Better Time Measurement

Will Imoehl
Indiana University
Email: wimoehl@iu.edu

November 5, 2020

Issue

- Fit with

$$
a+\frac{b e^{-c(x-d)}}{1+e^{-f(x-t)}}
$$

- Currently use parameter t
- This is unstable - similar shapes give different t values
- Large interplay between parameters
- Other attempts were
- Time at half max
- Function fits data well - no need to change functions

Better Time: Time at Maximum?

- Issue with half max is error propagation not correct
- Similar solution - time at maximum
- Can solve analytically (steps in backup):

$$
\frac{d f u n c}{d x}=0 \Longrightarrow t_{\max }=-\frac{1}{f} \ln \left(\frac{c}{f-c}\right)+t
$$

- This should be more stable
- Error propagation possible with error matrix from fit

Calculating Maximum

$$
\begin{gathered}
\frac{d}{d x}\left(a+\frac{b e^{-c(x-d)}}{1+e^{-f(x-t)}}\right)=0 \\
\frac{-b c e^{-c\left(x_{\max }-d\right)}\left(1+e^{-f\left(x_{\max }-t\right)}\right)+f b e^{-c\left(x_{\max }-d\right)} e^{-f\left(x_{\max }-t\right)}}{\left(1+e^{-f\left(x_{\max }-t\right)}\right)^{2}}=0 \\
-c\left(1+e^{-f\left(x_{\max }-t\right)}\right)+f e^{-f\left(x_{\max }-t\right)}=0 \\
c=(f-c) e^{-f\left(x_{\max }-t\right)} \\
\ln \left(\frac{c}{f-c}\right)=-f\left(x_{\max }-t\right) \\
-\frac{1}{f} \ln \left(\frac{c}{f-c}\right)+t=x_{\max }
\end{gathered}
$$

Error Calculation

$$
\begin{gathered}
\sigma_{t_{\max }}^{2}=\sigma_{t}^{2} \partial_{t}^{2}+\sigma_{c}^{2} \partial_{c}^{2}+\sigma_{f}^{2} \partial_{f}^{2}+2 \partial_{c} \partial_{f} \sigma_{c f}+2 \partial_{c} \partial_{t} \sigma_{c t}+2 \partial_{f} \partial_{t} \sigma_{f t} \\
t_{\max }=-\frac{1}{f} \ln \left(\frac{c}{f-c}\right)+t \\
\partial_{c}=\frac{\partial t_{\max }}{\partial c}=\frac{1}{c^{2}-c f} \\
\partial_{t}=\frac{\partial t_{\max }}{\partial t}=1 \\
\partial_{f}=\frac{\partial t_{\max }}{\partial f}=\frac{\left(\frac{f}{f-c}\right)+\ln \left(\frac{c}{f-c}\right)}{f^{2}}
\end{gathered}
$$

- $\sigma_{i j}=\rho_{i j} \sigma_{i} \sigma_{j}$
- Error calculated with formula above
- There are large correlations between the parameters

Do calculation for half max?

Define $t_{1}=$ time at half max, t_{2} time at max

$$
\begin{gathered}
f\left(t_{1}\right)=0.5 * f\left(t_{\max }\right) \\
a+\frac{b e^{-c\left(t_{1}-d\right)}}{1+e^{-f\left(t_{1}-t\right)}}=1 / 2\left(a+\frac{b e^{-c\left(t_{2}-d\right)}}{1+e^{-f\left(t_{2}-t\right)}}\right) \\
\frac{b e^{-c\left(t_{1}-d\right)}}{1+e^{-f\left(t_{1}-t\right)}}=\frac{-a}{2}+\frac{0.5 b e^{-c\left(t_{2}-t\right)}}{1+e^{-f\left(t_{2}-t\right)}} \\
b e^{-c\left(t_{1}-d\right)}=\left(1+e^{-f\left(t_{1}-t\right)}\right)\left(\frac{-a}{2}+\frac{0.5 e^{-c\left(t_{2}-t\right)}}{1+e^{-f\left(t_{2}-t\right)}}\right) \\
b e^{-c\left(t_{1}-d\right)}+e^{-f\left(t_{1}-t\right)}\left(\frac{a}{2}-\frac{0.5 b e^{-c\left(t_{2}-t\right)}}{1+e^{-f\left(t_{2}-t\right)}}\right)=\frac{-a}{2}+\frac{0.5 b e^{-c\left(t_{2}-t\right)}}{1+e^{-f\left(t_{2}-t\right)}}
\end{gathered}
$$

No closed form solution

