A new extraction of Gegenbauer moments

Shan Cheng

arXiv:2007.05550,

In collaboration with A. Khodjamirian and A V. Rusov

August 14, 2020

Shan Cheng (HNU)

The 2nd TianWen-forum

August 14, 2020 1 / 20

- 2 Dispersion relation
- 3 Spacelike and timelike π electromagnetic FFs
- 4 Result of $a_n^{\pi}(1 \text{ GeV})$ and Conclusion

Applying pQCD theory on hadron involved observation, hadron is presented by LCDA,

• DA: matrix element of nonlocal light-ray operator sandwiched between $\langle h |$ and $|0 \rangle$.

 Physics: transparent in the infinite reference frame P³ → ∞ (P_⊥ = 0), hadron momentum P = (P⁺, P⁻, P_⊥), x_i distribution of partons in a hadron at small b_i.

• Isochronous hadron Bethe-Salpeter wave function $\phi_{BS}(x_i, k_{\perp i}, \lambda_i)$, $\sum_{i=1}^{n} k_{\perp i} = 0$, $\sum_{i=1}^{n} x_i = 1$.

 Light cone gauge A⁺ = A⁰ + A³ = 0, physical partons, LCDA relates to the k_T integrals of φ_{BS},

$$\psi_n(\mathbf{x}_i, \lambda_i) = \int^{|\mathbf{k}_{\perp i}| < \mu} d^2 \mathbf{k}_{\perp i} \, \phi_{BS}(\mathbf{x}_i, \mathbf{k}_{\perp i}, \lambda_i) \tag{1}$$

Background-light cone (relativistic) wave function (LCDA)

- ie., $|\pi\rangle = \psi_{q\bar{q}}|q\bar{q}\rangle + \psi_{q\bar{q}g}|q\bar{q}g\rangle + \psi_{q\bar{q}q\bar{q}}|q\bar{q}q\bar{q}\rangle + \cdots$ for each component n, $\psi_n^{\pi}(x_i, k_{\perp i}, \lambda_i) = \langle n, x_i, k_{\perp i}, \lambda_i | \pi \rangle$
- In large momentum transfer processes Q^2 , k_{\perp} can been neglected/integrated $\psi_n^{\pi}(x_i, \lambda_i)$, put out the spin and obtain the LCDA $\psi_n^{\pi}(x_i, Q)$.
- High order correction $\mathcal{O}(\alpha_s, k_{\perp}^2/Q^2, m^2/Q^2)$, scale dependence, RGE with the general solution in terms of Gegenbauer polynomials.
- asymptotic behaviour (Q² → ∞): a₀^π determined by f_π; correlation: a_{n≥2}^π(μ) determined by non-perturbative theory.
- Phenomenologies in exclusive hard processes (factorisation methods): meson/baryon FFs, weak decay FFs, $B \rightarrow M_1 M_2$, radiative and semileptonic decays (FCNC) \rightarrow NP.

ie., the first few a_n^{π} is of utmost importance to an accuracy description of pion.

In QCD,

$$a_n^{\pi}(\mu) = \langle \pi | q(z) \bar{q}(z) + z_{
ho} \partial_{
ho} q(z) \bar{q}(z) + \cdots | 0 \rangle,$$
 (2)

• LQCD: $a_2^{\pi}(1 \text{ GeV}) =$ 0.334 ± 0.129 [R. Arthur et.al.(RBC and UKQCD), arXiv:1011.5906[hep-lat]] 0.135 ± 0.032 [G. S. Bali et.al.(RQCD), arXiv:1903.03038[hep-lat]]

 a_{π}^{4} is not available \leftarrow the growing number of derivatives in $q\bar{q}$ operator. new technique is being developed [G. S. Bali et al.(RQCD), arXiv:1709.04325,1807.06671[hep-lat]].

• 2pSRs:
$$a_2^{\pi}(1 \text{ GeV}) = 0.19 \pm 0.06$$
, [V.L. Chernyak and A.R. Zhitnitsky, Phys.Rept. 112 (1984) 17 $0.26^{+0.21}_{-0.09}$, [A. Khodjamirian, T. Mannel and M. Melcher, hep-ph/0407226] 0.28 ± 0.08 , [P. Ball, V. Braun and A. Lenz, hep-ph/0603063]

nonlocal vacuum condensate is introduced and modelled for $a_{n>2}^{\pi}$.

[A.P. Bakulev, S.V Mikhailov and N.G Stefanis, hep-ph/0103119]

 \ddagger QCD sum rules as an inverse problem, [H-n Li and H. Umeeda, arXiv:2006.16593[hep-ph]] quark-hadron duality \rightarrow Legendre expansion of spectral density

• LCSRs: $a_2^{\pi}(1 \text{GeV}) =$

 $\begin{array}{l} F_{B \rightarrow \pi}: \ 0.19 \pm 0.19, \quad \mbox{[P. Ball and R. Zwicky, hep-ph/0507076]} \\ 0.16, \quad \mbox{[A, Khodjamirian et al., 1103.2655 [hep-ph]], uncertainty from B meson.} \end{array}$

 $F_{\pi\gamma\gamma^*}$: 0.14, BABAR+CLEO data , [S.S Agaev et.al., 1012.4671[hep-ph]] 0.10, Belle+CLEO data , [S.S Agaev et.al., 1206.3968[hep-ph]]

* large uncertainty is obtained for the result of $a_{n>2}^{\pi}$.

* a mutual discrepancy between the results of different experiments, especially at large Q^2 .

 $\begin{array}{ll} F_{\pi} : & 0.24 \pm 0.17, & \mbox{Wilson Lab+NA7 data, [C.J. Bebek, et al., Phys.Rev.D 17 (1978) 1693]} \\ & 0.20 \pm 0.03, & \mbox{Wilson Lab+JLab data [S.S Agaev, hep-ph/0509345]} \end{array}$

* large uncertainty is obtained for the result of $a_{n>2}^{\pi}$.

- The valid region of LCSRs for F_π is |q²| ∈ [1, 10] GeV², the accurate measurement of F_π at JLab is limited to |q²| ≤ 2.5 GeV², more data can be expected to extract a^π_n precisely at JLab 12 GeV upgrade.
- The measurements of $F_{\pi}(q^2)$ at *B* factories provide independent an opportunity.

BABAR: $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$, $4m_\pi^2 \leqslant q^2 \lesssim 9 \text{ GeV}^2$, [J. Lees et al., 1205.2228 [hep-ex]] Belle: $\tau \rightarrow \pi\pi\nu_\tau$, $4m_\pi^2 \leqslant q^2 \leqslant 3.125 \text{ GeV}^2$, [M. Fujikawa et al., 0805.3773 [hep-ex]]

- BABAR measurement in timelike region, LCSR calculation in spacelike region, dispersion relation to relate these two FFs.
- dispersion relation is written in the integral of whole timelike region $[4m_{\pi}^2, \infty)$, the high energy tail should be considered, even though small.

Dispersion relation (DR)

The standard DR

$$F_{\pi}(q^2) = \frac{1}{\pi} \int_{s_0}^{\infty} ds \frac{\mathrm{Im} F_{\pi}(s)}{s - q^2 - i\epsilon}, \ q^2 < 0,$$
 (3)

- integral over $\text{Im}F_{\pi}(s)$ in $s > 4m_{\pi}^2$,
- the direct measurement at BABAR is $|F_{\pi}(s)|^2$,
- model dependence to parameterize $F_{\pi}(s)$ to reproduce $|F_{\pi}(s)|$, additional uncertainty.

The modulus representation of DR

$$\frac{\ln F_{\pi}(q^{2})}{q^{2}\sqrt{s_{0}-q^{2}}} = \frac{1}{2\pi} \int_{s_{0}}^{\infty} \frac{ds \ln |F_{\pi}(s)|^{2}}{s\sqrt{s-s_{0}}(s-q^{2})}, \qquad q^{2} < s_{0}, \tag{4}$$

$$\Leftrightarrow \qquad F_{\pi}(q^{2}) = \exp\left[\frac{q^{2}\sqrt{s_{0}-q^{2}}}{2\pi} \int_{s_{0}}^{\infty} \frac{ds \ln |F_{\pi}(s)|^{2}}{s\sqrt{s-s_{0}}(s-q^{2})}\right], \quad q^{2} < s_{0}. \tag{5}$$

2pi-LCSRs

The modulus representation of DR

- obtained by introducing an auxiliary function $g_{\pi}(q^2) \equiv \frac{\ln F_{\pi}(q^2)}{q^2 \sqrt{s_0 q^2}}$. [B.V. Geshkenbein, arXiv: hep-ph/9806418]
- derived by Cauchy theorem and Schwartz reflection principle for g_{π} function.
- The only assumption is that the $F_{\pi}(q^2)$ is free from zeros in the complex q^2 plane. then $\ln F_{\pi}(q^2)$ does not diverge. [H. Leutwyler, [arXiv:hep-ph/0212324]

[B. Ananthanarayan, I. Caprini and I. Imsong, arXiv:1102.3299 [hep-ph]]

- If $F_{\pi}(q^2)$ has zeros in the complex q^2 plane, deserves a separate analysis. [C.A. Dominguez, hep-ph/0102190], [B. Ananthanarayan, et al., hep-ph/0409222]
- *F*_π(*q*²) evaluated by the standard and modulus DR have a tiny difference,
 → the zeros of *F*_π(*q*²) are either absent or their influence is beyond our accuracy.

$F_{\pi}(|q^2|)$ from LCSRs

LCSRs: QCD \leftrightarrow hadron spectral, spacelike π transition, electromagnetic FFs; $B \rightarrow \pi$ FFs.

LCSRs on $F_{\pi}(|q^2|)$: energetic pion, [J. Bijnens and A. Khodjamirian, hep-ph/0206252]

[V. Braun, A. Khodjamirian and M. Maul, hep-ph/9907495]

- soft dominated, one quark carries almost the whole momentum.
- asymptotic LCDA, asymptotic result of pQCD.
- $F_{\pi}(Q^2 = |q^2|)$ in terms of LCDA, Gegenbauer moments dependence.

current accuracy:

$$F_{\pi}^{(\text{LCSR})}(Q^2) = F_{\pi}^{(\text{as})}(Q^2) + \sum_{n=2,4,..} a_n(\mu_0) f_n(Q^2,\mu,\mu_0), \qquad (6)$$

$$F_{\pi}^{(\mathrm{as})}(Q^2) = F_{\pi}^{(\mathrm{tw}2,\mathrm{as})}(Q^2) + F_{\pi}^{(\mathrm{tw}4,\mathrm{LO})}(Q^2) + F_{\pi}^{(\mathrm{tw}6,\mathrm{fact})}(Q^2)$$
(7)

the coefficient functions $f_n(Q^2, \mu, \mu_0)$ are the integral of Gegenbauer polynomials with the Borel exponent.

Shan Cheng (HNU)

$F_{\pi}(s)$ from the BABAR measurement, $[4m_{\pi}^2, 2.95^2]$ GeV²

$$F_{\pi}^{data}(s) = \sum_{n=0,\cdots}^{N} \frac{c_n^{\pi} B W_n^{GS}(s)}{c_n^{\pi}}, \quad c_0^{\pi} \to \frac{1 + c_{\omega}^{\pi} B W_n^{KS}(s)}{1 + c_{\omega}^{\pi}}, \tag{8}$$

$$BW_{\rho_n}^{GS}(s) = \frac{m_n^2 + m_n \Gamma_n d(m_n)}{m_n^2 - s + f(s) - i\sqrt{s}\Gamma_n(s)}, \quad BW_{\omega}^{KS}(s) = \frac{m_{\omega}^2}{m_{\omega}^2 - s - i m_{\omega}\Gamma_{\omega}}.$$
 (9)

- Vector dominate model (VDM), with the modified Breit-Winger formula, Gounaris-Sakuria (GS) and Kühn-Santamaria (KS) representations,
 [G.J. Gounaris and J.J Sakuria, Phys.Rev.Lett. 21(1968)244], [J. H. Kühn and A. Santamaria, Z.Phys.C48(1990)445]
- $N = 4 \& \rho \omega$ interaction, describes the BABAR data by 18 parameters. [J. Lees et al., 1205.2228 [hep-ex]]

High energy tail of $F_{\pi}(s)$, $[2.95^2,\infty)~{ m GeV^2}$

- The application of $F_{\pi}^{data}(s)$ at high energy tails is not physical: resonances above N = 4 are not included, $F_{\pi}^{data}(s) \not\rightarrow 1/s$ at adequate large s.
- The dual-resonance models and $N_c = \infty$ limit of QCD.

[C.A. Dominguez, hep-ph/0102190], [C. Bruch, A. Khodjamirian and J H. Kuhn, hep-ph/0409080]

$$F_{\pi}^{(tail)}(s) = F_{\pi}^{(dQCD)}(s) = \sum_{n=0}^{\infty} c_n \ BW_n(s) , \quad BW_n(s) = BW_n^{KS}(s), \quad (10)$$

$$c_n = \frac{(-1)\Gamma(\beta - 1/2)}{\alpha' m_n^2 \sqrt{\pi} \, \Gamma(n+1) \Gamma(\beta - 1 - n)}, \quad m_n^2 = m_\rho^2 (1+2n).$$
(11)

• $\alpha' = 1/2m_{\rho}^2$, $\Gamma_n = \gamma m_n$ and $\gamma = 0.193$ is adjusted to the total width of $\rho(770)$,

- The matching condition $|F_{\pi}^{(\textit{data})}(s_{\textit{max}})| = |F_{\pi}^{(\textit{tail})}(s_{\textit{max}})|$ indicates $eta = 2.09 \pm 0.13$.
- † the resonance width partially account for the coupling to the continuum of intermediate hadronic states.

 $\dagger \ \text{reproduce } {\sf F}_{\pi}^{(\mathrm{dQCD})}(0) = 1 \text{ and } \lim_{s \to -\infty} {\sf F}_{\pi}^{(\mathrm{dQCD})}(s) \sim 1/s^{\beta-1}.$

$F_{\pi}(s): [4m_{\pi}^2, 2.95^2] + [2.95^2, \infty) \text{ GeV}^2$

$$|F_{\pi}(s)| = \Theta(s_{\max} - s) |F_{\pi}^{(\text{data})}(s)| + \Theta(s - s_{\max}) |F_{\pi}^{(\text{tail})}(s)|.$$

$$(12)$$

Result of a_n^{π}

- substitute Eq.(12) to Eq.(5) \rightarrow $F_{\pi}^{(disp)}(Q^2)$, Eq.(7) \rightarrow $F_{\pi}^{(asy)}(Q^2)$.
- the 2nd term in the r.h.s of Eq.(6) gives significant effect.
- do χ^2 fit to reveal the more inner structures of pion meson,

$$\chi^{2} = \sum_{i=1}^{N_{p}} \frac{1}{\sigma_{i}^{2}} \left[\sum_{n=2,4,..}^{n_{\max}} a_{n}(\mu_{0}) f_{n}(Q_{i}^{2},\mu_{0}) + F_{\pi}^{(\mathrm{as})}(Q_{i}^{2}) - F_{\pi}^{(\mathrm{disp})}(Q_{i}^{2}) \right]^{2}.$$
(13)

Shan Cheng (HNU)

$a_n^{\pi}(1 \text{ GeV})$ obtained in our formalism

- Fitting points $Q^2 = 1.0, 1.5, 2.0, 3.0, 5.0, 7.0, 9.0,$
- The weighting coefficients

$$\sigma_i = \sqrt{[\Delta F_{\pi}^{(\text{LCSR})}(Q_i^2, a_n(\mu_0) = 0)]^2 + [\Delta F_{\pi}^{(\text{disp})}(Q_i^2)]^2}$$

• $a_2^{\pi}(1 \text{ GeV})$ obtained in our formalism,

Model	$a_2(1 \text{GeV})$	$a_4(1 { m GeV})$	$a_6(1 \text{GeV})$	$a_8(1 { m GeV})$	$\chi^2_{\rm min}/{\rm ndf}$
{a ₂ }	0.302 ± 0.046				4.08
$\{a_2, a_4\}$	0.279 ± 0.047	0.189 ± 0.060			0.75
$\{a_2, a_4, a_6\}$	0.270 ± 0.047	0.179 ± 0.060	0.123 ± 0.086		0.073
$\{a_2, a_4, a_6, a_8\}$	0.269 ± 0.047	0.185 ± 0.062	0.141 ± 0.096	0.049 ± 0.116	0.013

pprox -15% correlations are found between different moments.

Result of a_n^{π}

 $a_n^{\pi}(1 \text{ GeV})$ obtained in our formalism

Shan Cheng (HNU)

The 2nd TianWen-forum

Shan Cheng (HNU)

•

• $|F_{\pi}(s)| \sim |F_{\pi}^{(disp)}(|q^2|)|$ at $|\sqrt{q^2}| \gtrsim 3 \, GeV$,

manifests analyticity of the modulus representation.

August 14, 2020 17 / 20

- Modulus representation of DR, LCSRs calculation + BABAR data, $a_2(1 \text{ GeV}) = (0.22 - 0.33), \quad a_4(1 \text{ GeV}) = (0.12 - 0.25).$
- Pion deviates from the purely asymptotic one, a_2^{π} is not enough, more inner structures.
- † the role of form factor zeros.
- † global fit with F_{π} with timelike and spacelike measurements, $F_{\pi\gamma\gamma^*}$.
- $\dagger \tau \rightarrow K \pi I \nu_I$ transition, K electromagnetic form factors $\rightarrow a_n^K$.

The End, Thanks.

, [K.K. Seth, arXiv:1401.7054[hep-ex]]

- Cyclotron Lab, $Q^2 = 0.176 \text{GeV}^2$ in electron production;
- NOVOSIBIRSK and ORSAY collaboration, $0.64 \leqslant Q^2 \leqslant 1.40 \,\mathrm{GeV}^2 \& 1.35 \leqslant Q^2 \leqslant 2.38 \,\mathrm{GeV}^2$, e^+e^- annihilation.
- CLEO collaboration, $Q^2 = 9.6, 13.48 \,\mathrm{GeV}^2$.
- Belle collaboration, $4m_{\pi}^2 \leqslant Q^2 \leqslant 3.125\,{
 m GeV}^2$, $\tau^- \to \pi^- \pi^0
 u_{\tau}$ decay.
- BABAR collaboration, $4m_{\pi}^2 \leqslant Q^2 \leqslant 3.1^2 \, {
 m GeV}^2$, $e^+e^- \to \pi^+\pi^-(\gamma)$.

Review of $F_{\pi}(q^2)$ measurements, [M.R. Whalley, et al., J.Phys. G 29 (2003) A1]

- Harvard & Cornell Collaboration, $0.15 \leqslant |q^2| \leqslant 10 {\rm GeV}^2$;
- DESY collaboration, $|q^2| = 0.35, 0.70 \text{GeV}^2$, electron production;
- Jefferon Lab F_{π} collaboration, $0.6 \leq |q^2| \leq 1.6 \text{GeV}^2, |q^2| = 2.45 \text{GeV}^2$.