2020年CSNS反角白光中子源第四届用户研讨会-东莞, 腾讯视频会议

Se/Er/Cu中子俘获截面实验数据 分析进展

上海高研院:胡新荣,李鑫祥,张岳,郝子锐,匡攀,刘龙祥,王宏伟,范功涛,曹喜光 合作研究:任杰(原子能院),蒋伟(高能所),王小鹤,胡继峰,姜炳(应物所),张 苏雅拉吐,王德鑫,王金成(内蒙民大),刘应都,麻旭(湘潭大学),马春旺,王玉廷 (河南师大),安振东(中山大学),何健军,苏俊,张立勇(北师大)

2020-08-10

1. 中子俘获截面数据处理过程

- 2. Au/Se/Er/Cu靶数据分析结果
- 3. 未来研究展望

实验情况简表

实验时间	束流功率	实验靶材	靶参数/mm	测量时间/h	文件数目	备注
2019.01	30kW 25Hz 双束团	^{nat} Se	Ф50x1.5/2/4		393/2422/254	
		nat Y	Ф50x1		884	
		natC	Ф50x1,Ф40x2	~147	173/348	
	Ф60хФ30 хФ30	¹⁹⁷ Au	Ф50x1		1026	
		Empty			12	
	50kW 25Hz 双束团 050xФ50 xФ40	nat Er	Ф50x1/2,Ф30x0.42		4850/1610	
2019.04		^{nat} Yb/ ^{nat} Sm	Ф 50x1	~100	1071/545	
		natC	Φ 50x1		269	
		¹⁹⁷ Au	Ф30х1		173	
		Empty			250	
	80kW 25Hz 双束团 Ф50xФ15	⁶³ Cu	Ф30х0.1		1253+412	
		⁶⁵ Cu	Ф30х0.1		1207	
2020.01		natC	Ф30х0.1		369	
		^{nat} Pb	Ф30х0.53	~140	93	
		¹⁹⁷ Au	Ф30х0.1		287+95	
	хФ40	Empty			570	
		BeamOff	Ф30x0.1, ⁶³ Си		39+13	

一、中子俘获截面数据处理过程 ① 探测器布局与刻度

探测器布局:

- 左右端面相距14.87cm,探头部分上下相距17.18cm。将探测器向 靶方向旋转90°,得到位置如图2(b)所示,测得探头尾部平面与靶 相距7.3cm。确定位置参数后,
- ② 在图2(a)的基础上将探测器向靶的方向进行X方向上12°以及Y方向上20°的旋转,得到如图2c-2d所示的布局。
- ③ 考虑到C6D6是为探测靶与中子反应后的伽玛射线,为了尽可能避 免靶上散射和中子捕集器透射中子的本底影响,因此采用这种后 向角偏转的探测器布局。

探测器刻度:标准伽马源校准脉冲幅度谱(调节电压)

② 脉冲权重函数计算: GEANT4模拟

□ C6D6探测器的效率与伽玛能量呈非线性关系,研究发现将一定的权重函数作用到C6D6探测器的脉冲幅度(PH)谱上,就可以使C6D6探测器的效率与伽马射线的能量呈正比,即脉冲高度权重技术。

③ 本底分析与扣除

- □ 实验中测量了无束流环境本底,有束流空靶和碳靶本底谱,分别模拟了
 - ① 无束流环境伽马本底 (实验前环境本底测量,位于极低能部分,对截面影响很小)
 - ② 环境散射中子引起的伽马本底 (**有束流空靶,** ☑)
 - ③ 实验靶散射的中子引起的伽马本底 (**有束流碳靶,** 🗹)
 - ④ 在束伽马本底(有束流铅靶)(主要影响80eV-100keV部分本底,前三次实验没有测量铅靶本底,)

④ 反应产额计算

• $Y_{exp} = f_N \frac{N_W}{IE_c}$, $N_W = N_{net}$ · $W = [N_{sample} - N_{Bkg} - \eta(N_C - N_{Bkg})] \cdot W$

⑤ 反应截面计算

•
$$Y_{th}(E_n) = (1 - e^{-N_s \sigma_t(E_n)fc}) \frac{\sigma_c(E_n)}{\sigma_t(E_n)}$$

•
$$\sigma_c(E_n) = \frac{\sigma_t(E_n)}{1 - e^{-N_s \sigma_t(E_n) fc}} Y_{exp}(E_n).$$

⑥ 天然靶评价库 (ENDF) 截面计算

TABLE I:	Stable	isotoj	oes and	d abun	dance	of Er
Isotope	¹⁶² Er	¹⁶⁴ Er	$^{166}\mathrm{Er}$	$^{167}\mathrm{Er}$	$^{168}\mathrm{Er}$	$^{170}\mathrm{Er}$
Abundance	0.136	1.56	33.41	22.46	27.07	14.88

L、Au/Se/Er/Cu靶数据分析(1)

300eV - 600eV

600eV - 1000eV (1keV)

Au this work

0.0009

0.00095

¹⁹⁷Au ENDF-VIII Data

0

+

0.001

1.0keV - 1.5keV

2.0keV - 10.0keV

10.0keV - 100.0keV

二、Au/Se/Er/Cu靶数据分析(2)

10keV - 100keV

Au/Se/Er/Cu靶数据分析(3)

二、Au/Se/Er/Cu靶数据分析(4)

 李鑫祥,刘龙祥,蒋伟,任杰,王宏伟*,范功涛,曹喜光,胡新荣,张岳,王俊文,郝子锐,姜 炳,王小鹤,胡继峰,王金成,王德鑫,张苏雅拉吐,刘应都,麻旭,马春旺,王玉廷,安 振东,何健军,苏俊,张立勇; 脉冲高度权重技术测量197Au中子俘获截面,核技术,接收 发表

□准备文章:

- ① 胡新荣,刘龙祥, 蒋伟, 任杰,王宏伟*等。。。, Measurements of the ¹⁹⁷Au(n, γ) cross section up to 50 keV at the CSNS Back-n facility, 稿件准备中
- ② 李鑫祥,刘龙祥,蒋伟,任杰,王宏伟*等。。。, Accurate measurement of natEr (n,γ) cross section in 1eV-10eV using the Pulse Height Weighting Techniques, 稿件准备中
 ③ 。。。。。。。

实验经验与建议:

- ① 实验靶材料的厚度和直径尽可能一致;
- ② C6D6探测器距离尺寸等精确测量;
- ③ 实验需要测量**样品靶,碳靶,铅靶,空靶**;Au靶可不用每次都测量,测量前的检验获取和电子学是可行的。
- ④ 实验前需要刻度一下C6D6脉冲幅度,调节电压使波形对齐,以利于设定阈值使计数率一致,能量刻度使用本底的⁴⁰K,²⁰⁸TI,和标准源的¹³⁷Cs,⁶⁰Co等。
- ⑤ 目前CSNS达到100kW满功率运行,能再次精确测量一下中子能谱,足够的道数精度,对中子能谱的影响较大。Li-Si和质子数归一对中子能谱的影响不是很大。
- ⑥ 尽可能降低E2实验厅散射本底影响,减少室内物品数量,E1实验厅透射本底降低;
- ⑦ 数据存在在~2-4TB,准备足够数据拷贝硬盘,实验中随时抽样监测测量结果,发现问题及时调整;
- ⑧ 观察和记录数据获取中的异常情况,监测图谱,记录数据;
- ⑨ 希望Back-n能够统计和发布已经完成的实验靶核测量情况,以供后续实验申请者选择和参考;

三、未来研究展望

- □ 实验数据本底的扣除还需要进一步研究,特别是Pb靶扣除80eV以上能区的本 底贡献,尤其是对于俘获截面较低的核素影响更大;
- □未来实获取需要同时测量无束流环境本底,有束空靶和有束碳靶,以及有束 铅靶,分别扣除不同来源的伽马本底贡献;
- □应用R matrix程序分析,例如SAMMY程序等逐个分析共振峰的能级和宽度,自 旋宇称,以及其在核天体物理中的贡献等;
- □准备研究论文,分析其可能的物理应用;

□未来实验靶选取**价格合适、易于获得,工程急需的同位素靶材料**;

□例如¹⁰⁷Ag, ¹⁰⁹Ag等;

Incident Energy (MeV)

中子俘获截面测量

ENDF Request 3724, 2020-Jan-08,13:51:50 EXFOR Request: 7159/1, 2020-Jan-08 13:51:32

Incident Energy (MeV)

未来和SLEGS线站上的光中子截面互补, 共用靶材料

Gamma Energy/MeV

Guinyun Kim, Kyungpook National University, Daegu, Korea

感谢各位合作者的支持和帮助! 感谢各位专家聆听、批评指导!