

天体演化过程涉及的重要核数据 Important nuclear data in astrophysical evolution

2020年CSNS反角白光中子源用户研讨会

李志宏

2020年8月10日

- 天体演化涉及的几个重要核过程
- 对应核过程涉及的重要核数据

-大爆炸核合成

- 恒星核燃烧过程
- 爆发性恒星核合成过程- 宇宙射线诱发的核过程
- 散列中子源上可以开展的天体核反应研究
- 报告总结

星系 A1689-zD1: ~大爆炸700百万年后

大爆炸

~300,000年: "黑暗时代"开始

~400百万年: 恒星和星系起源

~10亿年:黑暗时代结束

~92亿年:太阳,地球和太阳系形成

核过程: 宇宙中的"炼金术"

展标调料

宇宙演化与人体元素

Others (²H,³He,⁶Li,⁷Li)<0.00001

The cosmos is within us. We are made of star-stuff (Carl Sagan)

Human Body Ingredients

The four ingredients below are essential parts of the body's protein, carbohydrate and fat architecture.

OXYGEN 65.0% Critical to the conversion of food into energy.

$\frac{carbon}{18.5\%}$

The so-called backbone of the building blocks of the body and a key part of other important compounds, such as testosterone and estrogen.

HYDROGEN 9.5%

Helps transport nutrients, remove wastes and regulate body temperature. Also plays an important role in energy production.

NITROGEN 3.3%

Found in amino acids, the building blocks of proteins; an essential part of the nucleic acids that constitute DNA.

(Percentage of body weight. Source: Biology, Campbell and Reece, eighth edition.)

Other Key Elements

Calcium 1.5%

Lends rigidity and strength to bones and teeth; also important for the functioning of nerves and muscles, and for blood clotting.

Phosphorus 1.0%

Needed for building and maintaining bones and teeth; also found in the molecule ATP (adenosine triphosphate), which provides energy that drives chemical reactions in cells

Potassium 0.4%

Important for electrical signaling in nerves and maintaining the balance of water in the body.

Sulfur 0.3%

Found in cartilage, insulin (the hormone that enables the body to use sugar), breast milk, proteins that play a role in the immune system, and keratin, a substance in skin, hair and nails.

Chlorine 0.2%

Needed by nerves to function properly; also helps produce gastric juices.

Sodium 0.2%

Plays a critical role in nerves' electrical signaling; also helps regulate the amount of water in the body.

Magnesium 0.1%

Plays an important role in the structure of the skeleton and muscles; also found in molecules that help enzymes use ATP to supply energy for chemical reactions in cells.

Iodine (trace amount) Part of an essential hormone produced by the thyroid gland; regulates metabolism.

Iron (trace amount) Part of hemoglobin, which carries oxygen in red blood cells.

Zinc (trace amount) Forms part of some enzymes involved in digestion.

天体演化涉及的重要核过程

- 大爆炸原初核合成
- 平稳的恒星核燃烧阶段
 - 氢燃烧、氦燃烧 - s-过程
- 爆发性的恒星核燃烧阶段
 –剧烈的核燃烧过程
 - -r-过程、p-过程
 - 高温CNO循环等
- 宇宙线核合成

2006年诺贝尔物理学奖

乔治·斯穆特

获奖原因: 宇宙微波背景辐射的黑体形式和各向异性

2011年诺贝尔物理学奖

获奖原因: 通过观测遥远超新星发现宇宙的加速膨胀

锂丰度的疑难

⁶Li(p,γ)⁷Be, ⁷Be(d,τ)⁶Li, ⁶Li(n,γ)⁷Li ⁶Li(d,p)⁷Li, ⁶Li(α,p)⁹Be, ⁶He(p,n)⁶Li ⁶He(d,n)⁷Li, ⁶He(p,γ)⁷Li, Li(d,p)⁸Li ⁷Li(n,γ)⁸Li, Li(d,p)⁹Li, ⁸Li(n,γ)⁹Li ⁸Li(p,d)⁷Li, ⁸Li(p,t)⁶Li, ⁸Li(p,γ)⁹Be

³He(α,γ)⁷Be in BBN

Di Leva et al. PRL 102 232502 (2009)

pp-chain

氢燃烧是恒星的主要能源。当恒星的质量变大时CNO循环会逐渐取代pp反应链成为 恒星的主要能量来源。恒星的寿命由这一阶段的核过程持续时间控制

¹⁴N(p, y)¹⁵O反应

$${}^{4}\mathrm{He}_{2} + {}^{4}\mathrm{He}_{2} + {}^{4}\mathrm{He}_{2} \longrightarrow {}^{12}\mathrm{C}_{6} + \gamma + \gamma$$

$$\alpha + \alpha \rightleftharpoons^{8}$$
Be ($\tau \approx 2.6 \ 10^{-16} \text{ s}$) ⁸Be + $\alpha \rightleftharpoons^{12}$ C^{*}(7.7 MeV)

$$<\alpha\alpha\alpha>=6\cdot 3^{3/2} \left(\frac{2\pi\hbar^2}{m_{4He}kT}\right)^3 \frac{\Gamma_{\gamma}}{\hbar} e^{-Q/kT}$$

$$Q/c^2 = m_{12C(7.7)} - 3m_{\alpha}$$

$$\varepsilon_{3\alpha} \approx 23.1 \times \rho^2 X_{\alpha}^3 \left(\frac{T}{2 \cdot 10^8 \,\mathrm{K}}\right)^{18.5} (\mathrm{erg/g/s})$$

Hoyle state

${}^{11}B(d,p){}^{12}B*$

1983 Nobel prize 实验核天体物理诞生!

¹²C(a, y)¹⁶O反应

核天体物理中最重要的科学问题 是确定氦燃烧过程中所决定的碳 氧比. W. Fowler, Nobel lecture, 1983 核天体物理的圣杯反应

s-过程的中子源反应

¹³C(α,n)¹⁶O: TP-AGB阶段的重要中子源,发生的温度条件是~9T₇-2.7T₈的低质量恒星(1.5-3M_☉),主要合成A~(90-209)核素。¹²C(p,γ)¹³N(β⁺)¹³C(α,n)¹⁶O

²²Ne(α ,n)²⁵Mg: 另一个中子源,发生的条件为温度~2.2-3.5T₈ 的大质量恒星M>8M_☉。弱s过程,产生质量56-90的核素。

 $^{14}N(\alpha,\gamma)^{18}F(\beta^+)^{18}O(\alpha,\gamma)^{22}Ne(\alpha,n)^{25}Mg$

s-过程的特点

- 发生在氦燃烧阶段,中子由¹³C(a, n)¹⁶O等反应现场产生
- 原子核增加中子的速度很慢,过程中产生的不稳定核有 足够的时间衰变
- 元素演化的路径位于原子核的稳定线附近
- · s-过程不能远离稳定线的核素

Wolf-Rayet star

AGB star (T₉~0.05)

Nova
$$(T_9>0.1)$$

 $\tau_n \sim \frac{1}{n_n \sigma v} \sim \frac{3 \times 10^{16} - 3 \times 10^{17}}{n_n}$ s.
时间尺度: 10^2-10^6 年
 $n_n \sim 10^{7-8}/cm^3$
核过程沿着β稳定线行进

1. Carbon ~ 10^9 K

$$\begin{array}{ccc} {}^{12}\mathrm{C} + {}^{12}\mathrm{C} \rightarrow {}^{23}\mathrm{Na+p} \\ \rightarrow {}^{20}\mathrm{Ne+\alpha} \end{array} & \begin{array}{c} {}^{23}\mathrm{Na(p,\alpha)^{20}N} \\ {}^{20}\mathrm{Ne,^{23}Na+p} \end{array} \end{array}$$

²³Na(p,
$$\alpha$$
)²⁰Ne;
²⁰Ne,²³Na+p, α \rightarrow ²⁴⁻²⁶Mg; ²⁷Al;....

2. Neon ~ 2×10^9 K

$$\begin{array}{c} {}^{20}\text{Ne}+\gamma \rightarrow {}^{16}\text{O}+\alpha \\ {}^{20}\text{Ne}+\alpha \rightarrow {}^{24}\text{Mg} \end{array} \begin{array}{c} {}^{24}\text{Mg}(\alpha,\gamma){}^{28}\text{Si}; {}^{25}\text{Mg}(\alpha,n){}^{28}\text{Si}; \\ {}^{26}\text{Mg}(\alpha,n){}^{29}\text{Si}; {}^{26}\text{Mg}(\alpha,\gamma){}^{30}\text{Si}; {}^{27}\text{Al}(\alpha,p){}^{30}\text{Si}; \\ {}^{30}\text{Si}(p,\gamma){}^{31}\text{P} \end{array} \right)$$

3. Oxygen ~ 3×10^9 K

$$\begin{array}{c} {}^{16}O{+}^{16}O \rightarrow {}^{28}Si{+}\alpha \\ \rightarrow {}^{31}P{+}p \\ \rightarrow {}^{31}S{+}n \end{array}$$

温度到达 4×109 K, 28Si 的光致分裂导致硅分解:

 ${}^{28}Si(\gamma,p){}^{27}Al, {}^{28}Si(\gamma,\alpha){}^{24}Mg,$

一些弱束缚的核也开始分解:

Al, Mg, Ne, $O \rightarrow p, \alpha, n$

自由的中子、质子、α粒子被原子核俘获、释放,导致核统计平衡 (γ,p)≈(p,γ),(γ,α)≈(α,γ),(γ,n)≈(n,γ),(p,n)≈(n,p),.. 最终形成结合紧密的Fe、Ni峰 峰的分布由温度、环境的中子/质子比例、结合能决定

$$Z \cdot \mu_{p} + N \cdot \mu_{n} = \mu_{(Z,N)} \qquad \mu = mc^{2} + kT \ln \left[\frac{n}{g} \left(\frac{h^{2}}{2\pi m kT} \right)^{3/2} \right]$$
$$Y(Z,N) = Y_{p}^{Z} Y_{n}^{N} G(Z,N) (\rho N_{A})^{A-1} \frac{A^{3/2}}{2^{A}} \left(\frac{2\pi \hbar^{2}}{m_{u} kT} \right)^{\frac{3}{2}(A-1)} e^{B(Z,N)/kT}$$

核统计平衡时的元素分布

25倍太阳质量的恒星演化过程

。恒星演化进程

太陽

10倍太陽質量的恆星

30倍太陽質量的恆星

超新星爆炸

棕矮星

Begelman & Rees

行星狀

中子星

超新星爆炸

白矮星

冲击波: 中子、质子、中微子引发的核反应

10-100 g/cm³ neutrons \rightarrow neutron capture timescale: ~ 0.2 µs

Location of path: $S_n = T_9/5.04 \text{ x} (34.08 + 1.5 \log T_9 - 1.5 \log n_n) = 2.4 \text{ MeV}$

偶A核、幻数核、短半衰期的核是候选的等待点核

z	140Nd	141Nd	142Nd	143Nd	144Nd	145Nd	146Nd	A7Nd B-	148Nd	149Nd	150Nd	151Nd	152Nd	153Nd	154Nd	155Nd
	139Pr	140Pr	141Pr	142Pr	143PB	144Pr	3≟45\$r	146Pr	147Pr	<u>31</u> 48Pr	149Pr	3150Pr	151Pr	152Pr	153Pr	154Pr
58	138Ce	139Ce	140Ce	141Ce	142Ce	143CB	14406	14 568	146Cg	147Ce	1 48Ce	149Ce	₹20Ce	151Ce	152Ce	153Ce
	137La	138La	139La	140La	141La	142La	143L₿	₹44L₿	-1451Ba-	146LB	×47Lβ	148La	149La	150La	151La	152La
56	136Ba	137Ba	138Ba	139Ba	140Ba	141Ba	142Ba	14353	144B\$	- 1 45₿å [−]	1 46B₽	- 1 478a	148Ba	149Ba	D SOBa	151Ba
	135Cs	136Cs	137Cs	138Cs	139Cs	140Cs	14103	14203	143Ca	144CB	-14503	146Cs	3147Cs	14865	149Cs	150Cs
54	134Xe	135Xe	136Xe	137Xe	138Xe	139Xe	140Xe	141Xe	14236	443Xe	344Xe	A SXE	146Xe	1 <u>47</u> Xe		
	133I	134I	1351	136I	137I	138I	1391	1401	1411	×42β- <u>Π,γ</u>	1431	1441		7		
52	132Te	133Te	134Te	135Te	136Te	137Te	138Te	139Te	140Te	141Te	142Te	,				
	80		82		84		86		88		90		92		94	

$$\frac{dN(Z,A)}{dt} = \underbrace{N(Z,A-1)\lambda_{nv}^{Z,A-1} + N(Z,A+1)\lambda_{yn}^{Z,A+1}}_{H} + \underbrace{N(Z-1,A)\lambda_{\beta0}^{Z-1,A} + \sum_{k} N(Z-1,A+k)\lambda_{\beta kn}^{Z-1,A+k}}_{K} + \underbrace{N(Z+2,A+4)\lambda_{\alpha}^{Z+2,A+4}}_{H} + \underbrace{N(Z+2,A+4)\lambda_{\alpha}^{Z+2,A+4}}_{H} - \underbrace{N(Z,A)[\lambda_{f}^{Z,A} + \lambda_{cA}^{Z,A}]}_{J} \\ - \underbrace{N(Z,A)[\lambda_{f}^{Z,A} + \lambda_{af}^{Z,A} + \lambda_{\alpha}^{Z,A}]}_{f} + \sum_{f} q_{Z_{f},A_{f}}(Z,A)\lambda_{f}^{Z_{f}-A_{f}}N(Z_{f},A_{f})} \\ + \sum_{f} q_{Z_{f},A_{f}}(Z,A)\lambda_{\beta f}^{Z_{f}-1,A_{f}}N(Z_{f}-1,A_{f}) \\ + \sum_{f} q_{Z_{f},A_{f}}^{R}(Z,A)\lambda_{nf}^{Z_{f}-1,A_{f}}N(Z_{f},A_{f}-1) \\ + \cdots, \longrightarrow$$
其他带电粒子反应

$$\begin{array}{c} \pm u \\ \pm u \\$$

两体演化 10⁶-10⁹年

两体并合 毫秒-秒

辐射传输 数日

两种r-过程场所的比较

 $n_{e} = N_{p} / (n_{n} + n_{p}) < 0.5$

core-collapse supernovae

neutron star merger

中微子风驱动,质量小10⁻⁶-10⁻⁵ M_☉ 亮度大,r-过程的纯低

动力学抛射,盘风,10⁻⁴-10⁻² M_☉ 亮度暗,r-过程的纯度高

T =1-2 GK, n_n~10²⁴ /cm³ 时间尺度: <1 s

r-过程核的丰度 $N_r(A,Z) = N_{\odot}(A,Z) - N_s(A,Z) = N_{\odot}(A,Z) - \frac{\langle \sigma \rangle_{A,Z} N_s(A,Z)}{\langle \sigma \rangle_{A,Z}}$ Number abundance (Si=10⁶) 10^{-1} (Si= 10 r abundance r-only abundance ⋴⋴ ⋴ 100 120 160 180 140 200 Mass number A $\frac{dN(Z,A)}{dN(Z,A)} = -N_n N(Z,A) \langle \sigma v \rangle_{Z,A} + N(Z,A+1)\lambda_{\gamma}(Z,A+1)$ $\frac{N(Z,A+1)}{N(Z,A)} = N_{\rm n} \left(\frac{h^2}{2\pi m_{A\rm n}kT}\right)^{3/2} \frac{(2j_{Z,A+1}+1)}{(2j_{Z,A}+1)(2j_{\rm n}+1)} \frac{G_{Z,A+1}^{\rm norm}}{G_{Z,A}^{\rm norm}} e^{Q_{\rm n\gamma}/kT}$

致密星为白矮星时,CO被吸积加热到一定的程度, 会诱发热CNO循环反应。(新星)

快速质子俘获(rp-)过程

p-process

	β-	Sn				р	рр	×→ -	→ →	Nucleu	s Z	Solar system	Isotopic
	decay	In					n					abundance	abundance
		Cd	Г				P		-			$(Si = 10^{6})$	(%)
	neutron	Ca		р	р		• +• +• -	+ →	r	^{132}Ba	56	$4.53 \cdot 10^{-3}$	0.1
	capture	Ag				\rightarrow	•			138 La	57	$4.09\cdot10^{-4}$	0.09
		Pd	q				r r			$^{136}\mathrm{Ce}$	58	$2.16 \cdot 10^{-3}$	0.19
Dh										$^{138}\mathrm{Ce}$	58	$2.84 \cdot 10^{-3}$	0.25
RII							\ \			^{144}Sm	62	$8.0 \cdot 10^{-3}$	3.1
Ru		рр	+ + +	* ``	r		×			$^{152}\mathrm{Gd}$	64	$6.6 \cdot 10^{-4}$	0.2
Тс			$\mathbf{\lambda}$,		156 Dy	66	$2.21 \cdot 10^{-4}$	0.06
Мо	р	p _+ +	\rightarrow \rightarrow [r		×	د هي			158 Dy	66	$3.78\cdot 10^{-4}$	0.10
МЬ							, or or			$^{162}\mathrm{Er}$	68	$3.51 \cdot 10^{-4}$	0.14
ND					\sim	<	<u> </u>			$^{164}\mathrm{Er}$	68	$4.04\cdot10^{-3}$	1.61
	74	So 196H	T		113 In	49	$7.9 \cdot 10^{-3}$	4	4.3	$^{168}\mathrm{Yb}$	70	$3.22\cdot10^{-4}$	0.13
		5C – 118	5		^{112}Sn	50	$3.72 \cdot 10^{-2}$	² 0	.97	$^{174}\mathrm{Hf}$	72	$2.49 \cdot 10^{-4}$	0.16
	臣	寸标:~1 s	5		^{114}Sn	50	$2.52 \cdot 10^{-2}$	² 0	.66	180 Ta	73	$2.48 \cdot 10^{-6}$	0.01
					$^{115}\mathrm{Sn}$	50	$1.29 \cdot 10^{-2}$	² 0	.34	^{180}W	74	$1.73\cdot 10^{-4}$	0.13
	Ту	pe II supe	ernova		$^{120}\mathrm{Te}$	52	$4.3 \cdot 10^{-3}$	0	.09	^{184}Os	76	$1.22\cdot10^{-4}$	0.02
		тара	7		$^{124}\mathrm{Xe}$	54	$5.71 \cdot 10^{-3}$	³ 0	.12	190 Pt	78	$1.7\cdot 10^{-4}$	0.01
		1~2-3 GF			$^{126}\mathrm{Xe}$	54	$5.09 \cdot 10^{-3}$	³ 0	.11	$^{196}\mathrm{Hg}$	80	$5.2\cdot 10^{-4}$	0.15
	(y.p).	(γ,α) .rpv	-proces	S-	$^{130}\mathrm{Ba}$	56	$4.76 \cdot 10^{-3}$	³ 0	.11				

35 nuclei

中微子的冲击波能够调节恒星物质的中 子/质子比例,从而影响最终核素丰度。

宇宙射线诱发的核过程

宇宙中元素的起源

11重大未解的物理学问题

•What is dark matter? •What is dark energy? •How were the heavy elements from iron to uranium made? •Do neutrinos have mass (and how much)? •Where do ultra-energy particles come from? •Is a new theory of light and matter needed to explain what happens at very high temperature?

•Are there new states of matter at ultrahigh temperatures and densities?

- •Are protons unstable?
- •What is gravity?
- •Are there additional dimensions?
- •How did the Universe begin?

大爆炸核合成相关的中子核反应

Fowler给出的元素合成网络

 $^{14}N(n, p)^{14}C$ $^{17}O(n, p)^{17}N$ $^{17}O(n, \alpha)^{14}C$ 26 Al(n, α) 23 Na $^{33}S(n, \alpha)^{30}Si$ $^{36}Cl(n, \alpha)^{33}P$ 33 Sr(n, α) 30 Si

(n,γ)截面的不确定性

R Reifarth et al. J. Phys. G: Nucl. Part. Phys. 41 (2014) 053101

核素	⁵⁹ Fe	⁶⁰ Fe	⁶⁰ C0	⁶³ Ni
寿命	44 d	1.5×10 ⁶ a	5 a	100 a

⁶³Ni + n → ⁶⁴Ni* → ⁶⁰Fe + ⁴He + 1.544MeV
⁶⁴Ni中子发射阈: 9.658 MeV
⁶⁴Niα发射阈: 8.114 MeV

- 天体演化过程中的四个重要的核过程
- 与这些核过程相关的重要核数据
 - -大爆炸原初核合成
 - 平稳的恒星核燃烧过程
 - -爆发性的恒星核过程
 - 宇宙线核合成过程
- CSNS反角白光中子源上能够开展的核天体物理 研究工作

预祝反角白光中子源取得丰富的研究成果!

Thank You !

李志宏 中国原子能科学研究院 zhli@ciae.ac.cn zhhli@foxmail.com