Mass Resolution in GPUPWA

Min Tianjue For PWA Working Group Institute of High Energy Physics Mar. 16th, 2017

Outline

- Introduction
- Mass resolution in GPUPWA
- Summary

Introduction

- Mass resolution: essential for narrow resonances
 - Width measurement
 - Correct treatment of interference term not only on the peak but also in the tail

In Breit-Wigner \otimes Gaussian case, mass resolution should be considered when $\Gamma{\lesssim}6\sigma$

- ✓ Typical mass resolution at BESIII is 5 MeV/ c^2
- ✓ Mass resolution should be considered for states such as ω , φ , $f_1(1285)$, η_{σ} , Z_{σ} ...

Introduction

• Mass resolution affects both width and branching ratio measurements

- ✓ Model: X(wide) + X(narrow) + interference
 - Generate toy MC with resolution (5 MeV/c²)
 - Fit to toy MC without resolution (5 MeV/c²)
- ✓ Width and branching ratio measurements are affected when $\Gamma \lesssim 6\sigma$

```
\omega, \varphi, f_{\scriptscriptstyle 1}(1285), \eta_{\scriptscriptstyle c'} Z_{\scriptscriptstyle c'} \dots
```

Introduction

- PWA with mass resolution at BESIII
 - Mass resolution should be considered in many analyses
 - Dalitz analyses: $D^+ \rightarrow K_S \pi^+ \pi^0$, $\eta'/\eta \rightarrow 3\pi$, $\eta' \rightarrow \eta \pi \pi$, ...
 - PWA of J/ $\psi \rightarrow K^+K^-\pi^0$ **BAM-114**
 - PWA of $J/\psi(\psi') \rightarrow \eta' \pi^+ \pi^- BAM-225$
 - PWA of $J/\psi \rightarrow \gamma \eta \eta'$ **Dr. Liu Beijiang's talk at 2014 BESIII Collab. Meeting** [link]
 - No general framework for PWA with resolution
 - Growing data size \Rightarrow GPUPWA

 $\int \psi(\psi', e^+e^-) \rightarrow \pi^0 \pi^+ \pi^ \int \psi \rightarrow \gamma \pi^0 \pi^+ \pi^ \vdots$ We need GPUPWA withmass resolution ©

J. Phys. Conf. Ser. 219, 042031

Phys. Rev. D 89, 052001 Phys. Rev. D 92, 012014 Phys. Rev. Lett. 118, 012001 BAM-205

...

Mass resolution in GPUPWA

How to describe mass resolution in PWA?

$$\frac{d\sigma}{d\Phi} = |\sum F_i A_i|^2 = \sum F_i F_j^* A_i A_j^* = \sum F_i F_j^* T_i T_j P_i P_j^*$$
 Propagator
where mass resolution matters

Magnitude/Phase independent of mass

Orbital Tensor weak dependency on mass

w/o mass resolution $P_i P_j^* = f_i(x) f_j^*(x) \cdot f_i(y) f_j^*(y) \cdot f_i(z) f_j^*(z) \cdot ...$

w/ mass resolution $P_i P_j^* = f_i(x) f_j^*(x) \otimes g(x) \cdot f_i(y) f_j^*(y) \otimes g(y) \cdot f_i(z) f_j^*(z) \otimes g(z) \cdot ...$ $\equiv h_{ij}(x) \cdot h_{ij}(y) \cdot h_{ij}(z) \cdot ...$

How to describe mass resolution in PWA?

- Analytical convolution: apply to only a few functions
- Numerical convolution:
 - $h_{ij}(x) = \int f_i(x-m)f_j^*(x-m)g(m)dm \simeq \sum_k w(m_k)f_i(x-m_k)f_j^*(x-m_k)$
 - g(m) is Gaussian:
 - Use Gauss-Hermite quadrature
 - High precision with quite a few sampling points
 - <u>http://mathworld.wolfram.com/Hermite-GaussQuadrature.html</u>
 - g(m) is double Gaussian:
 - Perform two separate Gauss-Hermite quadrature

Code design

- GPUPropagatorResolution
 - abstract base class for propagators
 - Sampling & store in memory
 - Support resolution of arbitrary shape
 - Single Gaussian: 11 points Gauss-Hermite quadrature
 - Double Gaussian: 2*11 points Gauss-Hermite quadrature
- GPUBasicPartialWaveResolution
 - abstract base class for partial waves
 - Provide interface for management of parameters
- GPUPartialWaveResolution/GPURadiativePartialWaveResolution
 - *class* for partial waves of non-radiative/radiative decays
 - Inherit from GPUBasicPartialWaveResolution
 - Provide interface for contraction
- Resolution.cl
 - __kernel functions that do actual calculations

GPUPartialWaveResolution GPURadiativePartialWaveResolution

I/O check: $J/\psi \rightarrow \pi^0 \pi^+ \pi^-$

I/O check: PWA w/o mass resolution

PWA w/o mass resolution \Rightarrow *Large deviation (>3\sigma)*

I/O test: PWA w/ single Gaussian resolution

		Input	Output	Δ /σ
0	M (MeV/c²)	775.26 775.6±0.3		1.1
μ	Г (MeV/c²)	149.1	148.2 ± 0.8	1.1
	M (MeV/c²)	782.65		
	Г (MeV/c²)	8.49	9.2 ^{+2.0} -1.7	0.4
ω	Magnitude	0.1	0.113 ± 0.006	2.2
	Phase	2.8	2.72 ± 0.05	1.6
	log likelihood	74520.4		
χ^2/N	$dof \equiv (\sum \Delta ^2 / \sigma^2)$	10.1/	6	

PWA w/ single Gaussian resolution \Rightarrow *reasonable results*

MC Projection v.s. data for $M[\pi^+\pi^-]$

I/O test: PWA w/ double Gaussian resolution

		Input	Output	Δ /σ
0	M (MeV/c²)	775.26	775.26 775.5±0.3	
μ	Γ (MeV/c²)	149.1	148.3±0.8	1.0
	M (MeV/c ²)	782.65	782.6±0.7	0.1
	Γ (MeV/c²)	8.49	9.7 ^{+1.7} -1.5	0.8
ω	Magnitude	0.1	0.112 ± 0.006	2.0
	Phase	2.8	2.75 ± 0.05	1.0
	log likelihood	74521.6		
χ^2/N_c	$dof \equiv (\sum \Delta ^2 / \sigma^2)$	7.3/6	6	

PWA w/ double Gaussian resolution \Rightarrow *reasonable results*

MC Projection v.s. data for $M[\pi^+\pi^-]$

Conclusion from I/O test

- PWA without mass resolution leads to large deviation between input and output on width/magnitude (→branching ratio) of narrow resonances
- PWA with mass resolution gives reasonable results
- Those conclusions hold in several other I/O tests
 - J/ $\psi \rightarrow \rho^0 \pi^0$, $\rho \pi$, $\rho_3 \pi \rightarrow \pi^0 \pi^+ \pi^-$
 - $J/\psi \rightarrow \gamma f_0 \rightarrow \gamma K^+K^-$
 - $J/\psi \rightarrow \gamma f_0, \gamma f_0' \rightarrow \gamma K^+K^-$
 - •

Time consumption

	w/o resolution	w/ s.g. res.	w/ d.g. res.
Start up (sec.)	2.17	2.16	2.07
MC integral (sec.)	0.91	1.08	1.07
LUT creation (sec.)	0.07	0.1	0.1
Fit (sec.)	52.49	31.64	32.83
Avg. fit time (sec.)	0.0030	0.0030	0.0025
Total (sec.)	55.57	34.88	35.97

✓ *Time consumption of sampling is negligible*

 Total time consumption decreases because it is easier for fitter to find minimum with correct model than with wrong one

Summary

- Mass resolution is essential for studying narrow resonances with PWA
 - Width, branching ratio, ...
- PWA with mass resolution is implemented within the GPUPWA framework
 - ✓ Support mass resolution of arbitrary shape/dimension (uncorrelated)
 - ✓ I/O checks show good performance
 - ✓ Time consumption of sampling is negligible
 - ✓ Total time consumption decreases because it is easier for fitter to find minimum with correct model than with wrong one
 - ✓ PWA of processes including narrow resonances such as $J/\psi(\psi', e^+e^-) \rightarrow \pi^0 \pi^+ \pi^-$ become possible
- Future improvements
 - Extreme narrow resonances: more sophisticated sampling method (e.g., FFT)
 - Correlated multi-dimensional resolution

• ...

Backup

I/O check: $\rho^0 - \rho - \rho_3 \text{ in J}/\psi \rightarrow \pi^0 \pi^+ \pi^-$

18

Input

• ρ

- M = 1701 MeV/c²
- Γ = 17 MeV/c²
- Magnitude = 19.85
- Phase = 0.501
- ρ₃
 - M = 1687 MeV/c²
 - Γ = 51 MeV/c²
 - Magnitude = 89
 - Phase = 0.1213

- ρ⁰
 - M = 775.26 MeV/c²
 - Γ = 149.1 MeV/c²
- 69420 "data" events
- 931384 phsp MC events

Output: w/o resolution

		Input	Output
	M (MeV/c²)	1687	1686.7±0.6
	Γ (MeV/c²)	51	64.5 ^{+1.6} -1.5
ρ	Magnitude	89	91.42±0.96
	Phase	0.1213	-0.068±0.015
	M (MeV/c²)	1701	1700.1±0.2
	Γ (MeV/c²)	17	15.0±0.3
ρ_3	Magnitude	19.85	18.52±0.16
	Phase	0.501	0.271±0.014
	log likelihood		45400.5
	χ ² /N _{dof} (p-value)		650.6/8 (0)

Output: w/ single Gaussian resolution

		Input	Output
	M (MeV/c²)	1687	1686.9 ± 0.5
-	Γ (MeV/c²)	51	50.3±1.3
ρ	Magnitude	89	87.47±0.92
	Phase	0.1213	0.137±0.017
	M (MeV/c²)	1701	1700.9±0.2
	Γ (MeV/c²)	17	17.0±0.3
ρ ₃	Magnitude	19.85	19.57±0.22
	Phase	0.501	0.504±0.016
	log likelihood		45554.2
	χ^2/N_{dof} (p-value)		5.8/8 (0.67)

Output: w/ single Gaussian resolution

Output: w/ double Gaussian resolution

		Input	Output
	M (MeV/c²)	1687	1686.9 ± 0.5
_	Γ (MeV/c²)	51	50.7 ^{+1.3} -1.2
ρ	Magnitude	89	86.88±0.91
	Phase	0.1213	0.134±0.017
	M (MeV/c²)	1701	1701.0±0.2
_	Γ (MeV/c²)	17	16.9±0.3
$ ho_3$	Magnitude	19.85	19.40±0.21
	Phase	0.501	0.512±0.016
	log likelihood		45556.3
	χ^2/N_{dof} (p-value)		11.3/8 (0.19)

Output: w/ double Gaussian resolution

Comparison

		loout	Output		
		input	w/o res.	w/ s.g. res.	w/ d.g. res.
	M (MeV/c²)	1687	1686.7 ± 0.6	1686.9 ± 0.5	1686.9 ± 0.5
2	Γ (MeV/c²)	51	64.5 ^{+1.6} -1.5	50.3±1.3	50.7 ^{+1.3} _{-1.2}
ρ	Magnitude	89	91.42±0.96	87.47±0.92	86.88±0.91
	Phase	0.1213	-0.068±0.015	0.137±0.017	0.134±0.017
	M (MeV/c²)	1701	1700.1±0.2	1700.9 ± 0.2	1701.0±0.2
2	Γ (MeV/c²)	17	15.0±0.3	17.0±0.3	16.9±0.3
$ ho_3$	Magnitude	19.85	18.52±0.16	19.57±0.22	19.40±0.21
	Phase	0.501	0.271±0.014	0.504±0.016	0.512±0.016
	log likelihood		45400.5	45554.2	45556.3
	χ^2/N_{dof} (p-value)		650.6/8 (0)	5.8/8 (0.67)	11.3/8 (0.19)

I/O check: single f_0 in J/ $\psi \rightarrow \gamma K^+K^-$

26

one narrow f₀ state

- Input parameters
 - M = 1554.0 MeV/c²
 - Γ = 14.7 MeV/c²
- "Data": 7042 events
- PHSP MC: 218760 events

w/o resolution

- Input parameters
 - M = 1554.0 MeV/c²
 - Γ = 14.7 MeV/c²
- Output parameters
 - M = $1544.2^{+0.1}_{-0.1}$ MeV/c²
 - Γ = 17.1^{+0.3}_{-0.3} MeV/c²
 - log L = 3991.0

w/ single Gaussian resolution

- Input parameters
 - M = 1554.0 MeV/c²
 - Γ = 14.7 MeV/c²
- Output parameters
 - M = $1544.2^{+0.1}_{-0.1}$ MeV/c²
 - Γ = 14.9^{+0.3}_{-0.3} MeV/c²
 - log L = 3981.7

w/ double Gaussian resolution

- Input parameters
 - M = 1554.0 MeV/c²
 - Γ = 14.7 MeV/c²
- Output parameters
 - M = $1544.2^{+0.1}_{-0.1}$ MeV/c²
 - Γ = 15.2^{+0.3}_{-0.3} MeV/c²
 - log L = 3988.8

Comparison

		no resolution	single gaussian	double gaussian	
innut	mass (MeV/c ²)	1554.0			
input	width (MeV/c²)	14.7			
output	mass (MeV/c ²)	1544.2 ^{+0.1} -0.1	1544.2 ^{+0.1} -0.1	1544.2 ^{+0.1} -0.1	
	width (MeV/c²)	17.1 ^{+0.3} -0.3	14.9 ^{+0.3} -0.3	15.2 ^{+0.3} -0.3	
	log L	3991.0	3981.7	3988.8	

I/O check: f_0-f_0 interference in J/ $\psi \rightarrow \gamma K^+K^-$

32

one ordinary f_0 and one narrow f_0

- Input parameters
 - M1 = 1530.5 MeV/c²
 - Γ1 = 52.9 MeV/c²
 - M2 = 1554.2 MeV/c²
 - Γ2 = 10.8 MeV/c²
 - Mag2 = 0.87098
 - Phase2 = 1.6201
- "Data": 17596 events
- PHSP MC: 218760 events

w/o resolution

Input parameters

- M1 = 1530.5 MeV/c²
- Γ1 = 52.9 MeV/c²
- M2 = 1554.2 MeV/c²
- Γ2 = 10.8 MeV/c²
- Mag2 = 0.87098
- Phase2 = 1.6201

Output parameters

- M1 = $1528.3^{+0.4}_{-0.4}$ MeV/c²
- $\Gamma 1 = 54.7^{+1.6}_{-1.6} \text{ MeV/c}^2$
- M2 = $1553.0^{+0.4}_{-0.4}$ MeV/c²
- Γ2 = 14.3^{+1.0}_{-0.9} MeV/c²
- Mag2 = 1.162
- Phase2 = 1.374
- log L = 3949.1

w/o resolution

w/ single Gaussian resolution

Input parameters

- M1 = 1530.5 MeV/c²
- Γ1 = 52.9 MeV/c²
- M2 = 1554.2 MeV/c²
- Γ2 = 10.8 MeV/c²
- Mag2 = 0.87098
- Phase2 = 1.6201

Output parameters

- M1 = $1529.3^{+0.4}_{-0.4}$ MeV/c²
- Γ1 = 53.2^{+1.4} _{-1.4} MeV/c²
- M2 = $1553.7^{+0.5}_{-0.5}$ MeV/c²
- Γ2 = 8.1^{+1.1}_{-1.0} MeV/c²
- Mag2 = 0.766
- Phase2 = 1.501
- log L = 3950.1

w/ single Gaussian resolution

w/ double Gaussian resolution

Input parameters

- M1 = 1530.5 MeV/c²
- Γ1 = 52.9 MeV/c²
- M2 = 1554.2 MeV/c²
- Γ2 = 10.8 MeV/c²
- Mag2 = 0.87098
- Phase2 = 1.6201

Output parameters

- M1 = $1529.8^{+0.4}_{-0.4}$ MeV/c²
- Γ1 = 55.3^{+1.4} _{-1.4} MeV/c²
- M2 = $1554.1^{+0.5}_{-0.5}$ MeV/c²
- $\Gamma 2 = 9.9^{+1.0}_{-0.9} \text{ MeV/c}^2$
- Mag2 = 0.8350
- Phase2 = 1.6124
- log L = 3950.0

w/ double Gaussian resolution

Comparison

		no resolution	single gaussian	double gaussian		
	mass1 (MeV/c ²)	1530.5				
	width1 (MeV/c ²)	52.9				
in a st	mass2 (MeV/c ²)	1554.2				
input	width2 (MeV/c²)	10.8				
	mag2	0.87098				
	phase2	1.6201				
	mass1 (MeV/c ²)	1528.3 ^{+0.4} -0.4	1529.3 ^{+0.4} -0.4	1529.8 ^{+0.4} -0.4		
	width1 (MeV/c ²)	54.7 ^{+1.6} -1.6	53.2 ^{+1.4}	55.3 ^{+1.4} -1.4		
	mass2 (MeV/c ²)	1553.0 ^{+0.4} -0.4	1553.7 ^{+0.5} -0.5	1554.1 ^{+0.5} -0.5		
output	width2 (MeV/c²)	14.3 ^{+1.0} -0.9	8.1 ^{+1.1} -1.0	9.9 ^{+1.0} -0.9		
	mag2	1.162	0.766	0.8350		
	phase2	1.374	1.501	1.6124		
	log L	3949.1	3950.1	3950.0		

Extreme narrow resonance?

Resolution = 5

Gauss-Hermite quadrature's performance is bad when $\Gamma \leq \sigma$

$$\int f(x-y) g(y) dy \approx \sum_{i} f(x-yi) g(yi)$$

