反角白光中子源∆E-∆E-E望远镜

Back-n 带电粒子小组 2020.8.11

目录

- •设计目标
- 硅阵列探测器
- Δ*E*-E望远镜: Si+CsI(Tl)、MWPC+Si
- *∆E*-*∆E*-*E*望远镜
- •总结

设计目标

- 对轻带电粒子的ΔE-E鉴别、幅度-飞行时间鉴别等。
- •与国际上同类探测器对比性能全面,功能强大

	LANSCE	MEDLEY	Crocker	CYCLONE	LPDA
探测器构架	气体室+硅 +Csl	硅+硅+Csl	硅+Nal	塑闪+Csl	气体室+硅 +Csl
探测器数量	4	8	3	6	16
带电粒子测量 能区	4MeV-50MeV	8-100MeV	<80MeV	1.5MeV- 80MeV	0.5-100MeV
中子测量能区	0.2-50MeV	70MeV	10-60MeV	25-65MeV	1eV-100MeV
时间分辨	3ns (300keV@10 MeV)	2-4ns	200keV	0.8ns	<5ns

- 1. 薄窗气体探测器安装在真空靶室内;
- 2. 有限体积安装探测器、电缆、气路;
- 3. 48路信号,目前Back-n最复杂的探测器系统

硅阵列探测器→ ΔE -E望远镜→ ΔE -ΔE-E望远镜

硅阵列探测器

- 15路有效探测面积20 mm * 25 mm硅探测器组成硅阵列探测器,应用于中子诱发的带电粒子反应;
- 每个探测器距离靶心20cm,覆盖约1.25×10⁻²Sr。
- 应用于带电粒子反应实验中进行(18-160)。出射的带电粒子产物的探测及鉴别;

硅阵列探测器

- •利用硅阵列探测器于2018年开展⁶Li(n, t)⁴He、¹⁰B(n, α)⁷Li反应微分截面测量 实验研究。利用幅度-飞行时间二维谱得到粒子鉴别。
- •实验结果已经发表于CPC等期刊。

△E-E望远镜—Si+CsI(Tl)

- 10套Si+CsI(Tl) ΔE-E带电粒子望远镜,使用SiPM作为CsI(Tl)的信号读出。
- 300 µm厚硅探测器 + 3 cm厚 CsI探测器
- 通过在束实验印证质子的鉴别上限达到100 MeV,应用到白光中子源的np散射、nd散射截面测量在束实验中。

ΔE-E望远镜阵列 平视图 ΔE-E望远镜阵列 俯视图

△*E*-*E*望远镜—Si+CsI(Tl)

纵轴为Si探测器中信号幅度

利用Si+CsI得到的Δ*E-E*谱可以鉴别出质子与氘粒子 由于Si探测器的电子学动态范围问题,未能对α粒子进行鉴别

∆*E-E*望远镜—MWPC+Si

- 低能带电粒子的ΔE-E鉴别在核探测及鉴别中困难点之一, 依赖于多丝正比室+硅探测器的组合。
- 测试不同的工作气压下,MPWC探测器打火点(LPDA靶室及MWPC的真空度、MPWC高压值)。
- 通过降低入射窗厚度(2 μm Mylar膜、0.2atm Ar+ CO₂)等手段,2019年9月的在束实验表明我们的望远镜实现了0.5 MeV质子的ΔE-E鉴别,以及¹⁰B(n, α)反应中生成的1.7 MeV α 粒子。

 ΔE - ΔE -E望远镜

- 在ΔE-E望远镜基础上,根据实验测试结果设计ΔE-ΔE-E带电粒子望远镜系统。
- 由低气压多丝正比室(LPMWPC)、Si、CsI(Ta)探测器组成每套ΔE-ΔE-E望远镜; 8套ΔE-ΔE-E望远镜; 8套ΔE-ΔE-E望远镜, 6%
 6%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%
 5%</

探测器前放方案(易晗设计制作)

每个模块的信号读出法兰

ΔE - ΔE -E望远镜

实际的探测器组装图

探测器及前放均放置于模块内, 探测器信号由2*8排线头输出

$\Delta E - \Delta E - E$ 望远镜测试实验

- 2020年6月28-30日开展ΔE-ΔE-E望远镜测试实验
- •LPDA前后各加30µm的Ta窗,望远镜盒子0.2 atm时,LPDA靶室真空好于10-2.
- 靶: 1: 6 μm Mylar; 2: 6LiF+100 μm PET; 3: 空靶; 4: α源;
- •实验共开展49小时;

beam	target	duration
束斑大小 φ50 mm + φ15 mm	⁶ LiF	7h
	Mylar	20h
	empty	2h
東斑大小 φ50 mm + φ50 mm	⁶ LiF	2.5h
	Mylar	4.5h
	empty	1h
東斑大小 φ12 mm + φ15 mm	⁶ LiF	2.5h
	Mylar	8.5h
	empty	1h

α粒子信号

$\Delta E - \Delta E - E$ 望远镜测试实验

硅探测器幅度vs飞行时间二维谱

φ50+φ15束斑组合

peakvalue[0]:peak_tof[0]+600 {ChannelID==22}

np散射得到的质子

∆E-E粒子鉴别二维谱

经由Si+CsI ΔE-E符合后的事件

100

总结

- •利用硅阵列探测器、Si+CsI(Tl)、MWPC+Si等探测器组合已经在 Back-n开展了数次截面测量研究工作,并且取得了良好的结果。
- 经过Si+CsI(Tl)、MWPC+Si等ΔE-E望远镜设置的探索,目前已经 建设一套ΔE-ΔE-E望远镜系统。
- 该ΔE-ΔE-E望远镜工作状态良好,探测效率等参数,以及实际的性能还需进一步实验检验。计划下半年利用ΔE-ΔE-E望远镜开展
 1.5-15MeV中子能区的np散射截面测量工作。