
Global strategy of tracking on
the basis of Graph Neural
Network for BES-III CGEM

inner detector
Egor Shchavelev

Saint Petersburg State University

Tracking for BESIII CGEM
● The purpose of this study was to summarize the algorithms and programs

developed on the basis of deep learning methods for tracking events obtained
in the fixed target BM@N JINR experiment for the track reconstruction with
the data of the tracking detector of the BES-III collider experiment in Beijing
IHEP. Our study is not intended to interfere in any way with the existing
BES-III tracking project, but just shows the prospects for using ML in tracking

Au+Au BM@N MC simulated eventBM@N configuration

Tracking for BESIII CGEM
● BESIII CGEM is used as a demonstrator for the novel tracking approach
● BESIII CGEM Monte-Carlo simulation was used followed by a simple

clustering algorithm to reconstruct CGEM hits

One of ways to decrease the fake number is to
rotate strips of one layer on a small angle
(5-15 degrees) in respect to another layer

- Real hit (electron avalanche center)

- Spurious crossing

(BM@N)Angle between strips 90
degrees,
UrQMD event Au-Au, 4 A·GeV

(BM@N)Angle between strips 15
degrees, UrQMD event Au-Au, 4
A·GeV

- hit - fake

Problems of microstrip gaseous chambers

Although small angle between layers removes a lot of fakes, pretty
much of them are still left

Problems of CGEM at BES-III and of GEM at BM@N are the same:

Why neural networks?
● Modern experiments produce vast amount of data in real time
● Kalman filter based tracking approaches can not handle such giant data

volumes in a reasonable time

● Modern Neural Network based approaches are coming to rescue -- they can
be easily run in parallel on GPU achieving comparable results in terms of
purity and efficiency

Event as a graph conception

● Consider following BES-III event
● Hits are represented as nodes

of the graph;
● Nodes are fully connected

between adjacent layers;
● Hits features (X, Y, Z) are being

propagated inside the Graph
Neural Network (GNN) through
their connections to the other
hits;

Event as a graph conception

● Hits are represented as nodes
of the graph;

● Nodes are fully connected
between adjacent layers;

● Hits features (X, Y, Z) are being
propagated inside the Graph
Neural Network (GNN) through
their connections to the other
hits;

Graph Neural Network

● Graph Neural Network approach for tracking
was initially presented by HEP.TrkX project at
LHC and based on Interaction Networks
approach adapted for particle tracking;

● We introduced derivative graph as a
preprocessing step to deal up with noise hits
(fakes) produced by CGEM detector

● Note: LHC detectors do not produce any fake
hits (they are pixel-based)

Graph Neural Network
● Graph Neural Network consists of 3 main parts: Input network, Edge network and

Node network
● Edge network is the MLP with 2 layers. For each edge, it selects the associated

nodes' features, then applies network layers with sigmoid activation.
● Node network is the MLP with 2 layers and Tanh activations. It computes new

node features on the graph. For each node, it aggregates the neighbor node
features (separately on the input and output side), and combines them with the
node's previous features in a fully-connected network to compute the new
features.

● Node and Edge network can be stacked and iterated over

A derivative of the ordered graph
● We take graph G and compute the ‘derivative’ graph H such as:

○ Interpret nodes of graph G as edges of the graph H
○ Edges of the graph G become as nodes of the graph H
○ One edge in the derivative graph is an ordered path of length 2 of the G graph
○ In fact, the edge of the derivative graph is a whole track of the event

Graph Neural Network
● The goal of the Graph Neural

Network to recover the true
segments of the graph G (marked
orange)

● That is, GNN is labeling every
segment with the weight W in [0,1]
interval

● We consider a segment as a true
segment if W > 0.5

Results(efficiency)
● Recall (percent of the found real segments)

○ 98.0385%
● Precision (percent of the found true segments interpreted as true segments)

○ 86.5048%

Results (speed)
● Constructing derivative of the graph (preprocessing step):

○ ~20 events per second (single threaded, CPU, raw python 3.7, Intel 7700K)
○ ~580 events per second (multi threaded, CPU, C++, Intel Xeon E3-1230)

● Inference of the GNN:
○ ~300 events per second (single GPU Nvidia 1080 Ti)

● A preprocessing step could be greatly faster if rewritten in C++ (x30 speed-up!)
● GNN inference could be easily run in a multi-GPU environment

Conclusion
● Although the GNN approach demonstrate promising results it is a bit overkill

for a detector with 3 stations, it can make much more profit on the more
complex detectors;

● Current approach demonstrates potential in terms of speed: current
implementation written in pure python has an obvious bottleneck in the
preprocessing. C++ preprocessing speeds up the tracking process at least by
30 times now;

● GNN model could be optimized for the BES-III detector in terms of GPU
memory consumption and GPU speed as well.

