CSNS白光源上的伽马-分能中子成像

严小松 羊奕伟,杨鑫,李强,谭志新

核物理与化学研究所 高能物理研究所 东莞散列中子源

• 无损检测技术在工业制造和国防工业中扮演着重要的角色。

.背景

X/γ射线透射成像是目前主要的最成熟的无损检测技术

- ✓ 对高Z物质敏感;
- × 对高Z材料穿透能力弱;
- × 对低Z物质不敏感;
- × 缺乏对物质的识别能力
- 中子透射成像技术快速发展,能起到重要作用
- ✓ 对低Z材料敏感;
- ✓ 对高Z材料具有较强的穿透能力;
- ✓ 具备同位素甄别能力;

在一套系统中将X/γ射线成像与中子成像技术结合,综合优势, 可极大的增强无损检测能力

核弹头内的结构

飞机发动机的叶片

• 超热共振能区[eV 10keV]中子分能中子与共振中子成像

✓ 中子穿透能力强

对工程材料的非共振截面与~MeV快中子截面相 当([110]b),明显低于热中子截面,穿透能力强

✓ 中子成像探测效率高、分辨率高
 能量较低,在探测器中射程短,探测效率高,空
 间分辨率高

Energy [eV]

✓ 同位素与元素识别能力

1、实验条件

• 束流参数

白光源厅2距靶76.4m, 50kW双束团 伽马1.8 MeV 0.9E6 cm⁻²s⁻¹ 中子 1MeV 3.5E6 cm⁻²s⁻¹

ANDOR new istar ICCD 预设TOF(伽马拾取&中子能量筛选) 多脉冲数据累积存储 循环水冷-35°C

• 闪烁体

伽马: \$70mm*3mm LYS0

中子: \$70mm*450µm 6Li-ZnS

• 实验样品

台阶样品(铅/10B橡胶/铜) 阵列样品(铅/10B橡胶/铜/金/银/钽/ 钨/铟)

• 分能中子与共振中子成像能量选择

□ 台阶样品

伽马照相

快速、信噪比高; 凸显高Z材料; 穿透厚低Z材料; ZnS闪烁体也能用于伽马照相

分能中子照相

不同对比度显示低Z(10B)材料

LYSO 伽马

6Li-ZnS

6Li-ZnS 6Li-ZnS >250keV 中子 [30eV 250keV] 中子 [1eV 1MeV] 中子

三、实验结果

□ 阵列样品

- **伽马照相** 快速显现厚高Z材料;
- 共振中子照相 识别¹¹⁵In、¹⁹⁷Au等同位素;
 不同对比度显示低Z(¹⁰B)材料;
 对W、Ta、Cu等显现不佳

□ 台阶+阵列样品

模拟关心样品被遮挡的情况

• 伽马照相

快速显现厚高Z材料; 穿透低Z材料;

• 共振中子照相

显现与识别厚屏蔽后的薄材料; 识别¹¹⁵In、¹⁹⁷Au、W等同位(核)素; 不同对比度的显示低Z(¹⁰B)材料; 对Ta、Cu等显现不佳

[19602160]eVCu共振

6Li-ZnS [0.1 2]eV 中子

三、实验结果

四、中子成像的透射分析

厚度为d_{det}的探测器测量厚度为d_m的材料m的成像的透射率Tr_m计算为:

$$Tr_{m} = \frac{\int\limits_{E_{low}}^{E_{high}} \frac{dN}{dE} e^{-N_{m}\sigma_{E,m}d_{m}} (1 - e^{-N_{det}\sigma_{E,det}d_{det}}) dE}{\int\limits_{E_{low}}^{E_{high}} \frac{dN}{dE} (1 - e^{-N_{det}\sigma_{E,det}d_{det}}) dE}$$

对于~eV能段的中子, $\sigma_{E,det} = \sigma_{E,6Li}$, $1 - e^{-N_{det}\sigma_{E,det}d_{det}} \approx N_{det}\sigma_{E,6Li}d_{6Li}$

对于单能中子,测量样品的透射图像,即可计算样品厚度;
对于连续谱中子,知道中子能谱,测量样品的透射图像,即可计算样品的厚度。

四、中子成像的透射分析

材料	能段	透射比
2mm In	0.4 eV -2.5 eV	0.3873
2mm W	14.4 eV -27.8 eV	0.2320
2mm Au	3 eV – 7 eV	0.1803

四、中子成像的透射分析

□实验-计算比较			
材料	实验 透射值	计算 透射值	
2mm In	0.68	0.3873	
2mm W	0.78	0.2320	
2mm Au	0.69	0.1803	

□ 可能原因

- 本底扣除 CCD噪声、读数据噪声等
- 中子散射
- 统计涨落

五、小结

- 一套系统实现X/伽马射线成像与分能/超热共振中子成像
- X/伽马射线成像 射线强度高,成像速度快,图像信噪比高; 穿透厚低Z材料; 凸显高Z材料;
- 分能/超热共振中子成像

超热中子对工程材料具有较高的穿透能力与较好的空间分辨能力; 分能成像能不同对比度的显示低Z材料,识别无共振峰的同位素; 共振中子成像较好的识别了¹¹⁵In、¹⁹⁷Au、W等同位(核)素。

50kW功率80m位置超热共振能区中子强度略低 选择共振峰内的能宽小时,成像时间长,图像信噪比差; 选择共振峰内的能宽大时,图像对比度差,同位素甄别能力差; 导致部分同位素(核素)的识别效果不佳,在后续的实验中

下一步计划

(1) 数值模拟分析中子散射影响;(2) 100kW功率,在56m位置开展实验;(2) 优化能量选择、样品选择等实验条件。

谢谢!