DMM & TMM: the Double and Triple Micro-Mesh gaseous structures for high gain and low ion-backflow applications

> Zhiyong Zhang For the USTC MPGD group

State Key Laboratory of Particle Detection and Electronics, China University of Science and Technology of China

CEPC-PhyDet Meeting Jun.1, 2020

Outline

- Motivation
- Double Micro-Mesh gaseous structure
 - Design and Fabrication
 - Performance Characterization
 - Optimization for further IBF suppression
 - Consideration for CEPC-TPC
- Triple Micro-Mesh gaseous structure
 - Design and performance study
- Summary

Motivation: TPC

- Application of TPC in high-rate environments: ALICE upgrade, ILD, CEPC ···
 - Very low IBF is the key: to minimize drift field distortion caused by ion space charge
 - Continuous readout to keep up with high event rate

MPGD is the only solution so far. The IBF still need to be further reduced.

Motivation : GPD

- Gaseous Photon Detectors (GPD) with MPGD
 - large area, high spatial and timing resolution, resistant to magnetic field, IBF suppression, low cost …
- Challenges
 - High gain: to be sensitive to single photons
 - Very low IBF

CEPC-PhyDet Meeting, Zhiyong Zhang (USTC)

DMM Design

"Piggyback"

DMM: Double Micro-Mesh gaseous structure
 o Hole-type → mesh-type : to strongly reduce IBF
 o Double mesh: cascading avalanche for high gain

Drift region

Stacked two meshes

- Gap between the stacked meshes: 200-300um, serving as pre-amplification (PA)
- Gap between the bottom mesh and anode: 50-100um as secondary amplification (SA)
- Allows to achieve very high gain, and yet significantly reduce ion back-flow.

DMM Fabrication

• DMM is fabricated with the thermal bonding method developed at USTC, which provides a concise and etching-free process for manufacturing Micromegas detectors

PA Mesh

Thermal bonding film ^x 2

SA Mesh

Thermal bonding film $\chi 1$

Anode PCB

The schematic diagram of DMM fabrication

More details on thermal bonding method, see backup slides

A 2.5cm×2.5cm DMM prototype

Gas Gain and Energy Resolution with ⁵⁵Fe

A typical ⁵⁵Fe energy spectrum

- Combined gain can reach up to 7×10⁴ for 5.9 keV X-rays.
- Combined resolution remains almost constant and is close to PA-alone resolution, suggesting a close-to-full collection of primary electrons for the high-voltage configurations we used.

Previous results and validation

- □ Gain measured with X-ray energy spectrum $(Q_{full-energy peak}/Q_{Primary})$ is consistent with $I_{Anode}/I_{Primary}$.
- □ No ion space charge effect is confirmed in the DMM test.

More details:

A high-gain, low ion-backflow double micro-mesh gaseous structure for single electron detection, Nuclear Inst. and Methods in Physics Research A, 889 (2018) 78-82.
 Optimization of the double micro-mesh gaseous structure (DMM) for low ion-backflow applications, Nuclear Inst. and Methods in Physics Research A, 976 (2020) 164282.
 <u>Also in backup slides</u>

Can we further lower the IBF?

Obviously, the IBF is depend on the geometry of the detector structure, in which the alignment, density, distance etc. of two meshes are crucial.

Optimization for Low IBF

Detectors	Cross	PA gaps	LPI		
	Angle ($^{\circ}$)	(µm)			
DMM1	0	240	500		
DMM2	45	240	500		
DMM3	45	180	500		
DMM4	45	240	650		

It's impractical to make any precise alignment of the two meshes. So setting the two meshes with a crossing angle is a practical way to ensure their mis-alignment.

Optimization for Extremely Low IBF

PA gap: from 180 to 240 μ m 500 vs. 650 LPI (40% opening rate)

Larger gap increase the transverse diffusion of avalanche

Higher mesh density decrease the mesh pitch

Both of these increase the σ/l value, optimizing the IBF as a consequent.

Optimization Outcome For DMM

A IBF ratio down to $\sim 0.025\%$, which has been improved with a factor of 2 compared with that before optimization.

Consideration for the CEPC-TPC

In general, we present a practical method to suppress the IBF as low as possible. for specific application of CEPC, trade-off optimization in different parameters are required.

Consideration for the CEPC-TPC

□ To adapt the usage of CEPC-TPC

- Drift field: 200-300 V/cm
- Electron collection
- □ Towards to large area
 - To develop the Fabrication process
 - To improve the Non-uniformity

From CEPC CDR

arXiv:1811.10545

The TPC has a cylindrical drift volume with an inner radius of 0.3 m an outer radius of 1.8 m, and a full length of 4.7 m. The central cathode plane is held at a potential of 50 kV, and the two anodes at the two end-plates are at ground potential. The cylindrical walls of the volume form the field cage, which ensures a highly homogeneous electrical field of 300 V/cm between the electrodes. The drift volume is filled with Ar/CF4/iC4H10 in the ratio of 95%/3%/2%.

 $50kV/(4.7m/2) = \sim 210V/cm$, is not consistent with 300 V/cm

Drift field and Electron Transparency

Simulation study on Electron transparency with different mesh density

Drift field and Electron collection

It is possible to reduce the product of IBF and gain to < 1, while maintaining > 200V/cm drift field and >90% electron transparency by increasing the opening rate of the mesh.

Fabrication process

- It is a crucial issue for the DMM (TMM) is to make a large area for real experiments
- Thermal bonding method open the door to make this complex fabrication

Thermal bonding for DMM

							-07					10	1		
F	-	-	7	-	-	al.	1	-	-	-			-		100
-	-	-	-		-	-	-1		*	-	-	1	*	*	「
-	-	-	-	-	-	-	-	-		-					
	-	-		-	-	-		-	-	-	-				
														-	
		1			-	-	-	-	6	-	-	-		-	
	-	-	1	-	-	-	-	and the	-	1	-	*	-	*	
-	-	-	-		-	-	4	-	A	*	*	4		*	
-	-	-	-		-	-	-		4				-	£	
4	-1	-	A	-	-	-0	-		4		6		*		
	~	-4	-	-	4	4	-	al	-						
-	-	-	-	-	1	- 1	1	-	-	-	-		-		
-	1	-	1	1	1	-	-	-	-		-	-			
-	-	-	-	-	-	-	-	-	-	-				6	ŀ
-	-	-	-	-	1	-	-	1	-	4	4		*		and the second
-	1	-	-	-	-	-	1		-		-	+		4	
			-		-	14							120		

A 150mm \times 150mm DMM prototype manufactured last year, But we found severe non-uniformity, which needs to be overcome before further attempting.

To improve the non-uniformity (single MM)

Thanks to the flexibility of the TBM, it is convenient to optimize the detector structure by tuning the conditions such as temperature, pressure in the thermal-bonding process. The temperature and pressure are increased in order to fully squeezing the adhesive layers so as to press the spacer to the thickness of its middle substrate layer ~100um.

Gas gain and Energy resolution (single MM)

Very high gain (>10⁵), and excellent energy resolution of ~16% (FWHM), test with 5.9 keV X-rays

Can the IBF be lower?

□ For the case of DMM, when we set PA at 550V and switch off SA, the I_{drift}/I_{primary} was measured at ~1.3

Drift cathode (0V)

Pre-mesh (+HV)

Sec-mesh (+HV)

Anode (same to Sec-mesh)

The PA only contributes ~0.3 for the ε factor, the SA dominates the total IBF

So, adding another mesh on the DMM to suppress the SA ions is a easy option.

→Let's go to TMM

TMM Design

- TMM: Triple Micro-Mesh gaseous structure
 - One more mesh on the DMM
 - More stable gain, lower IBF from second avalanche…

Stacked three meshes

- Gap between the 1st and 2nd meshes: 200-300um, serving as pre-amplification (PA)
- Gap between the 2nd and 3rd meshes : 200-300um as secondary amplification (SA)
- Gap between the bottom mesh and anode: 50-100um as secondary amplification (TA)

Gain and energy resolution

- Gas gain reaches up to 7×10^4 for 5.9 keV X-rays
- Energy resolution at ~21% (FWHM) indicates a high collection efficiency of the primary electrons

IBF measurement for TMM

To optimize

Combined gain = PA gain \times SA trans \times SA gain \times TA trans \times TA gain

PA and TA voltages are fixed at 650V and 530V, this plot shows the combined gain, IBF and their product change with the variation of SA voltages

CEPC-PhyDet Meeting, Zhiyong Zhang (USTC)

Summary

- Demonstrated the performance of DMM &TMM with small-size prototypes:
 - Gain: 7×10^4 for 5.9 keV X-rays and 3×10^6 for single electrons.
 - IBF ratio: down to $\sim 0.03\%$ for DMM, $\sim 0.003\%$ for TMM
- Potential application in CEPC-TPC
 - Verified the feasibility to larger area
 - If it is necessary to limit the product of IBF and Gain to <1
 DMM is a promising option after careful adjustment, while TMM is confirmed.

Summary

- Demonstrated the performance of DMM &TMM with small-size prototypes:
 - Gain: 7×10^4 for 5.9 keV X-rays and 3×10^6 for single electrons.
 - IBF ratio: down to $\sim 0.03\%$ for DMM, $\sim 0.003\%$ for TMM
- Potential application in CEPC-TPC
 - Verified the feasibility to larger area
 - If it is necessary to limit the product of IBF and Gain to <1
 DMM is a promising option after careful adjustment, while TMM is confirmed.

Thanks for your attention !

Back-up

Electron Transparency

- Transparencies for electrons passing through PA and SA meshes are extracted by measuring PA, SA and total (PA and SA combined, DMM) gas gains
 - Combined gain = PA gain \times SA trans \times SA gain

CEPC-PhyDet Meeting, Zhiyong Zhang (USTC)

Ion Space-Charge Effect

• Our IBF measurements are reliable in terms of ion space-charge effect (impact is negligible).

Validation of IBF Measurement

- Gain measured with X-ray energy spectrum ($Q_{full-energy peak}/Q_{Primary}$) consistent with I_{Anode}/I_{Primay}
- I_{Anode} stays proportional to X-ray intensity in a rather wide range, suggesting no gas gain saturation in the IBF measurement.
- IBF ratios measured with 55Fe and X-ray tube are consistent

Performance Characterization

IBF measurement setting

• DMM with Ar $(93\%) + CO_2(7\%)$

- Electron transparency
- Energy resolution and gas gain
- Ion back-flow ratio
- DMM with Ne (80%) + CF_4 (10%) + C_2H_6 (10%)
 - Single photon electron response

Sec-amplification (SA)

Full energy peak due to the lateral angle photoelectrons and Auger electrons

Gain VS avalanche voltages

Long-Term Stability

DMM: 240µm- 45⁰ - LPI650 ~24 hours of X-ray irradiation, Gain ~ 5000

Spark probability $< 10^{-9}$

The thermal bonding method

Thermal-bonding method

Over the past decade, the thermal bonding method (TBM) has been developed for the efficient fabrication of Micromegas detectors at USTC. This method provides a concise and etching-free mass-productive process to fabricate Micromegas-like detector.

Micromegas in a Bulk

2020/07/01

Materials and Specifics

Thermo-bond films with a dry (hot-melt type) adhesive on both sides. A variety of specifications to choose.

Abundant types to choose: Thickness: 20-40µm, Density: 260-640 LPI Opening rate: 30-70%, Tension: up to 30N/cm

Resistive

paste

Pure germanium

Graphite target

Resistive anode:

- Resistive paste printing: $k\Omega/\Box$ 200M Ω/\Box
- Germanium coating: $M\Omega/\Box$ 200 $M\Omega/\Box$
- DLC: Ω/\Box $G\Omega/\Box$

Resistive anode

Pros & cons

resistive paste by screen printing: 10-20 µm

- o Complex pattern
- o Large area
- o Low Cost
- Δ High temperature curing ^o I
- Δ Controllability for resistivity
- Δ Sputtering up

Ge film by thermal evaporation coating: $0.1-1 \ \mu m$

- o Controllability for resistivity
- o Purity for low background applications
- o Large area
- Δ Complex pattern
- Δ Oxidation problem (keep in dry)
- ? Irradiation hardness & aging

DLC deposited by magnetron sputtering:

- o Controllability for resistivity
- o Purity for low background application
- o Robust

Fabrication process

2:spacer setting

3: thermal bonding

6: assembling

5: mesh cutting

4: after bonding

CEPC-PhyDet Meeting, Zhiyong Zhang (USTC)

Mass production

A working room is built for Micromegas fabrication, mass-production for small area $(25 \text{cm} \times 25 \text{cm}, \text{ currently limited by the bonding machine})$ is realized, prototype with larger area $40 \text{cm} \times 40 \text{cm}$ are also verified.

Several $15 \text{cm} \times 15 \text{cm}$ prototypes are produced to verify the method, basic performances, such as gain, energy resolution and gain uniformity are tested using X-ray source.

From materials to full detectors