Progress on alignment

A.Q.Guo, L.H.Wu, L.L. Wang, R. Mitchell

Cgem software meeting – Nov 12 2020

Alignment for Cgem

Configuration of alignment algorithm for cosmic-ray data

- 4 layers of Cgem, position of inner 2 layer is fixed as reference
- For each layer, 6 alignment parameters: Dx, Dy, Dz, Rx, Ry ,Rz
- > Dy is also fixed because it is insensitive to cosmic-ray data

Algorithm modification

- We need re-define the layer index
 - From geometry layer \rightarrow virtual layer

• Only change the packages related to the alignment algorithm

Geometry server package

Key issue:

 How to calculate the new intersections A' if the detector is mis-aligned.

Current solution:

- We know the intersections of detector and a given line
- Changing the line parameters instead of changing the detector position
- Get the intersection with new line parameters

New algorithm

• Calculate the intersections between a given line and Cylinder with arbitrary orientation and position

Algorithm validation

Data set and configuration

- Run over run10 run17
 - CgemLineFit: Loop_maxQ, 3 clusters on each sheet
 - Chisq cut: <300 (wo alignment) <100 (w alignment)
 - Check the alignment parameter vs data sets
- Alignment procedure
 - Alignment parameters are obtained by iteration. The fit results from 1st round is used as the input for 2nd round fit
 - Initial parameters: Dx = 0, Dz = 0, Rx = 0, Ry = 0, Rz = 0
 - Iterate the procedure until parameters are converged

Derivatives $d\phi/dRx(dRy)$ vs ϕ and Z top 2, dV/dRx(dRy) vs ϕ and Z bottom 2

Fit results: Dx and Dz

Fit results: Rx,Ry,Rz

Fit results summary

Run10	Dx (mm)	Dz (mm)	Rx (Rad.)	Ry (Rad.)	Rz (Rad.)
L2	-0.3176	-0.9835	0.0051	0.0011	0.0111
L3	0.6658	-1.3040	-0.0067	0.0002	0.0173

Run17	Dx (mm)	Dz (mm)	Rx (Rad.)	Ry (Rad.)	Rz (Rad.)
L2	-0.9514	-1.6501	-0.0006	0.0009	0.0171
L3	1.8454	-2.0144	-0.0019	0.0004	0.0273

- The results from run17 are obviously different to other data-sets
- The mis-alignment effects on the top and bottom part could be different
- The signs of Dx from top and bottom part are opposite

Residual distribution – layer1-New

Residual distribution – layer1-Old

Residual distribution - layer2-New

Residual distribution - layer2-Old

Z [mm]

-300

-200

-100

0

Z [mm]

100

200

300

δX: Layer1 top

0.0

1.00

0.75

0.50

0.25

0.00

0.0

0.5

1.0

1.5

φ[rad]

2.0

2.5

3.0

0.5

1.0

1.5

φ[rad]

δV: Layer1 top

2.0

2.5

3.0

¢[rad] δV: Layer2 sheet1

δX: Layer2 sheet2 0.020 **Before alignment** 0.015 0.010 0.005 0.000 -0.005 -0.010 -0.015 -0.020 -0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.00

δX: Layer2 sheet1

0.020

0.015

0.010

DX [rad]

φ[rad] δV: Layer2 sheet1

Issue of the alignment parameters

Issue of the alignment parameters

The residual distribution contradicts the shift along X axis

Issue of the alignment parameters

The residual distribution supports the rotation around Z axis

One assumption

Alignment algorithm can't distinguish: Hypo1: $Rz \neq 0$ Hypo2: $Dx^{up} = -Dx^{down} \neq 0$ When most the tracks are vertical

MC simulation

- 100,000 events for each different type of mis-alignment effect
- Generate MC with random **position & incident angles**
 - Initial position: Y = 520 mm X \in [-160, 160]mm Z \in [-250, 250]mm
 - Incident angle: $\theta \in [65^\circ, 115^\circ] \phi \in [-151^\circ, -29^\circ]$

MC simulation

- 100,000 events for each different type of mis-alignment effect
- Generate MC with random **position & incident angles**
 - Initial position: Y = 520 mm X \in [-160, 160]mm Z \in [-250, 250]mm
 - Incident angle: $\theta \in [65^{\circ}, 115^{\circ}] \ \phi \in [-151^{\circ}, -29^{\circ}]$

Residual distributions

δX: Layer1 bottom δX: Layer1 top 0.04 0.04 0.03 0.03 0.02 0.02 0.01 0.01 DX [rad] DX [rad] 0.00 0.00 -0.01 -0.01 -0.02 -0.02 -0.03 -0.03 -0.04-0.04 -200 -100 ò 100 200 300 -200 -100 100 200 -300 -300 Ó 300 Z [mm] Z [mm] --------... Input rz = 0.02 rad

Input Dx = 2 mm

Fit Results (free all parameters)

Input Dx = 2 mm

Layer	DeltaX(mm)	DeltaY(mm)	DeltaZ(mm)	RX(rad)	RY(rad)	RZ(rad)
LO	0.0000000	0.0000000	0.000000	0.000000	0.0000000	0.000000
L1	-0.0000000	-0.0000000	0.000000	-0.0000000	0.0000000	0.000000
L2	0.2201451	0.000000	-0.1631478	0.0019563	0.0046912	0.0091267
L3	0.1684339	0.000000	0.0320131	0.0000270	-0.0006295	-0.0151647
L4	0.000000	0.000000	0.000000	0.000000	0.0000000	0.000000
L5	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

Input rz = 0.02 rad

ayer	<pre>DeltaX(mm)</pre>	<pre>DeltaY(mm)</pre>	DeltaZ(mm)	RX(rad)	RY(rad)	RZ(rad)
LO	0.0000000	0.000000	0.000000	0.0000000	0.000000	0.000000
L1	0.000000	0.000000	0.000000	-0.0000000	-0.0000000	0.000000
L2	0.0925943	-0.000000	-0.2183292	0.0026231	0.0058901	0.0129773
L3	-0.0480916	0.000000	0.1223228	-0.0002877	-0.0009969	0.0184145
L4	0.000000	0.000000	0.000000	0.0000000	0.000000	0.000000
L5	0.0000000	0.000000	0.000000	0.000000	0.000000	0.0000000

Fit Results (constrain Dx and Rz to be same)

Input Dx = 2 mm

Layer	DeltaX(mm)	DeltaY(mm)	DeltaZ(mm)	RX(rad)	RY(rad)	RZ(rad)
LO	0.0000000	0.000000	0.000000	0.0000000	0.0000000	0.000000
L1	0.0000000	-0.0000000	0.0000000	-0.0000000	-0.0000000	0.000000
L2	1.4700961	-0.0000000	-0.0458378	0.0003253	0.0054992	-0.0027844
L3	1.4700961	0.000000	-0.1237438	-0.0000281	0.0006285	-0.0027844
L4	0.0000000	0.000000	0.000000	0.000000	0.0000000	0.000000
L5	0.0000000	0.0000000	0.000000	0.0000000	0.0000000	0.000000

Input rz = 0.02 rad

Layer	DeltaX(mm)	DeltaY(mm)	DeltaZ(mm)	RX(rad)	RY(rad)	RZ(rad)
LO	0.0000000	0.000000	0.000000	0.0000000	0.000000	0.000000
L1	0.000000	0.000000	0.000000	-0.0000000	-0.0000000	-0.000000
L2	-0.2951428	-0.0000000	-0.2348143	0.0029515	0.0056707	0.0163832
L3	-0.2951428	0.000000	0.1604880	-0.0004396	-0.0010402	0.0163832
L4	0.000000	0.000000	0.000000	0.0000000	0.0000000	0.000000
L5	0.0000000	0.0000000	0.0000000	0.000000	0.000000	0.000000

Summary

Progress

- More alignment parameters are taken into account
- The fitted alignment parameters can correct the residual distribution very well
- Current cosmic-ray data couldn't disentangle the Dx and Rz properly because of the strong correlation

Next step

- More iteration
- Improve the fit procedure
- Separate run17 to several sub-samples