

带电粒子出射测量实验进展

LPDA实验合作组 Back-n第四次用户研讨会 **2020-08-10 腾讯会议**

- 带电粒子出射核反应 地位 意义 测量难点
- 第1条线索: 几种核反应
 ⁶Li(n,t)⁴He ¹⁰B(n,α)⁷Li ¹H(n,p)n ²H(n,d)n
 ⁶³Ni(n,α) ¹⁷O(n,α) ³³S(n,α) ¹H(n,p)[低能]
 ¹²C(n,α)⁹Be ¹²C(n,3α)n
- •第2条线索:3种主要探测器

LPDA阵列($\Delta E - \Delta E - E$) **TPC** SiC

•总结与展望

1. 带电粒子出射核反应 地位 意义 测量难点

- <u>(n,f)</u> 裂变反应 释放裂变核能 产生中子
- (n,γ) 辐射俘获反应 核燃料循环 ²³⁸U→²³⁹Pu,²³²Th→²³³U
- (n,n) (n,n') 弹性散射 非弹性散射 中子的慢化
- (n, lcp) 轻带电粒子出射核反应 ? 反应堆的控制 中子的测量 中子的防护

lcp = light-charged particle (p, d, t, ³He, α ...)

• 张国辉, 中子诱发轻带电粒子出射核反应实验研究进展, 中国科学: 物理学力学 天文学 50, 052005 (2020); doi: 10.1360/SSPMA-2019-0226

(n, lcp)反应研究的意义

- 中子核反应标准截面的完善
- •中子能谱与注量率测量 探测器标定 模拟计算
- •核天体物理与核素的合成
- •核能与核工程、器件的损伤、生物医学、辐射防护...
- 核物理基础研究

(n, lcp) 实验测量难点

- •反应截面一般较小
- •需要足够强的中子源
- •需要足够薄的样品(使带电粒子能够穿出)
- 需要高富集度同位素样品
- 需要甄别多种带电粒子
- •结构材料+本底反应干扰严重
- •需要较长的测量时间

待测样品 +

带电粒子探测器

2. 第1条线索: 几种核反应

- 已经完成的实验
- 获批准即将完成的实验
- 申请中待批准的实验

已经完成的实验

- ${}^{6}\text{Li}(n,t){}^{4}\text{He}$ ${}^{10}\text{B}(n,\alpha){}^{7}\text{Li}$ ${}^{1}\text{H}(n,p)n$ ${}^{2}\text{H}(n,d)n$
- •北大与**高能所**合作完成
- ・打靶功率 20kW → 50kW → 80kW
- •探测器 LPDA-v.1(Si阵列×15) LPDA-v.2 (Si+Csl×10)

⁶Li(n,t)⁴He

- 首批实验
- 较厚的样品--测t
- 实验测量 数据分析经验

- 向MeV能区拓展(?)
- [胡益伟报告] (明天 第3分会场)

$^{10}B(n,\alpha)^{7}Li$

· 薄样品--测α粒子
· 分开 α₀, α₁两群

9

- α_0 群统计性提高
- 向MeV能区扩展(?)
- [刘杰报告] (明天 第3分会场)

Measurement of the differential cross sections and angle-integrated cross sections of the ⁶Li(n, t)⁴He reaction from 1.0 eV to 3.0 MeV at the CSNS Back-n white neutron source^{*}

Huaiyong Bai(白怀勇)^{1,#} Ruirui Fan(樊瑞睿)^{2,3,4,#} Haoyu Jiang(江浩雨)¹ Zengqi Cui(崔增琪)¹ Yiwei Hu(胡益伟)¹ Guohui Zhang(张国辉)^{1;1)} Zhenpeng Chen(陈振鹏)⁵ Wei Jiang(蒋伟)^{3,4} Han Yi(易晗)^{3,4} Jingyu Tang(唐靖宇)^{3,4} Liang Zhou(周良)^{3,4} Qi An(安琪)^{2,6} Jie Bao(鲍杰)⁷ Ping Cao(曹平)^{2,6} Qiping Chen(陈琪萍)⁸ Yonghao Chen(陈永浩)^{3,4} Pinjing Cheng(程品晶)⁹ Changqing Feng(封常青)^{2,6} Minhao Gu(顾旻皓)^{2,3} Fengqin Guo(郭凤琴)^{3,4} Changcai Han(韩长材)¹⁰ Zijie Han(韩子杰)⁸ Guozhu He(贺国珠)⁷ Yongcheng He(何泳成)^{3,4} Yuefeng He(何越峰)⁹ Hanxiong Huang(黄翰雄)⁷ Weiling Huang(黄蔚玲)^{3,4} Xiru Huang(黄锡汝)^{2,6} Xiaolu Ji(季筱路)^{2,3} Xuyang Ji(吉旭阳)^{2,11} Hantao Jing(敬罕涛)^{3,4} Ling Kang(康玲)^{3,4} Mingtao Kang(康明涛)^{3,4} Bo Li(李波)^{3,4} Lun Li(李论)^{3,4} Qiang Li(李强)^{3,4} Xiao Li(李晓)^{3,4} Yang Li(李洋)^{2,3} Yang Li(李样)^{3,4} Rong Liu(刘荣)⁸ Shubin Liu(刘树彬)^{2,6} Xingyan Liu(刘星言)⁸ Guangyuan Luan(栾广源)⁴ Yinglin Ma(马应林)^{3,4} Changjun Ning(宁常军)^{3,4} Binbin Qi(齐斌斌)⁶ Jie Ren(任杰)⁷ Xichao Ruan(阮锡超)⁷ Zhaohui Song(宋朝晖)¹⁰ Hong Sun(孙虹)^{3,4} Xiaoyang Sun(孙晓阳)^{3,4} Zhijia Sun(孙志嘉)^{23,4} Zhixin Tan(谭志新)^{3,4} Hongqing Tang(唐洪庆)⁷ Pengcheng Wang(王鹏程)^{3,4} Qi Wang(王琦)⁷ Taofeng Wang(王涛峰)¹² Yanfeng Wang(王艳凤)^{3,4} Zhaohui Wang(王朝晖)⁷ Zheng Wang(王征)^{3,4} Jie Wen(文杰)⁸ Zhongwei Wen(温中伟)⁸ Qingbiao Wu(吴青彪)^{3,4} Xiaoguang Wu(吴晓光)⁷ Xuan Wu(吴煊)^{3,4} Likun Xie(解立坤)^{2,11} Yiwei Yang(羊奕伟)⁸ Li Yu(于莉)^{2,6} Tao Yu(余滔)^{2,6} Yongji Yu(于永积)^{3,4} Jing Zhang(张旌)^{3,4} Linhao Zhang(张林浩)^{3,4} Living Zhang(张利英)^{2,3,4} Qingmin Zhang(张清民)¹³ Qiwei Zhang(张奇玮)⁷ Xianpeng Zhang(张显鹏)¹⁰ Yuliang Zhang(张玉亮)^{3,4} Zhiyong Zhang(张志永)^{2,6} Yingtan Zhao(赵映潭)¹³ Zuying Zhou(周祖英)⁷ Danvang Zhu(朱丹阳)⁶ Kejun Zhu(朱科军)^{2,3} Peng Zhu(朱鹏)^{3,4}

¹State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China ²Sate Key Laboratory of Particle Detection and Electronics ³Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China ⁴Dongguan Neutron Science Center, Dongguan 523803, China ⁵Physics Department, Tsinghua University, Beijing 100084, China ⁶Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China

⁷Key Laboratory of Nuclear Data, China Institute of Atomic Energy, Beijing 102413, China ⁸Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China ⁹University of South China, Hengyang 421001, China ¹⁰Northwest Institute of Nuclear Technology, Xi'an 710024, China ¹¹Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei 230026, China ¹²Beihang University, Beijing 100083, China ¹³Xi'an Jiaotong University, Xi'an 710049, China

Measurements of differential and angle-integrated cross sections for the ${}^{10}B(n, \alpha)^7$ Li reaction in the neutron energy range from 1.0 eV to 2.5 MeV*

Haoyu Jiang(江浩雨)^{1,#} Wei Jiang(蒋伟)^{2,3,#} Huaiyong Bai(白怀勇)¹ Zengqi Cui(崔增琪)¹ Guohui Zhang(张国辉)^{1:1)} Ruirui Fan(樊瑞睿)^{23,4} Han Yi(易晗)²³ Changjun Ning(宁常军)^{2,3} Liang Zhou(周良)^{2,3} Jingyu Tang(唐靖宇)^{2,3} Qi An(安琪)^{4,5} Jie Bao(鲍杰)⁶ Yu Bao(鲍煜)^{2,3} Ping Cao(曹平)^{4,5} Haolei Chen(陈昊磊)^{4,5} Qiping Chen(陈琪萍)⁷ Yonghao Chen(陈永浩)^{2,3} Yukai Chen(陈裕凯)^{2,3} Zhen Chen(陈朕)^{4,5} Changqing Feng(封常青)^{4,5} Keqing Gao(高可庆)^{2,3} Minhao Gu(顾旻皓)^{2,4} Changcai Han(韩长材)⁸ Zijie Han(韩子杰)⁷ Guozhu He(贺国珠)⁶ Yongcheng He(何泳成)^{2,3} Yang Hong(洪杨)^{2,3,9} Hanxiong Huang(黄翰雄)⁶ Weiling Huang(黄蔚玲)²³ Xiru Huang(黄锡汝)^{4,5} Xiaolu Ji(季筱路)^{2,4} Xuyang Ji(吉旭阳)^{4,10} Zhijie Jiang(姜智杰)^{4,5} Hantao Jing(敬罕涛)^{2,3} Ling Kang(康玲)^{2,3} Mingtao Kang(康明涛)^{2,3} Bo Li(李波)^{2,3} Chao Li(李超)^{4,5} Jiawen Li(李嘉雯)^{4,10} Lun Li(李论)^{2,3} Qiang Li(李强)^{2,3} Xiao Li(李晓)^{2,3} Yang Li(李梓)^{2,3} Rong Liu(刘荣)⁷ Shubin Liu(刘树彬)^{4,5} Xingyan Liu(刘星言)⁷ Guangyuan Luan(栾广源)⁶ Qili Mu(穆奇丽)^{2,3} Binbin Qi(齐斌斌)^{4,5} Jie Ren(任杰)⁶ Zhizhou Ren(任智洲)⁷ Xichao Ruan(阮锡超)⁶ Zhaohui Song(宋朝晖)⁸ Yingpeng Song(宋英鹏)²³ Hong Sun(孙虹)^{2,3} Kang Sun(孙康)^{2,3,9} Xiaoyang Sun(孙晓阳)^{2,3,9} Zhijia Sun(孙志嘉)^{2,3,4} Zhixin Tan(谭志新)^{2,3} Hongqing Tang(唐洪庆)⁶ Xinyi Tang(唐新懿)^{4,5} Binbin Tian(田斌斌)^{2,3} Lijiao Wang(王丽娇)^{23,9} Pengcheng Wang(王鹏程)^{2.3} Qi Wang(王琦)⁶ Taofeng Wang(王涛峰)¹¹ Zhaohui Wang(王朝辉)⁶ Jie Wen(文杰)⁷ Zhongwei Wen(温中伟)⁷ Qingbiao Wu(吴青彪)^{2,3} Xiaoguang Wu(吴晓光)⁶ Xuan Wu(吴煊)^{2,3} Likun Xie(解立坤)^{4,10} Yiwei Yang(羊奕伟)⁷ Li Yu(于莉)^{2,3} Tao Yu(余滔)^{4,5} Yongji Yu(于永积)^{2,3} Linhao Zhang(张林浩)^{2,3,9} Qiwei Zhang(张奇玮)⁶ Xianpeng Zhang(张显鹏)⁸ Yuliang Zhang(张玉亮)^{2,3} Zhiyong Zhang(张志永)^{4,5} Yubin Zhao(赵豫斌)^{2,3} Luping Zhou(周路平)^{2,3,9} Zuying Zhou(周祖英)⁶ Danyang Zhu(朱丹阳)^{4,5} Kejun Zhu(朱科军)^{2,4,9} Peng Zhu(朱鹏)^{2,3}

¹State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China ²Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China ³Spallation Neutron Source Science Center, Dongguan 523803, China ⁴State Key Laboratory of Particle Detection and Electronics ⁵Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China ⁶Key Laboratory of Nuclear Data, China Institute of Atomic Energy, Beijing 102413, China ⁷Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China ⁸Northwest Institute of Nuclear Technology, Xi'an 710024, China ⁹University of Chinese Academy of Sciences, Beijing 100049, China ¹⁰Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei 230026, China ¹¹School of Physics, Beihang University, Beijing 100083, China

- Haoyu Jiang, Wei Jiang, Zengqi Cui, et al., Measurement of the relative differential cross sections of the ¹H(*n*, *el*) reaction in the neutron energy range from 6 MeV to 52 MeV. 稿件已投 EPJA.
- 详见 [江浩雨报告] 明天 第3分会场 (第2个报告)

<u>n-d散射</u> ²H(n,d)n

- LPDA-v.2 Si + Csl (Δ E-E)
- •80kW 小束斑

样品与探测器布局

- 数据分析和稿件撰写正在进行中
- 实验初步结果见 [崔增琪报告] 明天 第3分会场 (第3个报告)

17

另外2个已经完成的实验:

- $\frac{^{63}Ni(n,\alpha)^{60}Fe}{^{17}O(n,\alpha)^{14}C}$
- 原子能院: 李志宏 李云居 核天体物理 采用SiC探测器测量 详见 [李云尾据告] 明天 第3分合
- 详见 [李云居报告] 明天 第3分会场 (第4个报告)
- 部分完成仍在进行的实验:
- 12C(n,p)12B 实验方法研究 [青年基金]
- 高能所:易晗
- 采用TPC进行试测
- 详见 [易哈的报告] 明天 第3分会场 (第1个报告)

已获批准下半年即将完成的2个实验

- <u>33**S(n,α)**30**Si**</u> (En= 1eV—300keV)
- 原子能院: 贺国珠
- 可能的癌症治疗核反应 恒星内³⁶S丰度偏高的解释 采用PPAC探测器 n_TOF采用Micromegas探测器得到了10-300keV的截面
- <u>1H(n,p)n</u>(低能区, En= 1.5—15MeV)
 高能所: 蒋伟 [与北大合作]
 En = 2, 5, 8, 10MeV 出射质子各向异性变化
 采用ΔE-E探测器(气体室+硅)---LPDA-v.3
 已经开展探测器测试(气体室+硅+Csl 2×8)--LPDA

正在申请中待批准的实验

• ¹²C(n,α)⁹Be ¹²C(n,3α)n (En= 10—50MeV)
 "基于LPDA的¹³C集团结构实验测量" [青年基金]
 中科院上海高等研究院: 刘龙祥
 基于LPDA阵列进行测量
 测量α粒子能量 角度双微分截面
 具体情况 [请见"束流申请报告"]

.

3. 第2条线索: 3种带电粒子探测系统

LPDA 探测器阵列 时间投影室(TPC) 抗辐照半导体探测器(SiC)

LPDA阵列(ΔE-ΔE-E望远镜)

•与国际上同类探测器对比性能全面,功能强大

	LANSCE	MEDLEY	Crocker	CYCLONE	LPDA
探测器构架	气体室+硅+Csl	硅+硅+Csl	硅+Nal	塑闪+Csl	气体室+硅+Csl
探测器数量	4	8	3	6	16
带电粒子测量 能区	4MeV-50MeV	8-100MeV	<80MeV	1.5MeV-80MeV	0.5-100MeV
中子测量能区	0.2-50MeV	70MeV	10-60MeV	25-65MeV	1eV-100MeV
时间分辨	3ns (300keV@10MeV)	2-4ns	200keV	0.8ns	<5ns

- 1) 薄窗气体探测器安装在真空靶室内
- 2) 有限体积安装探测器、电缆、气路
- 3) 48路信号,目前Back-n最复杂的探测器系统

- 分为两个模块,每个模块在 实验室系覆盖66.5°。设计值 为23.5°-90°
- 束斑: R=44mm进入负9次方 量级, 按照R=50mm设计
- 探测器高度: 与靶中心等高
- 靶尺寸: 最大φ60mm

 ΔE - ΔE -E望远镜在LPDA靶室中的示意图

MWPC气体室+Si 得到的∆E-E谱

探测器组装图

探测器及前放均放置于模块内, 探测器信号由模块后法兰引出

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS PHYSICS PHYSICS IN PHYSIC

Application of a silicon detector array in (n, lcp) reaction cross-section measurements at the CSNS Back-n white neutron source

Wei Jiang ^{a,b}, Huaiyong Bai ^c, Haoyu Jiang ^c, Han Yi ^{a,b}, Ruirui Fan ^{a,b,d,*}, Guohui Zhang ^c, Jingyu Tang ^{a,b}, Zhijia Sun ^{a,b,d}, Changjun Ning ^{a,b}, Kang Sun ^{a,b,e}, Keqing Gao ^{a,b}, Zengqi Cui ^c, Qi An ^{d,f}, Jie Bao ^g, Yu Bao ^{a,b}, Ping Cao ^{d,f}, Haolei Chen ^{d,f}, Qiping Chen ^h, Yonghao Chen ^{a,b}, Yukai Chen ^{a,b}, Zhen Chen ^{d,f}, Changqing Feng ^{d,f}, Minhao Gu ^{a,d}, Fengqin Guo ^{a,b}, Changcai Han ⁱ, Zijie Han ^h, Guozhu He ^g, Yongcheng He ^{a,b}, Yang Hong ^{a,b,e}, Hanxiong Huang ^g, Weiling Huang ^{a,b}, Xiru Huang ^{d,f}, Xiaolu Ji ^{a,d}, Xuyang Ji ^{d,j}, Zhijie Jiang ^{d,f}, Hantao Jing ^{a,b}, Ling Kang ^{a,b}, Mingtao Kang ^{a,b}, Bo Li ^{a,b}, Chao Li ^{d,f}, Jiawen Li ^{d,j}, Lun Li ^{a,b}, Qiang Li ^{a,b}, Xiao Li ^{a,b}, Yang Li ^{a,b}, Rong Liu ^h, Shubin Liu ^{d,f}, Xingyan Liu ^h, Guangyuan Luan ^g, Qili Mu ^{a,b}, Binbin Qi ^{d,f}, Jie Ren ^g, Zhizhou Ren ^h, Xichao Ruan ^g, Yingpeng Song ^{a,b}, Zhaohui Song ⁱ, Hong Sun ^{a,b}, Xiaoyang Sun ^{a,b,e}, Zhixin Tan ^{a,b}, Hongqing Tang ^g, Xinyi Tang ^{d,f}, Binbin Tian ^{a,b}, Lijiao Wang ^{a,b,e}, Pengcheng Wang ^{a,b}, Qi Wang ^g, Taofeng Wang ^k, Yanfeng Wang ^{a,b}, Zhaohui Wang ^g, Jie Wen ^h, Zhongwei Wen ^h, Qingbiao Wu ^{a,b}, Linhao Zhang ^{a,b,e}, Qiwei Zhang ^g, Xianpeng Zhang ⁱ, Yuliang Zhang ^{a,b}, Zhiyong Zhang ^{d,f}, Yubin Zhao ^{a,b}, Liang Zhou ^{a,b}, Luping Zhou ^{a,b,e}, Zuying Zhou ^g, Danyang Zhu ^{d,f}, Kejun Zhu ^{a,d,e}, Peng Zhu ^{a,b}

Ruirui Fan, Haoyu Jiang, Wei Jiang, et al., **Detection of low-energy charged-particle using the** ΔE -E**telescope at the Back-n white neutron source**. Accepted by NIMA.

^a Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China

^b Spallation Neutron Source Science Center, Dongguan 523803, China

^c State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China

^d State Key Laboratory of Particle Detection and Electronics, China

- 探测器外壳设计为圆柱体,灵敏区直径 160mm,长70mm
- 模拟中探测器材料为AI,厚度100µm;
- 工作气体: Ar+CO2 (93:7)

2.616945mm .62941mm .82222mm .82222mm .82222mm 0.2mm 0.2mm **BACK – N** CSNS-WHITE NEUTRON SOURCE

- 采用六边形密堆方式,构成1519 个阳极pad,每个pad边长
 64mil(1.63mm),阳极区为边长
 约为68.5mm的六边形
- 探测器气室外壳通过升降平台 固定于支撑底座

•

 六边形背板与探测器阳极读出 板相连,用于固定6块前端电 子学板 28

读出Pad区域表面镀锗;

采用热压工艺进行Mesh压贴

整体结构

探测器组装

TPC场笼结构

探测器整体

TPC初步测试

- ⁶Li(n,t)⁴He反应测量
- t 和α事例甄别

Event track display in x-z plane.

xoos/mr

3D track display.

xpos/mm

Energy distribution from sum of pad-E.

300

200-

Emission Angle vs Particle Energy

vpos/mm

TPC初步测试

- ¹²C(n,p)¹²B和¹⁴N(n,p)¹⁴C测量
- 多体反应事例测量

详见 [易晗的报告] (明天 第3分会场)

RECEIVED: December 3, 2018 ACCEPTED: January 28, 2019 PUBLISHED: February 12, 2019

N

н

Triton identification in the ⁶Li(n, t)⁴He reaction measurement with the grid ionization chamber at CSNS Back-n white neutron source

0
BRCK-N

The CSNS Back-n collaboration

H. Yi, a, c Y. Zhao, d W. Jiang, a, c R. Fan, a, b, c, 1 Y. Li(b), a, c Y. Chen, a, c H. Bai, e H. Jiang, e Z. Cui, e G. Zhang, ^e P. Cao, ^{b,g} T. Yu, ^{b,g} L. Zhou, ^{a,c} C. Ning, ^{a,c} M. Gu, ^{a,b} Y. He, ^{a,c} Z. Sun, ^{a,b,c} J. Tang,^{a,c} Q. Zhang,^d Q. An,^{b,g} J. Bao,^h Q. Chen,^k P. Cheng,ⁱ C. Feng,^{b,g} F. Guo,^{a,c} C. Han,^j Z. Han,^k G. He,^h Y. He,ⁱ H. Huang,^h W. Huang,^{a,c} X. Huang,^{b,g} X. Ji,^{a,b} X. Ji,^{b,f} H. Jing,^{a,c} L. Kang,^{a,c} M. Kang,^{a,c} B. Li,^{a,c} Q. Li,^{a,b,c} X. Li,^{a,c} Y. Li(a),^{a,b} R. Liu,^k S. Liu,^{b,g} X. Liu,^k G. Luan,^h Y. Ma,^{a,c} J. Pan,^g B. Qi,^g J. Ren,^h X. Ruan,^h Z. Song,^j H. Sun,^{a,c} X. Sun,^{a,c} Z. Tan.^{a,c} H. Tang.^h P. Wang.^{a,c} Q. Wang.^h T. Wang.^l Y. Wang.^{a,c} Z. Wang.^h Z. Wang.^{a,c} J. Wen,^k Z. Wen,^k Q. Wu,^{a,c} X. Wu,^h X. Wu,^{a,c} L. Xie,^{b,f} Y. Yang,^k L. Yu,^{b,g} Y. Yu,^{a,c} J. Zhang,^{a,c} L. Zhang,^{a,c} L. Zhang,^{a,b,c} Q. Zhang,^h X. Zhang,^j Y. Zhang,^{a,c} Z. Zhang,^{b,g} Z. Zhou,^h D. Zhu,^g K. Zhu,^{a,b} and P. Zhu^{a,c} ^aInstitute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China ^bState Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, China ^cDongguan Neutron Science Center, Dongguan 523803, China ^dXi'an Jiaotong University, Xi'an 710049, China e State Key Laboratory of Nucear Physics and Technology, Schhol of Physics, Peking University, Beijing 100871, China ^f Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei 230026, China ⁸ Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China

^hKey Laboratory of Nuclear Data, China Institute of Atomic Energy, Beijing 102413, China

1Corresponding author.

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB RECEIVED: December 11, 2019

Ассертер: February 24, 2020 Ривлянер: March 25, 2020

Double-bunch unfolding methods for the Back-n white neutron source at CSNS

inst

The CSNS Back-n collaboration

H. Yi, ^{a,b} T.F. Wang, ^c Y. Li, ^{a,b} X.C. Ruan, ^d J. Ren, ^d Y.H. Chen, ^{a,b} Q. Li, ^{a,b} J. Wen, ^e
J.Y. Tang, a,b,1 Q. An, f,g H.Y. Bai, h J. Bao, d Y. Bao, a,b P. Cao, f,g H.L. Chen, f,g Q.P. Chen, e
Y.K. Chen, ^{a,b} Z. Chen, ^{f,g} Z.Q. Cui, ^h R.R. Fan, ^{a,b,f} C.Q. Feng, ^{f,g} K.Q. Gao, ^{a,b} M.H. Gu, ^{a,f}
C.C. Han, ¹ Z.J. Han, ^e G.Z. He, ^d Y.C. He, ^{a,b} Y. Hong, ^{a,b,f} H.X. Huang, ^d W.L. Huang, ^{a,b}
K.R. Huang, ^{f,g} X.L. Ji, ^{a,f} X.Y. Ji, ^{f,k} H.Y. Jiang, ^h W. Jiang, ^{a,b} Z.J. Jiang, ^{f,g} H.T. Jing, ^{a,b}
L. Kang, ^{a,b} M.T. Kang, ^{a,b} B. Li, ^{a,b} C. Li, ^{f,g} J.W. Li, ^{f,k} L. Li, ^{a,b} X. Li, ^{a,b} R. Liu, ^c S.B. Liu, ^{f,g}
K.Y. Liu, ^e G.Y. Luan, ^d Q.L. Mu, ^{a,b} C.J. Ning, ^{a,b} B.B. Qi, ^{f,g} Z.Z. Ren, ^e Y.P. Song, ^{a,b} Z.H. Song
H. Sun, ^{a,b} K. Sun, ^{a,b,j} X.Y. Sun, ^{a,b,j} Z.J. Sun, ^{a,b,f} Z.X. Tan, ^{a,b} H.Q. Tang, ^d X.Y. Tang, ^{f,g}
B.B. Tian, ^{a,b} L.J. Wang, ^{a,b,f} P.C. Wang, ^{a,b} Q. Wang, ^d Z.H. Wang, ^d Z.W. Wen, ^e Q.B. Wu, ^{a,b}
X.G. Wu, ^d X. Wu, ^{a,b} L.K. Xie, ^{f,k} Y.W. Yang, ^e L. Yu, ^{a,b} T. Yu, ^{f,g} Y.J. Yu, ^{a,b} G.H. Zhang, ^h
L.H. Zhang, ^{a,b,f} Q.W. Zhang, ^d X.P. Zhang, ^t Y.L. Zhang, ^{a,b} Z.Y. Zhang, ^{f,g} Y.B. Zhao, ^{a,b}
L.P. Zhou, a,b,f Z.Y. Zhou, d D.Y. Zhu, f,g K.J. Zhu a,f,f and P. Zhu a,b
^a Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
^b Spallation Neutron Source Science Center, Dongguan 523803, China
^c School of Physics, Beihang University, Beijing 100083, China
^d Key Laboratory of Nuclear Data, China Institute of Atomic Energy,
Beijing 102413, China
^e Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
^f State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, China
⁸ Department of Modern Physics, University of Science and Technology of China, Hefe 230026, China
^h State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
¹ Northwest Institute of Nuclear Technology, Xi'an 710024, China
¹ University of Chinese Academy of Sciences, Beijing 100049, China
^k Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei 230026, China

E-mail: tangjy@ihep.ac.cn

¹Corresponding author.

© 2019 IOP Publishing Lud and Sissa Medialab

inst

SiC探测器在白光源上的应用

- SiC: 抗辐照半导体
- 从2019年2月至今,在白光中子源上陆续开展了3次使用碳化硅探测器为主的(n, lcp)反应测试实验:
- ⁶Li(n,t) 测试实验
- ⁶³Ni(n,α)实验
- ¹⁷O(n,α)实验

3次实验中SiC的使用情况: <u>⁶Li(n,t)</u>实验中探测器**正对束流**和样品,用铁丝网固定 <u>⁶³Ni(n,α)</sub>实验中使用前后角共**4块探测器**贴近(5mm)样品,用支架安装 <u>¹⁷O(n,α)</sup>实验中在前角区使用**8块SiC探测器**做阵列 在不同的安装情况、样品、流强下的摸索SiC探测器的适用范围</u></u>

实验结果见 [孙康报告、李云居报告] (明天 第3分会场)

三种探测系统的比较

- •目前在实验中应用的带电粒子探测器主要有带电粒子探测器阵列 (LPDA)、TPC和SiC探测器等
- 各有优势+各有缺陷:

探测器名称	优势	缺陷	适用实验
LPDA	 1. 较强的通用性 2. 微分截面测量 3. 较强的抗γ-flash性能 	1. 覆盖立体角较小 2. 存在粒子分辨阈值	1. 较大的反应截面 2. 微分截面测量
ТРС	 1. 大立体角覆盖 低测量阈 2. 微分截面测量 截面测量 3. 较强的粒子鉴别能力 	 1. 目前正在开发适用电 子学系统 2. 数据处理复杂 	1. 通用测量 2. 微分截面测量 3. 多体反应
SiC	 1. 大立体角覆盖 2. 抗辐照 	1. 面积较小 2. 粒子鉴别能力差	1. 小截面样品

LPDA和SiC实施难度较小,可以互补;TPC实施难度大,未来通用型探测器

4. 总结 和展望

总结

第1条线索:多种核反应
 ⁶Li(n,t)⁴He
 ¹⁰B(n,α)⁷Li
 ¹H(n,p)n
 ²H(n,d)n
 ⁶³Ni(n,α)⁶⁰Fe
 ¹⁷O(n,α)¹³C
 ³³S(n,α)³⁰Si
 ¹H(n,p)[低能]
 ¹²C(n,α)⁹Be
 ¹²C(n,3α)n

LPDA-v.1(Si阵列) LPDA-v.2(Si+Csl) SiC探测器 PPAC LPDA-v.3(气体室+Si) LPDA

•**第2条线索:** 3种探测器 LPDA阵列(ΔE-ΔE-E) TPC SiC _{气体室+硅+Csl}

- •中子能谱需要进一步准确测量(不同能区,不同束斑)
- •实验测量和**模拟预测分析**紧密结合
- •提高理论水平掌握共振能区数据分析方法
- •研发新型探测器 改进已有探测器 拓展测量能力
- •加强国内外合作提高样品研制和实验测量水平

展望

• 核反应

需求: 核天体物理 堆&器结构材料 IAEA-NDS 天然丰度大的样品→天然丰度小的样品→放射性样品(国际合作) 固体样品→固体+气体样品→气体样品 两体反应→三体反应(→四体反应)

• 探测器

改进完善LPDA **TPC** SiC Micromegas(MGAS) 金刚石… 模拟计算数据分析与软件编制 //

- •感谢LPDA合作组成员的通力合作与辛勤付出!
- •感谢Back-n各合作单位和成员的支持!
- •感谢各位专家的大力支持!
- •感谢大家的认真听讲!
- 欢迎批评、关注和参与我们的工作!

第3分会场报告安排

- 1) 易晗:出射带电粒子核反应总体实验情况介绍(含TPC初步结果)
- 2) 江浩雨: n-p散射实验结果
- 3) 崔增琪: n-d散射实验结果
- 4) 李云居: ¹⁷0(或⁶³Ni)(n, α) 实验初步结果
- 5) 蒋伟: 反角白光中子源ΔE-ΔE-E望远镜
- 6) 孙康: SiC探测器在(n, x)反应测量中的应用
- 7) 胡益伟: MeV能区⁶Li(n,t)实验模拟预测
- 8) 刘杰: MeV能区¹⁰B(n, α) 实验模拟预测