain knowledge directly into the machine learning models;

• incorporate the uncertainties in the simulation into the training 
procedure;

• develop weakly supervised procedures that can be applied to real 
data and do not rely on the simulation;

• improve the tuning of the simulation, reweight or adjust the simulated 
data to better match the real data, or use machine learning to model 
residuals between the simulation and the real data;



Some general advice

• No free lunch
• Try many algorithms, starting with simple ones

• Mapping your problem to ML field
• Check the literature

• Incorporating domain knowledge into the machine learning 
models



Thank you for your attention



Reinforcement Learning





arXiv:1803.08823




