## BAIKAL GVD Neutrino Telescope



### **Dmitry V.Naumov**



## BAKALGVD Neutrino Telescope





### Introduction The site

Baikal Lake. 106 km of Circum-Baikal Railway 3.6 km from the shore 1366 m depth Stable "Im thick ice cover (Feb-Mar)





### Introduction Short History



### M.A. Markov. 1960

«We propose to install detectors deep in a lake or in the sea and determine the direction of charged particles with the help of Cherenkov radiation». ICHEP, Rochester. p578 4

### Introduction --- Short History 1960 - M.Markov - main idea. 1976 - Discussions of PUMAND project 1980 - Start of works on construction of BAIKAL Detector lead by G.V.Domogatsky (GVD) 1993 - NT-36 (36 OM) @BAIKAL 1996 - NT-96 (96 OM) 1997 - AMANDA BIO (302 OM) @SouthPole 1998 - NT-200 (192 OM) 2000 - AMANDA II (677 0M) 2005 - NT-200+ (228 OM) 2005 - IceCube (first string)





### F. Halzen to C. Spiering:

"Congratulations for winning the 3-string race!" (NT-36 vs TRIAD vs AMANDA)

2010 - IceCube (last string)

2013 - IceCube detects «Big Three» events



## Introduction Short History

### Ice/water Cherenkov neutrino telescopes - global view



### Introduction Main Motivations

0

In past: atmospheric neutrinos Now: cosmic neutrinos as messengers about the Universe past Galaxy formation

Universe evolution

Sources of ultra-high energy particles

Neutrino is an important new messenger



### Video: Red Vision & C4 Studios



### Introduction Neutrino Astronomy

Charged particles loose direction and energy High energy photons get absorbed Neutrino astronomy is possible because of weak interaction neutrino

### absorption & EM cascades

absorption & deflection

gamma-ra



Neutrino interactions —> particles Charged particles —> Cherenkov light —> signal @ OM Amplitude, time —> Energy, direction, type

# Particle track

Cherenkov front



Neutrino interactions —> particles Charged particles —> Cherenkov light —> signal @ OM Amplitude, time —> Energy, direction; type.



Neutrino interactions —> particles Charged particles —> Cherenkov light —> signal @ OM Amplitude, time —> Energy, direction, type



....

Neutrino interactions —> particles Charged particles —> Cherenkov light —> signal @ OM Amplitude, time —> Energy, direction, type



....

### Introduction Neutrino Telescope Science Case





## Introduction

### 9 institutions, 55 members

- Institute for Nuclear Research, Moscow, Russia
- 2. Joint Institute for Nuclear Research, Dubna, Russia
- 3. Irkutsk State University, Irkutsk, Russia
- Skobeltsyn Institute of Nuclear Physics MSU, Moscow, Russia 4.
- Nizhny Novgorod State Technical University, Russia 5.
- 6. Saint Petersburg State Marine University, Russia
- Institute of Experimental and Applied Physics, Czech Technical University, Prague, Czech Republic
- Comenius University, Bratislava, Slovakia
- 9. Evologics, Berlin, Germany
- 10. Krakow Institute for Nuclear Research, Poland





Introduction The plan Main Goal Point sources of UHE neutrino 3D Array of photo-sensors Phase I: 0.45 km3 (by 2021) Phase II: 1.5 km3 (by 2027) Installation site South Baikal Depth 1.4 km Distance from shore 3.5 km Requirements Adjustable structure 0 Synchronization < Ins



### Baikal Neutrino Detector Optical Module





### Baikal Neutrino Detector • Optical Module

17" Glass pressure-resistant sphere VITROVEX compass 10" Hamamatsu PMT R708 IHQE,  $Q_{eff} \approx 0.35$ **Stainless steel** frame Mu-metal cage OM electronics: amplifier, HV DC-DC, controller Underwater 5-pin industrial SubConn connector PMT R7081-100 2 on-board LED flashers for calibration: 10<sup>8</sup> p.e., 430 nm, 5 ns



Manometer 5 pin Subconn connector

Accelerometer,

Hermetic seal

Permalloy cage

Optical contact gel

Temperature sensor

Power board

### Glass hemisphere Vacuum valve

### OM controller



### Gellens Calibration LEDS



## Baikal Neutrino Detector The string

Section: 12 0M



## Baikal Neutrino Detector The string

# String: 36 0M

OF IT OF OF OF OF OF

OF OF OF OF OF OF



### Baikal Neutrino Detector The cluster

8 strings anchored to the bottom Cluster center @ 30 m from the surface OM spacing 15 m String spacing 60 m Trigger electronics Power & data transfer



### Baikal Neutrino Detector Seven clusters @2020



| Year | Number of Clusters | Numbe<br>OM |
|------|--------------------|-------------|
| 2016 | 1                  | 288         |
| 2017 | 2                  | 576         |
| 2018 | 3                  | 864         |
| 2019 | 5                  | 144         |
| 2020 | 7                  | 201         |
| 2021 | 9                  | 259         |

~300 m between clusters + experimental string with optical link Lower trigger thresholds IGB/s Synchronized clocks New FPGA Zync  $= 0.35 \text{ km}^3$ 



### Baikal Neutrino Detector Calibrations

Time synchronization Between OMs in one section Between sections Between clusters Water properties Absorption length Scattering length, anisotropy

### Geometry calibrations since OMs drift (0.5-3 cm/s) up to 50m (flows)

### Amplitude and charge

### Baikal Neutrino Detector Calibrations. Geometry

Acoustic modems by Evologics (Germany)

Polls every two-three minutes

Accuracy in OM's position determination < 20 cm

3D Accelerometer & compass in each OM with comparable precision



### Baikal Neutrino Detector Calibrations. Geometry

### An example from data

Cluster 2, string 2 April 2018 - February 2019







### Baikal Neutrino Detector Calibrations. Geometry







X scan (coordinates adjusted to median) Cluster #1, from 2019-05-05 to 2019-09-12



### Variation of OM position

Adjusted plot

Y scan (coordinates adjusted to median) Cluster #1, from 2019-05-05 to 2019-09-12





### Baikal Neutrino Detector Calibrations. Time

# Time synchronization Between OMs in one section



### Gel lens Calibration LEDs

### Baikal Neutrino Detector Calibrations. Time

# Time synchronization Between OMs in one section Between sections





### Baikal Neutrino Detector Calibrations. Time

Time synchronization Between OMs in one section Between sections Between clusters lsotropic lasers (532 nm, 10<sup>15</sup> photons, 1 ns 2.5 ns inter- and extrasection synchronization Few ns between clusters









### Baikal Neutrino Detector Calibrations. Water properties

Water properties

Absorption length Scattering length, anisotropy

Past measurements Use existing lasers Preparing new system for online monitoring









### Baikal Neutrino Detector Data transfer

40 Gb/day/cluster 250 Mb/s radiochannelx with Baikalsk Transfer data to JINR Automatic data processing @JINR Data analysis @ computer farm @JINR



### GVD Deployment Works on the site





## GVD Deployment OMs, strings.



## GVD Deployment Cabling



### GVD Deployment Cabling

Cables are several km long Calculation of cable's routes is a difficult engineer task Installation of cables is always a challenge

Optics (data, control) + HV cables



# GVD Deployment Real sonar underwater image



# GVD Deployment Facilities



### OM production line @JINR (12 OM/day)



### The control center

37

### The local lab & storage @Baikalsk



### GVD Deployment Ice cover during expedition 2020



### Despite the terrible ice everything was accomplished according the plan



### Data analysis Simulations. Signal expectation



### Data analysis Simulations. Signal expectation





### Data analysis Simulations. Neutrino-nucleon Deep-inelastic (DIS) cross-section (via W-exchange)

 $\frac{d^2\sigma}{dxdy} \propto \frac{G_F^2 m_N E_\nu}{\pi} \left(\frac{m_W^2}{Q^2 + m_W^2}\right)^2 \left(\sum_{\substack{i=d,s,b}} q_i(x) + (1-y)^2 \sum_{\substack{j=u,c,t}} \overline{q_j}(x)\right)$ 

 $G_F$  = Fermi constant

y = fraction of the neutrino momentum transferred to hadrons

x = fraction of the nucleon momentum carried by a target quark

q(x) = probability to find a quark in the nucleon with x



### Data analysis Simulations. Neutrino-nucleon Deep-inelastic (DIS) cross-section (via W-exchange)

The data is available for Neutrino Telescopes energies ANIS Neutrino Generator GVD Neutrino Generator (under development) Neutrino propagation through Earth



Credit: K.Kuzmin

### Data analysis Simulations. Muons

• Muons are the most significant background  $\frac{N_{\mu}}{N_{\nu}} \simeq \frac{10^6}{1}$ Flux calculation

Transport equation

CR fluxes + CORSIKA

Muon transport PHYSICAL REVIEW D, VOLUME 64, 074015 Geant4



## Data analysis 1 TeV muon + any light in Geant4 OM response Simulations. Optics Mayavi viewer Fortran code (legacy from NT200) New Geant4 based under development





### High-energy cascade





Courtesy: B.Shaibonov

### Data analysis Simulations. Lake noise

Lake chemiluminescence level varies during a year

It has one-p.e. nature

20-40 kHz for "low noise" period

The noise level varies with depth

The same charge distributions for low noise and active periods

Courtesy: B.Shaibonov







### Showers

1

Neutrino events



Credit: G. Safronov

## Data analysis Inspiring events

### The largest event in 2016



## Data analysis Inspiring events



### Data analysis Inspiring events. High energy showers

![](_page_50_Figure_1.jpeg)

Upgoing

### Shower

53 hitted OMs  $E = 157 T_{3}B$ θ = 57°

Downgoing

![](_page_50_Figure_8.jpeg)

![](_page_50_Picture_9.jpeg)

![](_page_50_Figure_10.jpeg)

### Data analysis Inspiring events. High energy showers

eventID: 297850 season: 2016 cluster: 1 Time: 16867.0 ns

![](_page_51_Figure_2.jpeg)

### Shower

53 hitted OMs E = 157 T3B θ = 57°

![](_page_51_Figure_5.jpeg)

### 52 Credit: B. Shaibonov

## Data analysis Alerts From Dec. 2018 MoU with ANTARES No coincidence was found with 25 ANTARES alerts Three interesting alerts are under study An interface to the global alert system is under development

## Summary Seven clusters installed by 2020 Baikal GVD is the largest NT in Northern hemisphere from 2016 Its effective volume for shower events (E>100 TeV) is 0.35 km<sup>3</sup> 8 shower events with E>100 TeV (one with 87 TeV) are found ALERT system is under development Many interesting analyses are ongoing Many newcomers

![](_page_53_Picture_1.jpeg)

### Acknowledgements to

All Baikalists In particular: G.V. Domogatsky, I. Belolaptikov, B. Shaibonov, G. Safronov, O. Suvorova, C.Spiering, A. Avrorin

## The most romantic experiment ever

![](_page_55_Picture_1.jpeg)

### Women's day!

![](_page_55_Picture_3.jpeg)

Enjoy more at http://dlnp.jinr.ru/ru/bajkalskij-dnevnik/bajkalskij-dnevnik-dmitriya-naumova 56

![](_page_55_Picture_5.jpeg)

### Way for lunch

![](_page_56_Picture_0.jpeg)

## Backup slides

### Data analysis Alerts

![](_page_57_Figure_1.jpeg)

### 8 GVD events in Galactic coordinates

### 4Fermi LAT, $E_{\gamma} \ge 10$ GeV

Baikal 3

О

Baikal 2

0

Credit: A. Neronov, P.Semikoz

![](_page_57_Picture_7.jpeg)