

CEPC Vertex Detector Optimization

<u>Hao Zeng</u>, Joao Guimaraes Costa, Gang Li, Zhijun Liang, Mingyi Dong, Jinyu Fu, Kewei Wu 2020/07/15

Outline

- Full silicon tracker
- Vertex layout optimization
 - Ladder material update
 - Barrel optimization
 - Disk optimization
- Air cooling \rightarrow investigate new disk arrangements
- Beam pipe study
 - Beam pipe radius
 - Beam pipe material
- Summary & Plan

Full silicon tracker layout

12	FST		123			newFS'	Т
R	(m)	$\pm z$ (m)	Туре	VXD	R(m)		z(m)
0.	153	0.368	D	Layer 1	0.017		0.064
0	321	0.644	D	Layer 2	0.019		0.064
0.0	503	0.920	D	Layer 3	0.038		0.128
1.0	000	1.380	D	Layer 4	0.040		0.128
1.4	410	1.840	D	Layer 5	0.059		0.128
1.5	811	2.300	D	Layer 6	0.061		0.128
$\overline{R_{in}}$ (m)	R_{out} (m)	$\pm z$ (m)	Туре	EIT	R_{in} (m)	R_{out} (m)	$\pm z$ (m)
0.082	0.321	0.644	D	Disk 1	0.030	0.151	0.221
0.117	0.610	0.920	D	Disk 2	0.051	0.151	0.368
0.176	1.000	1.380	D	Disk 3			
0.234	1.410	1.840	D	Disk 4			
0.293	1.811	2.300	D	Disk 5			

- 4 parts: VXD,EIT,SOT,EOT
- Outer tracker (SOT + EOT): from FST
- The coverage of the whole tracker is over $\cos\theta=0.99$
- Outer tracker disk has been adjusted for mechanics

Pixel module material

Material budget vs $\cos\theta$

z [mm] cosθ

Radiation	Length by	Component
-----------	-----------	-----------

Average (cosθ = [0, 0.99])	Radiation length
IT Module: Flex cable	0.00299
IT Module: Glue sensor	0.00035
IT Module: Glue support	0.00035
IT Module: Ladder support	0.00591
IT Module: Sensor	0.00426
IT Module: Dead Al	0.00050
IT Module: Dead AI wire	0.00007
IT Module: Dead CF	0.00019
IT Module: Dead Epoxy	0.00017
IT Module: Dead Si	0.00066
IT Module: Dead kapton	0.00044
total	0.01589

total average material budget is about 1.6% for vertex barrel, much more than CDR 0.9% ($0.15\% \times 6$)

0.9

1

cosθ

CDR barrel with different disk

CDR barrel with different disk

- cosθ: 0.82-0.96, disk version better than long barrel design
- cosθ> 0.96: long barrel design better CDR barrel with disk version, because innermost layer of long barrel provides closer first hit to IP

θ

8

θ

θ

Longer first layer

- longer first layer design has the advantages of long barrel design and disk design
- \succ cos θ : 0.82-0.96, same as CDR
- > $\cos\theta$ > 0.96: similar to long barrel design (even a little better), better than CDR

Different position of 2 single-layer disks

Different position of 2 single-layer disks

- not always improve resolution, some points better, some worse
- > moving disk closer to barrel can improve resolution at $\cos\theta \approx 0.8$ (more hits)

Longer first layer with different number of disk

Layer

Laver

Disk 2 221.000 368.000 Ζ

17.116 19.041 37.667 39.577 58.914 60.842

6

2 double-layer disks

Endcap : FPIX_1 FPIX_2 FPIX_3 FPIX_4 Disk 1 1 221.000 223.000 368.000 370.000 Ζ

3 double-layer disks

37.667 39.577 58.914 60.842 r 17.116 19.041 128.450 128.450 128.450 128.450 128.450 128.450 z_max Endcap : FPIX_1 FPIX_2 FPIX_3 FPIX_4 FPIX_5 FPIX_6 Disk 1 1 221.000 223.000 295.000 297.000 368.000 370.000 Z

4

5

6

Longer first layer with different number of disk

- 2 ways to improve resolution:
- increase the number of disk
- ➤ replace single disk with double disk not have worse resolution points

3 double-layer disks closer to barrel

long barrel design

Layer 1 2 3 4 5 6 r 15.523 17.479 33.019 34.982 50.522 52.479 z_max 128.450 128.450 244.100 244.100 372.600 372.600

3 double-layer disks

Layer 5 6 4 17.116 19.041 37.667 39,577 58,914 60,842 128.450 128.450 128.450 128.450 128.450 128.450 z max Endcap : FPIX_1 FPIX_2 FPIX_3 FPIX_4 FPIX_5 FPIX_6 Disk 1 1 1 1 221,000 223,000 295,000 297,000 368,000 370,000 Z

3 double-layer disks closer to barrel

 Layer
 1
 2
 3
 4
 5
 6

 r
 17.116
 19.041
 37.667
 39.577
 58.914
 60.842

 z_max
 128.450
 128.450
 128.450
 128.450
 128.450
 128.450

 Endcap
 FPIX_1
 FPIX_2
 FPIX_3
 FPIX_4
 FPIX_5
 FPIX_6

 Disk
 1
 1
 1
 1
 1
 1
 1

 z
 180.000
 182.000
 254.000
 256.000
 327.000
 329.000

3 double-layer disks closer to barrel

- longer innermost layer with disk has better resolution than full barrel design in front region
- moving disk closer to barrel will enlarge the improved region
- considering the mechanics, putting 3 double disk at CDR disk position is a better design.

Optimal layout

CDR

Layer 1 2 3 4 5 6 r 17.116 19.041 37.667 39.577 58.914 60.842 z_max 64.200 64.200 128.450 128.450 128.450 128.450 Disk 1 2 z 221.000 368.000

3 double disks(optimal)

Layer 3 4 5 6 19.041 37.667 39.577 58.914 60.842 17.116 128.450 128.450 128.450 128.450 128.450 128.450 z_max Endcap : FPIX_1 FPIX_2 FPIX_3 FPIX_4 FPIX_5 FPIX_6 Disk 1 1 1 1 1 221,000 223,000 295,000 297,000 368,000 370,000 Z

long barrel design

 Layer
 1
 2
 3
 4
 5
 6

 r
 15.523
 17.479
 33.019
 34.982
 50.522
 52.479

 z_max
 128.450
 128.450
 244.100
 244.100
 372.600
 372.600

Optimal layout

Optimal layout (longer first layer with 3 double disks) has better resolution than full barrel design and CDR design in front region

Vertex design including air cooling

Make a hole in disk

3 double-layer disks

Upper ring set closer to barrel

lower ring set closer to barrel

Barrel : PXB1

 Layer
 1
 2
 3
 4
 5
 6

 r
 17.116
 19.041
 37.667
 39.577
 58.914
 60.842

 z_max
 128.450
 128.450
 128.450
 128.450
 128.450
 128.450
 128.450

 Endcap
 FPIX_1
 FPIX_2
 FPIX_3
 FPIX_4
 FPIX_5
 FPIX_6

 Disk
 1
 1
 1
 1
 1
 1
 1
 1

 z
 221.000
 223.000
 295.000
 297.000
 368.000
 370.000

Barrel : PXB1

 Layer
 1
 2
 3
 4
 5
 6

 r
 17.116
 19.041
 37.667
 39.577
 58.914
 60.842

 z_max
 128.450
 128.450
 128.450
 128.450
 128.450
 128.450

Endcap : FPIX_inner

Disk 1 2 3 4 5 6 z 184.250 221.000 257.750 294.500 331.250 368.000 FPIX_outer

> 1 2 3 4 5 6 186.250 223.000 259.750 296.500 333.250 370.000

Barrel : PXB1

Layer 1 2 3 4 5 6 r 17.116 19.041 37.667 39.577 58.914 60.842 z_max 128.450 128.450 128.450 128.450 128.450 128.450 Endcap : FPIX_inner

Disk 1 2 3 4 5 6 z 184.250 221.000 257.750 294.500 331.250 368.000 FPIX_outer

1 2 3 4 5 6 186.250 223.000 259.750 296.500 333.250 370.000

3 double-layer disks

20mm ring hole

Barrel : PXB1

 Layer
 1
 2
 3
 4
 5
 6

 r
 17.116
 19.041
 37.667
 39.577
 58.914
 60.842

 z_max
 128.450
 128.450
 128.450
 128.450
 128.450
 128.450
 128.450

 Endcap
 FPIX_1
 FPIX_2
 FPIX_3
 FPIX_4
 FPIX_5
 FPIX_6

 Disk
 1
 1
 1
 1
 1
 1
 1
 1

 z
 221.000
 223.000
 295.000
 297.000
 368.000
 370.000

Barrel : PXB1

Layer 1 2 3 4 5 6 r 17.116 19.041 37.667 39.577 58.914 60.842 z_max 128.450 128.450 128.450 128.450 128.450 128.450 Endcap : FPIX_inner

Disk 1 2 3 4 5 6 z 180.000 226.800 236.050 292.100 297.400 368.000 FPIX_outer

> 1 2 3 4 5 6 182.000 228.800 238.050 294.100 299.400 370.000

dxy vs cos0 (p=50GeV)

- not make resolution worse much, event improved in some region
- still need considering mechanics and cooling simulation

Beam pipe radius simulation

Beam pipe radius simulation

23

Impact parameter resolution

Big effect on low momentum track Beam pipe radius is smaller, resolution is better Improve resolution 21% if reduce beam pipe radius to 10mm

Beam pipe material

Detail structure

备注: 400+550+550=1500 mm

Central Be pipe:

From Ji Quan

> Paraffin coolant: $x/X_0 = 0.85 \text{mm}/35.28 \text{cm} + 0.50 \text{mm}/48.22 \text{cm} + 5 \text{um}/0.3344 \text{cm} = 0.004941$

 \rightarrow Helium gas coolant: x/X_0 = 0.85mm/35.28cm + 0.50mm/5.671e+05cm + 5um/0.3344cm = 0.003905

CDR beam pipe: $x/X_0 = 500 \text{ um}/35.28 \text{ cm} = 0.001417$

Material budget vs $\cos\theta$

Radiation Length by Component(He + Au)

Average ($\cos\theta = [0, 0.99]$)	Radiation length
Beam pipe	0.00558
IT Module: Flex cable	0.00312
IT Module: Glue sensor	0.00037
IT Module: Glue support	0.00037
IT Module: Ladder support	0.00643
IT Module: Sensor	0.00444
total	0.02031

Radiation Length by Component(paraffin + Au)

Average (cosθ = [0, 0.99])	Radiation length
Beam pipe	0.00707
IT Module: Flex cable	0.00312
IT Module: Glue sensor	0.00037
IT Module: Glue support	0.00037
IT Module: Ladder support	0.00643
IT Module: Sensor	0.00444
total	0.02180

Radiation Length by Component(CDR)

Average (cosθ = [0, 0.99])	Radiation length
Beam pipe	0.00203
IT Module: Flex cable	0.00312
IT Module: Glue sensor	0.00037
IT Module: Glue support	0.00037
IT Module: Ladder support	0.00643
IT Module: Sensor	0.00444
Total	0.01676

Impact parameter resolution

24% worse if use paraffin coolant +Au might cancel the material effect if reduce beam pipe radius to 10mm

Summary & Plan

- An optimal vertex layout was got (longer innermost layer + 3 double disks), it has better resolution than CDR design and full barrel design.
- Some new disk arrangements for air cooling have been investigated, perhaps providing new choice for vertex air cooling.
- Beam pipe radius and beam pipe material have been studied, smaller beam pipe radius might cancel material effect.
- Next:
 - Investigate new arrangements
 - Fast simulation tool tkLayout customizing and cross-checking
 - Full simulation validation of optimal design

Backup

CDR barrel with different disk

Longer first layer

Different position of 2 single-layer disks

Longer first layer with different number of disk

3 double-layer disks closer to barrel

Optimal layout

