IHEP+NKU contributions to EF08

Xuai Zhuang

zhuangxa@ihep.ac.cn

17/07/2020

中國科學院為能物招加完備 Institute of High Energy Physics Chinese Academy of Sciences

Outline

- Brief summary from HL-LHC, FCC, ILC etc.
- Interesting topics at CEPC (and SPPC→ very similar as that at FCC_hh)
- Current results for SUSY@CEPC
- Manpower
- Summary and Outlook

Outline

Brief summary from HL-LHC, FCC, ILC etc.

- Interesting topics at CEPC (and SPPC → very similar as that at FCC_hh)
- Current results for SUSY@CEPC
- Manpower
- Summary and Outlook

EU Strategy- SUSY: ~g

https://arxiv.org/pdf/1910.11775.pdf

Fig. 8.6: Gluino exclusion reach of different hadron colliders: HL- and HE-LHC [443], and FCC-hh [139,448]. Results for low-energy FCC-hh are obtained with a simple extrapolation.

EU Strategy- SUSY: ~q

All Colliders: squark projections

(R-parity conserving SUSY, prompt searches)

Fig. 8.7: Exclusion reach of different hadron and lepton colliders for first- and second-generation squarks.

EU Strategy- SUSY: ~t

All Colliders: Top squark projections

(R-parity conserving SUSY, prompt searches)

	Model ∫⊥	<i>dt</i> [ab ⁻¹]	√ s [TeV]	Mass limit (95% CL exclusion)	Conditions
с	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	3	14	1.7 TeV	$m(\tilde{X}_1^0) = 0$
L-LH	$ ilde{t}_1 ilde{t}_1, ilde{t}_1{ ightarrow} t ilde{\chi}_1^0$ /3 body	3	14	0.85 TeV	$\Delta m(ilde{t}_1, ilde{\chi}_1^0) \sim m(ilde{t})$
Т	$ ilde{t}_1 ilde{t}_1, ilde{t}_1{ ightarrow}c ilde{\chi}_1^0$ /4 body	3	14	0.95 TeV	$\Delta {\sf m}(ilde{t}_1, ilde{\chi}_1^0) {\sim} 5$ GeV, monojet (*)
с	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow b\tilde{\chi}^{\pm}/t\tilde{\chi}^0_1, \tilde{\chi}^0_2$	15	27	3.65 TeV	$m(\tilde{\chi}^0_1) = C$
Η̈́	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0/3$ -body	15	27	1.8 TeV	$\Delta m(ilde{t}_1, ilde{\chi}_1^0) \sim m(t)$ (*)
I	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 {\rightarrow} c \tilde{\chi}_1^0$ /4-body	15	27	2.0 TeV	$\Delta {\sf m}(ilde{t}_1, ilde{\chi}_1^0)$ ~ 5 GeV, monojet (*)
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	15	37.5	4.6 TeV	m($ ilde{\mathcal{X}}_1^0$)=0 (**)
-FCC	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0/3$ -body	15	37.5	4.1 TeV	m $(ilde{\mathcal{X}}_1^0)$ up to 3.5 TeV (**)
μ	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 {\rightarrow} c \tilde{\chi}_1^0$ /4-body	15	37.5	2.2 TeV	$\Delta m(ilde{t}_1, ilde{\chi}_1^0)\sim$ 5 GeV, monojet (**)
00	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$	2.5	1.5	0.75 TeV	$m(\tilde{\chi}_1^0)=0$
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$	2.5	1.5	0.75 TeV	$\Delta m(ilde{t}_1, ilde{\chi}_1^0) \sim m(t)$
σ	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$	2.5	1.5	(0.75 - ε) TeV	$\Delta m(ilde{t}_1, ilde{\mathcal{X}}_1^0)$ ~ 50 GeV
000	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$	5	3.0	1.5 TeV	m(𝒱̃1)∼350 GeV
:LIC ₃	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$	5	3.0	1.5 TeV	$\Delta m(ilde{t}_1, ilde{\mathcal{X}}_1^0)$ ~ $m(t)$
0	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$	5	3.0	(1.5 - <i>e</i>) TeV	$\Delta m(ilde{t}_1, ilde{\chi}_1^0)$ ~ 50 GeV
ę	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$	30	100	10.8 TeV	$m(\tilde{\chi}_1^0)=0$
- CC -	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0/3$ -body	30	100	10.0 TeV	m $(ilde{\chi}^0_1)$ up to 4 TeV
ш	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow c\tilde{\chi}_1^0/4$ -body	30	100	5.0 TeV	$\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim 5$ GeV, monojet (*)
			1	0 ⁻¹ 1 Mass scale [TeV]	

(*) indicates projection of existing experimental searches

(**) extrapolated from FCC-hh prospects

 ϵ indicates a possible non-evaluated loss in sensitivity

EU Strategy- SUSY: gaugino

ILC 500/CEPC240: discovery in all scenarios up to kinematic limit: $\sqrt{s/2}$

European Strategy Example: SUSY (II)

14

EU Strategy- SUSY: higgsino

Disappearing tracks exclusion is actually off the scale

EU Strategy- SUSY: LLP

ATL-PHYS-PUB-2018-033

- Only shows results using displaced vertex at HL-LHC
- Exclusion limits on gluinos with lifetimes $\tau > 0.1$ ns can reach about 3.4-3.5 TeV, using reconstructed massive displaced vertices.
- Muons displaced from the interaction point, such as found in SUSY models with $^{\mu}$ lifetimes of $c\tau > 25$ cm, can be excluded at 95% CL at the HL-LHC. <u>New fast timing detectors</u> will also be sensitive to displaced photon signatures arising from long-lived particles in the $0.1 < c\tau < 300$ cm range.

HL-LHC: DM

Figure 1: Some representative diagrams for the pure WIMP triplet in $\gamma + E_T^{\text{miss}}$ final states. The χ^{\pm} particles decay into the stable χ_0 DM candidate and soft pions which are not reconstructed [3].

<u>ATL-PHYS-PUB-2018-038</u>

Outline

Brief summary from HL-LHC, FCC, ILC etc.

- Current results for SUSY@CEPC
- Manpower
- Summary and Outlook

Interested Topics @ CEPC

Mainly for sleptons, electroweakinos, long-lived particles, RPV, DM ...

- 1. Sleptons search (prefer stau)
- 2. Gaugino & higgsino search
- 3. Long-lived particles
- 4. **RPV with LLE couplings**
- 5. Mono-photon events (SUSY, ED, DM)

SUSY at LEP

- Exclusion (dashed) is very close to Discovery (solid)
- Very good stau_R sensitivity (no discovery potential for stau_R at HL-LHC)
- Full discovery and exclusion potential up to the kinematic limit → Model independent exclusion/ discovery reach in M_NLSP - M_LSP plane.

Stau & smuon

Long-lived particles

M(C1): 45 - 101.2 GeV (45<M_C1<500) M(C1): 45 - 99.4 GeV (M_C1>500)

M(~1_L): 45 - 99.6 GeV M(~1_R): 45 - 99.4 GeV

CEPC: ~muon

100

1.4

1.2

1

0.8

0.6

0.4

0.2

0

100

RPV with LLE coupling

Cross-sections and corresponding branching ratios were calculated in the framework of the MSSM using SUSYGEN version 3.19.

$$\begin{split} M_0 & \text{from 0 to 250 GeV} \\ M_2 & \text{from 0 to 400 GeV} \\ \mu &= -200 \text{ GeV} \\ \tan\beta &= 0.7, 1.0, 1.5, 3.0, 10., 35. \end{split}$$

Channel	M(obtained) >	M(expected) >	M(obtained) >	M(expected) >		
	M(Chi0) :	= 40 GeV	DeltaM > 3 GeV			
selectron	100.3 GeV	98.9 GeV	96.6 GeV	92.9 GeV		
smuon	98.0 GeV	95.9 GeV	96.9 GeV	92.9 GeV		
stau	96.9 GeV	95.0 GeV	95.9 GeV	92.0 GeV		
snu_el	100.1 GeV	99.8 GeV	98.9 GeV	99.1 GeV		
snu_mu	87.1 GeV	90.7 GeV	84.5 GeV	86.0 GeV		

Mono-photon (SUSY, ED, DM)

e+e- \rightarrow chi_1 grav \rightarrow grav grav gamma grav: gravitino

Outline

- Brief summary from HL-LHC, FCC, ILC etc.
- Interesting topics at CEPC (and SPPC→ very similar as that at FCC_hh)
- Current results for SUSY@CEPC
- Manpower
- Summary and Outlook

Stau search

 τ^{\pm}

 e^{\pm}

ℓ±

 ${\tilde \chi}_1^\pm \ W^\pm$

 $W^{:}$

Outline

- Brief summary from HL-LHC, FCC, ILC etc.
- Current results for SUSY@CEPC

Manpower

Summary and Outlook

		Manpower (13 staffs)			
	IHEP	Xuai Zhuang			
Staffs		Da Xu			
	NKU	Minggang Zhao			
Postdoc + students	IHEP +NKU	Huajie Cheng (IHEP) Chenzheng Zhu (IHEP) Yuchen Cai (IHEP) Jiarong Yuan (NKU+IHEP)			

Manpower is very limited, only small partial of time for ATLAS people. More manpower with cooperation is very very appreciated !

Outlook

- Above topics are not only for Snowmass, but hope to be part of CEPC TDR of BSM chapter afterwards
- Slepton, gaugino and higgsino are ongoing (Huajie+Chenzheng+Jiarong)
- Call for volunteers for LLP, RPV, mono-photon with cooperation, otherwise will move to these later when above done

DM: Direct Detection Bounds

Cheung, Hall, Pinner, Ruderman'12, Huang, C.W.'14, Cheung, Papucci, Shah, Stanford, Zurek'14, Han, Liu, Mukhopadhyay, Wang'18

$$\sigma^{\rm SD} \propto rac{m_Z^4}{\mu^4} \cos^2(2\beta)$$

MSSM charginos and neutralinos

Mass matrices

$$\begin{array}{c} \text{charginos} \\ \text{in } (\tilde{W}^{-}, \tilde{H}^{-}) \text{ basis} \\ \begin{pmatrix} M_2 & \sqrt{2}m_W c_\beta \\ \sqrt{2}m_W s_\beta & \mu \end{pmatrix} \end{pmatrix} \xrightarrow{\text{neutralinos}} \\ \begin{array}{c} \text{in } (\tilde{B}^0, \tilde{W}^0, \tilde{H}^0_1, \tilde{H}^0_2) \text{ basis} \\ \begin{pmatrix} M_1 & 0 & -m_Z c_\beta s_w & m_Z s_\beta s_w \\ 0 & M_2 & m_Z c_\beta c_w & -m_Z s_\beta c_w \\ -m_Z c_\beta s_w & m_Z c_\beta c_w & 0 & -\mu \\ m_Z s_\beta s_w & -m_Z s_\beta c_w & -\mu & 0 \end{pmatrix} \end{array}$$

$$M_2$$
 real, $M_1 = |M_1|e^{i\Phi_1}$, $\mu = |\mu|e^{i\Phi_\mu}$

At tree level:

 $\begin{array}{ll} \text{charginos} & M_2, \ \mu, \tan\beta \\ \text{neutralinos} & +M_1 \end{array}$

 $Φ_μ, Φ_1$ CP phases

Expected to be among the lightest sparticles

A good starting point towards SUSY parameter determination

EWK-ino production

Mass splitting of the EWKinos depends on M1, M2, μ and tan β

Bino LSP			Higgsino LSP			Wino LSP				
μ	higgsino		$\widetilde{\chi_3^0}, \widetilde{\chi_4^0}, \widetilde{\chi_2^\pm}$	M ₁ <u>bino</u>)	$\widetilde{\chi_4^0}$	M1	bino		$\widetilde{\chi_4^0}$
M ₂	wino	_	$\widetilde{\chi}_{2}^{0},\widetilde{\chi}_{1}^{\pm}$	M ₂ win		$\widetilde{\chi_{3}^{0}}, \widetilde{\chi_{2}^{\pm}}$	μ	higgsino		$\widetilde{\chi}_{2}^{0}, \widetilde{\chi}_{3}^{0}, \widetilde{\chi}_{2}^{\pm}$
M ₁	bino		$\widetilde{\chi_1^0}$	higgs µ	sino	$\widetilde{\chi_1^0}$, $\widetilde{\chi_2^0}$, $\widetilde{\chi_1^\pm}$	M2	wino	=	$\widetilde{\chi_1^0} \widetilde{\chi_1^\pm}$

Standard wino-bino case: large ∆m between N1 and C1/N2; → MET + hard leptons N1,N2,C1 almost degenerate: experimental challenging; → MET + soft leptons

- Lower xsec than higgsino LSP;
- → WW+MET dominant;

Facilities and assumptions

- Studies from: HL-LHC, HE-LHC, FCC (ee/eh/hh), LHeC, ILC500, CLIC (1.5 and 3 TeV), MATHUSLA
 - Potential of muon / very high-energy lepton colliders outlined separately as more speculative
- e+e- facilities with c.o.m. below ~350 GeV not directly considered
 - Limited potential for discovery of low-mass SUSY given current LHC results

SUSY @ European Strategy, Monica D'Onofrio

(arXiV:1905.03764)

Collider	Туре	\sqrt{s}	$\mathscr{P}\left[\% ight] \left[e^{-}/e^{+} ight]$	N(Det.)	\mathscr{L}_{inst} [10 ³⁴] cm ⁻² s ⁻¹	\mathcal{L} $[ab^{-1}]$	Time [years]
HL-LHC	pp	14 TeV	-	2	5	6.0	12
HE-LHC	pp	27 TeV	-	2	16	15.0	20
FCC-hh	pp	100 TeV	-	2	30	30.0	25
FCC-ee	ee	M_Z	0/0	2	100/200	150	4
		$2M_W$	0/0	2	25	10	1-2
		240 GeV	0/0	2	7	5	3
		$2m_{top}$	0/0	2	0.8/1.4	1.5	5
							(+1)
ILC	ee	250 GeV	$\pm 80/\pm 30$	1	1.35/2.7	2.0	11.5
		350 GeV	$\pm 80/\pm 30$	1	1.6	0.2	1
		500 GeV	$\pm 80/\pm 30$	1	1.8/3.6	4.0	8.5
							(+1)
CEPC	ee	M_Z	0/0	2	17/32	16	2
		$2M_W$	0/0	2	10	2.6	1
		240 GeV	0/0	2	3	5.6	7
CLIC	ee	380 GeV	$\pm 80/0$	1	1.5	1.0	8
		1.5 TeV	$\pm 80/0$	1	3.7	2.5	7
		3.0 TeV	$\pm 80/0$	1	6.0	5.0	8
							(+4)
LHeC	ep	1.3 TeV	-	1	0.8	1.0	15
HE-LHeC	ep	2.6 TeV	-	1	1.5	2.0	20
FCC-eh	еp	3.5 TeV	-	1	1.5	2.0	25

+MATHUSLA: to be matched with HL-LHC

NOTE(1): In some cases, results with a reduced datasets wrt benchmarks are used

NOTE(2): HL/HE/FCC-hh results refer to a **single experiment** unless differently stated

28/5/20

