Update on QA procedure and use of CgemLineFit in it

Lia Lavezzi

2020-10-29

Fixed CgemCosmicRayQA

- usage of alignment functions
- computation of intersections of the fit track to the planes
- computaion of residual distros

- The dotted line is the real cosmic ray
- The blue stars are the positions where the cosmic ray is detected on the layers as positioned in the real setup

EXPERIMENTAL POINTS before alignment

- The red stars are the measurements on the layers, they are not aligned since the position of the layers is not corrected
- These are the points without alignment

GLOBAL (aligned) reference frame

- Track from fit
- Intersections of the fitted track on the layers, coordinates x,y,z
- Point Of Closest Approach (POCA) of the fitted track to (0,0,0)

LOCAL (not-aligned) reference frame

- Experimental hits
- Reco clusters 1D
- Reco clusters 2D
- Intersections of the fitted track on the layers, coordinates f, v

MY PREVIOUS VERSION WAS WRONG

- I was computing the residuals all in the GLOBAL frame
- porting there the experimental positions with point_invTransform
- BUT I was finding the intersections of the fitted line to **non aligned** layers (LOCAL) with my own code → WRONG

NEW VERSION IS FIXED

- I compute the residuals in the LOCAL frame
- I compute the intersections in the GLOBAL aligned frame with the **dedicated** function

bool gotit;

if(align_flag==true) gotit = midplane->getPointAligned(layerid, linefit, posup, posdown, phivup, phivdown);
else gotit = midplane->getPointIdealGeom(layerid, linefit, posup, posdown, phivup, phivdown);

- Use $\boldsymbol{\varphi}$ and \boldsymbol{v} from the LOCAL frame

residual r*phi - L1 bottom

PREVIOUS VERSION (WRONG)

NEW VERSION (FIXED)

There is no actual difference in the results

residual z - L1 bottom

PREVIOUS VERSION (WRONG)

NEW VERSION (FIXED)

There is no actual difference in the results

Test 1 - use Loop All

- Use it on every test plane
- Tested alignment of residual distros
- Tested chi2 cut
- Tested cut on cluster charge

Loop All on all planes

• Alignment **on**, parameters are:

Elements	<pre>DeltaX(mm)</pre>	<pre>DeltaY(mm)</pre>	DeltaZ(mm)	RX(rad)	RY(rad)	RZ(rad)
layer1	0.0889837	0.0000000	1.8009692	0.0000000	0.000000	-0.0092171
layer2	0.0000000	-0.0000000	-0.0000000	0.0000000	0.0000000	0.000000
layer3	0.000000	0.000000	0.0000000	0.0000000	0.0000000	0.000000

- LoopAll algorithm
- Test all the layers, one by one
- L1 TOP and L2 BOTTOM have problems

L1 BOTTOMn FITTED track120502n VALID track (after cuts)75089efficiency0.8520955133background component0.0238117434	L1 TOPn FITTED track0n VALID track (after cuts)0efficiency-nanbackground component-nan
L2 BOTTOM	L2 TOP
n FITTED track6402n VALID track (after cuts)3581efficiency0.8553476682background component0.01396258028	n FITTED track 126655 n VALID track (after cuts) 81455 efficiency 0.8554907618 background component 0.01419188509

Loop All on all planes

• Alignment **on**, parameters are:

lements	<pre>DeltaX(mm)</pre>	<pre>DeltaY(mm)</pre>	DeltaZ(mm)	RX(rad)	RY(rad)	RZ(rad)
layer1	0.0889837	0.000000	1.8009692	0.000000	0.0000000	-0.0092171
layer2	0.0000000	-0.0000000	-0.0000000	0.0000000	0.0000000	0.000000
layer3	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.000000

LoopAll algorithm •

DISTRIBUTIONS

XZ

- Test all the layers, one by one •
- L1 TOP and L2 BOTTOM have problems: the LoopAll fit does not work fine here! •

The residual distributions

• Alignment **on**, parameters are:

lements	<pre>DeltaX(mm)</pre>	<pre>DeltaY(mm)</pre>	DeltaZ(mm)	RX(rad)	RY(rad)	RZ(rad)
layer1	0.0889837	0.0000000	1.8009692	0.000000	0.0000000	-0.0092171
layer2	0.0000000	-0.0000000	-0.0000000	0.000000	0.0000000	0.000000
layer3	0.0000000	0.0000000	0.0000000	0.000000	0.0000000	0.000000

- LoopAll algorithm
- Test all the layers, one by one
- Chi2 cut = 20

chi2 CUT scan

• Alignment **on**, parameters are:

Elements	<pre>DeltaX(mm)</pre>	<pre>DeltaY(mm)</pre>	DeltaZ(mm)	RX(rad)	RY(rad)	RZ(rad)
layer1	0.0889837	0.000000	1.8009692	0.0000000	0.0000000	-0.0092171
layer2	0.000000	-0.0000000	-0.0000000	0.0000000	0.0000000	0.000000
layer3	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	0.000000

- LoopAll algorithm
- Run a chi2 scan for L1 BOT

Chi2 scanned in the values [1,2,3,5,10,20,50,100]

There is not a real and relevant difference

cluster energy

• Alignment **on**, parameters are:

lements	<pre>DeltaX(mm)</pre>	<pre>DeltaY(mm)</pre>	DeltaZ(mm)	RX(rad)	RY(rad)	RZ(rad)
layer1	0.0889837	0.000000	1.8009692	0.0000000	0.0000000	-0.0092171
layer2	0.0000000	-0.0000000	-0.0000000	0.0000000	0.0000000	0.000000
layer3	0.0000000	0.000000	0.0000000	0.0000000	0.000000	0.000000

• LoopAll algorithm

See the energy distribution of the clusters used for fitting

cluster energy

• Alignment **on**, parameters are:

lements	<pre>DeltaX(mm)</pre>	<pre>DeltaY(mm)</pre>	DeltaZ(mm)	RX(rad)	RY(rad)	RZ(rad)
layer1	0.0889837	0.0000000	1.8009692	0.000000	0.0000000	-0.0092171
layer2	0.0000000	-0.0000000	-0.0000000	0.000000	0.0000000	0.000000
layer3	0.0000000	0.0000000	0.0000000	0.000000	0.0000000	0.000000

• LoopAll algorithm

See the energy distribution of the clusters used for fitting

cluster energy

• Cuts used in my old standalone were:

 $\begin{array}{c|c} L1, x \text{ view, } Q_{\text{CLUSTER}} > 20 \text{ fC} \\ L2, x \text{ view, } Q_{\text{CLUSTER}} > 15 \text{ fC} \end{array} \begin{array}{c} L1, v \text{ view, } Q_{\text{CLUSTER}} > 10 \text{ fC} \\ L2, v \text{ view, } Q_{\text{CLUSTER}} > 10 \text{ fC} \end{array}$

L1 TOP

L2 BOT

L2 TOP

chi2 CUT scan

• Alignment **on**, parameters are:

-						
Elements	DeltaX(mm)	DeltaY(mm)	DeltaZ(mm)	RX(rad)	RY(rad)	RZ(rad)
layer1	0.0889837	0.0000000	1.8009692	0.0000000	0.0000000	-0.0092171
layer2	0.000000	-0.0000000	-0.0000000	0.0000000	0.0000000	0.000000
layer3	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	0.000000

- LoopAll algorithm
- Run a chi2 scan for L1 BOT

Chi2 scanned in the values [1,2,3,5,10,20,50,100]

There is not a real and relevant difference

Also by cutting away the events where one of the tracker cluster does not pass the energy cut there is no change by chi2 cut

Test 2 - use Loop All + Max Q

- Use it on every test plane
- Tested alignment of residual distros

Test 2 – Loop All + Max Charge

• Alignment **on**, parameters are:

Elements	<pre>DeltaX(mm)</pre>	<pre>DeltaY(mm)</pre>	DeltaZ(mm)	RX(rad)	RY(rad)	RZ(rad)
layer1	0.0889837	0.000000	1.8009692	0.0000000	0.0000000	-0.0092171
layer2	0.0000000	-0.0000000	-0.0000000	0.0000000	0.0000000	0.000000
layer3	0.0000000	0.0000000	0.0000000	0.000000	0.0000000	0.000000

- LoopAll + MaxCharge algorithm
- Test all the layers, one by one
- LoopAll+MaxChage has a fitting procedure which is fine for all the planes

L1 BOTTOM n FITTED track 153160 n VALID track (after cuts) 86453 efficiency 0.8354018947 background component 0.02558615664	L1 TOPn FITTED track151818n VALID track (after cuts)86609efficiency0.8479026429background component0.02145273586
L2 BOTTOMn FITTED track150586n VALID track (after cuts)86040efficiency0.8389702464background component0.01813110181	L2 TOPn FITTED track153433n VALID track (after cuts)88779efficiency0.8349834983background component0.01954290992

Loop All on all planes

• Alignment **on**, parameters are:

Elements	<pre>DeltaX(mm)</pre>	<pre>DeltaY(mm)</pre>	DeltaZ(mm)	RX(rad)	RY(rad)	RZ(rad)
layer1	0.0889837	0.0000000	1.8009692	0.0000000	0.000000	-0.0092171
layer2	0.0000000	-0.0000000	-0.0000000	0.0000000	0.0000000	0.000000
layer3	0.000000	0.000000	0.0000000	0.0000000	0.0000000	0.000000

- LoopAll + MaxCharge algorithm
- Test all the layers, one by one

DISTRIBUTIONS

XZ

Test 2 – Loop All + Max Charge

• Alignment **on**, parameters are:

lements	<pre>DeltaX(mm)</pre>	<pre>DeltaY(mm)</pre>	<pre>DeltaZ(mm)</pre>	RX(rad)	RY(rad)	RZ(rad)
layer1	0.0889837	0.0000000	1.8009692	0.000000	0.0000000	-0.0092171
layer2	0.0000000	-0.0000000	-0.0000000	0.0000000	0.0000000	0.000000
layer3	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	0.000000

- LoopAll + MaxCharge algorithm
- Test all the layers, one by one
- LoopAll+MaxChage: what about the misalignment?

Test 3 – use the 4 layers all at once

Number of fitted tracks

• Alignment **on**, parameters are:

Elements	<pre>DeltaX(mm)</pre>	<pre>DeltaY(mm)</pre>	DeltaZ(mm)	RX(rad)	RY(rad)	RZ(rad)
layer1	0.0889837	0.0000000	1.8009692	0.0000000	0.0000000	-0.0092171
layer2	0.000000	-0.0000000	-0.0000000	0.0000000	0.0000000	0.000000
layer3	0.000000	0.000000	0.0000000	0.0000000	0.0000000	0.000000

LoopAll n FITTED track

n FITTED track89401n not passing E cut15052n VALID track (after cuts)20737

LoopAll + MaxQ

n FITTED track	132806
n not passing E cut	17535
n VALID track (after cuts)	23822

R * phi - LoopAll

- Alignment on
- Chi2 cut = 20
- Energy cut on clusters

phi – LoopAll ~ HongPeng (?)

x 0 down - x 0 down f

- Alignment on
- Chi2 cut = 20
- Energy cut on clusters

z - LoopAll

- Alignment on
- Chi2 cut = 20
- Energy cut on clusters

R * phi - LoopAll+MaxQ

- Alignment on
- Chi2 cut = 20
- Energy cut on clusters

z - LoopAll+MaxQ

- Alignment on
- Chi2 cut = 20
- Energy cut on clusters

Conclusions

- uploaded the CgemLineFit-00-00-15 rev. with the fix in CgemCosmicRayQA
- Problem in LoopAll algorithm
- Alignment not taken into consideration properly?
- Can someone independently check the residuals so that we are sure everything is fine please?