
1 

Electroweak Baryogenesis & Higgs Studies 

EWPT an Higgs Physics Symposium
IHEP Beijing, July 2020

M.J. Ramsey-Musolf 
 
•  T.D. Lee Institute & 

Shanghai Jiao Tong Univ. 
 
•  UMass-Amherst 

My pronouns: he/him/his 



Michael Ramsey-Musolf 

•  Why does the Universe contain more 
matter than antimatter ? 

•  What are the laws of nature beyond 
those of the Standard Model & General 
Relativity ? 

•  How do quantum field theories work ? 
How do they apply to processes in the 
early Universe ? 

•  How can experiments test our theoretical 
ideas? 

Theoretical Physics 

Vice Magazine 

Chair Professor, SJTU & T.D. Lee Professor, TDLI 
Professor & Director, ACFI, U. Mass Amherst 

•  Ph.D. Princeton 
•  Post-doc MIT 
•  美国  !  中国  2019 

•  mjrm@sjtu.edu.cn 
•  微信 ： mjrm-china 

2 



3 

Selected References 
•  D. Morrissey & MJRM, “Electroweak Baryogenesis”, NJP 14 (2012) 

125003 [1206.2942] 

•  MJRM, “The EW Phase Transition: A Collider Target”  [1912.07189] 

•  S. Profumo, MJRM, G. Shaugnessy, “Singlet Higgs Phenomenology 
and the EW Phase Transition”, JHEP 08 (2007) 010 [0705.2425] 

•  S. Profumo, MJRM, C. Wainwright, P. Winslow, “Singlet-catalyzed EW 
Phase Transitions and Precision  Higgs Boson Studies”, PRD 91 
(2015) 035108 [1407.5342] 

•  H. H. Patel & MJRM, “Stepping Into EW Symmetry-Breaking: Phase 
Transitions and Higgs Phenomenology”, PRD 88 (2013) 035013 
[1212.5652] 

•  S. Inoue, G. Ovanesyan, MJRM “Two-Step EW Baryogenesis”, PRD 93 
(2016) 015013 [1508.05404] 

•  V. Cirigliano, C. Lee, MJRM, “Resonant Relaxation in EW 
Baryogenesis”, PRD 71 (2005) 075010 [hep-ph/0412345] 



4 

Key Ideas for this Talk  

•  The “electroweak temperature” ! a scale 
provided by nature that makes EWBG/
EWPT a clear BSM target for colliders 

•  High degree of complementarity and 
synergy between precision Higgs studies, 
new particle searches, and low-energy 
symmetry tests ! exciting opportunities 
for the CEPC! 

•  Non-perturbative computations essential 
input for reliable collider pheno 



Ingredients for Baryogenesis 

•  B violation (sphalerons) 

•  C & CP violation  

•  Out-of-equilibrium or 
 CPT violation 

Standard Model BSM 

✔ 

✖ 

✖ 

✔ 

✔ 

✔ 

Scenarios: leptogenesis, 
EW baryogenesis, Afflek-
Dine, asymmetric DM, cold 
baryogenesis, post-
sphaleron baryogenesis… 
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Fermion Masses & Baryon Asymmetry 

Partners 

Partners 

Higgs Mechanism 

Electroweak baryogenesis: 
Baryon asymmetry & mf from 
EW symmetry breaking 

Something else ? 

Leptogenesis: Baryon 
asymmetry & mν  from 
lepton number violation 

This talk 



Baryogenesis Scenarios 
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Standard thermal lepto 

Electroweak, resonant lepto, 
WIMPY baryo, ARS lepto… 

Post-sphaleron, cold… 
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Outline 

I.  Electroweak Baryogenesis 

II.  Electroweak Phase Transition 

III.  EWPT: Models & Phenomenology 

IV.  CPV for EW Baryogenesis 

V.  Outlook 

VI.  Back-up Slides:  
•  Grav wave - collider interplay 
•  Higgs self-coupling & σZH  
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I. Electroweak Baryogenesis 
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Increasing mh  
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Baryogenesis 
Gravity Waves 
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sphalerons  

BSM 

EW Phase Transition: BSM Scalars & CPV 
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II. EWPT: A Collider Target 

MJRM 1912.07189 

•  Mass scale 
•  Precision 



TEW Sets a Scale for Colliders  
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High-T SM Effective Potential 

T0 ~  140 GeV 

ACFI-T18-17
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We revisit the theory and phenomenology of scalar electroweak multiplet thermal dark matter.
We derive the most general, renormalizable scalar potential, assuming the presence of the Standard
Model Higgs doublet, H, and an electroweak multiplet � of arbitrary SU(2)L rank and hypercharge,
Y . We show that, in general, the �-H Higgs portal interactions depend on three, rather than two
independent couplings as has been previously considered in the literature. For the phenomenologi-
cally viable case of Y = 0 multiplets, we focus on the septuplet and quintuplet cases, and consider
the interplay of relic density and spin-independent direct detection cross section. We show that
both the relic density and direct detection cross sections depend on a single linear combination of
Higgs portal couplings, �e↵ . For �e↵ ⇠ O(1), present direct detection exclusion limits imply that
the neutral component of a scalar electroweak multiplet would comprise a subdominant fraction of
the observed DM relic density.

I. INTRODUCTION

II. FORMULAE
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FIG. 4: Gluon luminosity ratio

ECM(TeV) M� (GeV) sin ✓ � (fb)
R
dtL (ab�1) N ⇥ 10�3

14 100 NN 135 fb 3 NN
714 NN NN 3 NN

100 100 NN 135 fb 3 NN
714 NN NN 3 NN

14 714 0.01 135 fb 3 NN
100 714 0.01 NN 30 NN

TABLE IV: Single heavy higgs production via ggF.

VI. THE ELECTROWEAK TEMPERATURE REVISITED

VII. OUTLOOK

VIII. FORMULAE
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Figure 3. Schematic temperature dependence of the effective potential.

at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:

V (daisy)
1 = �

T
12⇡

X

{b}0

nb
⇥
m2

b(�, T ) � m2
b(�)

⇤3/2
, (12)

where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
12⇡

g3/2�3
!

1
12⇡

⇥
g�2 + T 2⇤3/2

. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional

New Journal of Physics 14 (2012) 125003 (http://www.njp.org/)

Generate finite-T barrier 

Introduce new scalar φ 
interaction with h via 
the Higgs Portal 

 h 
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nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
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the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
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First Order EWPT from BSM Physics 

•  Γ (h ! γγ ) 

•  Higgs signal strengths  

•  Higgs self-coupling 

•  Exotic Decays 
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H2φ2   Barrier ? 
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H ! γγ : Is There a Barrier ? 
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•  Thermal Γ (h ! γγ ) 

•  Higgs signal strengths  

•  Higgs self-coupling 

•  Exotic Decays 
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First Order EWPT from BSM Physics 

•  Thermal Γ (h ! γγ ) 

•  Higgs signal strengths  

•  Higgs self-coupling 

•  Exotic Decays 
 
•  Single φ production 
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Strong First Order EWPT 

•  Prevent baryon number washout 

•  Observable GW  
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VI. THE ELECTROWEAK TEMPERATURE REVISITED

VII. OUTLOOK

VIII. FORMULAE
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Collider Target:  Precision* 
and single φ production 

* Note scale for ZZh coupling deviation 
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III. EWPT: Models & Phenomenology 



Model Illustrations 
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Simple Higgs portal models: 
 
•  Real gauge singlet (SM + 1) 

•  Real EW triplet (SM + 3) 



Light Singlets: Exotic Decays 
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J. Kozaczuk, MR-M, J. Shelton 1911.10210 
See also: Carena et al 1911.10206 

 h2 ! h1 h1 ! 4b 

EWPT viable: 
numerical 

EWPT viable: 
Semi analytic 

Future e+e- 



Singlets: Precision & Res Di-Higgs Prod 

Kotwal, No, R-M, Winslow  1605.06123 
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SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies   

SFOEWPT  •    

 h-S Mixing  
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Simple Higgs portal models: 
 
•  Real gauge singlet (SM + 1) 

•  Real EW triplet (SM + 3) 



Real Triplet 
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Non-perturbative results 
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Real Triplet: One-Step EWPT 

Niemi, Patel, R-M, Tenkanen, Weir 1802.10500 

Crossover 

FOEWPT 

•  One-step 
•  Non-perturbative 
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Real Triplet & EWPT: Novel EWSB 
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Real Triplet & EWPT: Novel EWSB 
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1

b4

!
1

2
a2v

2
0 !m2

!

"
<

1

2
m2

Hv
2
0: (7)

Further, in order to facilitate the discussion of two-step
phase transitions, it will be useful to identify regions of
parameter space where the potential exhibits a secondary
local minimum at point!with positive masses. A straight-
forward calculation yields the condition for the existence
of a secondary minimum,

1

2
m2

H >
1

2

a2
b4

!
1

2
a2v

2
0 !m2

!

"
; (8)

which requires !2
! > 0 in Eq. (6).

In Fig. 2, we display the regions (shaded yellow and
blue) in the a2-b4 plane for which the vacuum stability
condition in Eq. (7) is satisfied, with the masses m! ¼
150 GeV and mH ¼ 125 GeV held fixed. The blue shaded
region indicates points where the requirement of Eq. (8)
is also satisfied and the potential has a secondary local
minimum at point !. To assist the reader in visualizing the
potential for various regions of parameter space, we pro-
vide illustrative plots in Fig. 3 of the potential for two
cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
blue region in Fig. 2.

FIG. 3 (color online). Qualitative picture of the potential Vðh;"Þ of Eq. (4) in the two different regions of parameter space as
indicated in Fig. 2. Potential A (corresponding to regions A of Fig. 2) displays no critical point along the " direction, whereas Potential
B (corresponding to regions B of Fig. 2) exhibits a metastable minimum along the " direction.
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.
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IV. CPV for EW Baryogenesis 
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•  BAU generated by CPV during first order transition to 
Higgs phase 

•  Stringent constraints from EDM searches 
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Flavored EW Baryogenesis 

EWBG by 

? 

φ(x)

 µR

 τL

3

FIG. 1. Left panel: the three physical parameters |NE

⌧µ|,
ImNE

⌧⌧ and ReNE

⌧⌧ as a function of the phase �E

⌧µ where only
the light green band is theoretically allowed. Right panel:
Constraints the magnitude and phase of NE

⌧⌧ from ⌧ ! µ�
and h ! ⌧⌧ . Here the whole region is allowed by h ! ⌧µ
with the choice NE

⌧µ = 2GeV. The other parameters are fixed
to be � � ↵ � ⇡/2 = 0.05, mH = 400GeV, mA0 = 600GeV
and mH± = 500GeV.

Higgs signal strength measurements in the ⌧⌧ channel
µ
⌧⌧ . In our model, the width is

�⌧⌧ =

p
2GFmh

8⇡
|m⌧s��↵ + c��↵N

E

⌧⌧
|2. (10)

Experimentally, ATLAS gives µ
⌧⌧

ATLAS
= 1.43+0.43

�0.37
[30]

while CMS favors a smaller one µ
⌧⌧

CMS
= 0.78± 0.27 [31].

We combine these two measurements by centralizing the
errors of ATLAS, assuming both to be Gaussian dis-
tributed, neglecting their correlations and defining a �

2

to obtain the 95%C.L. limit. The constraint on the mag-
nitude and phase of NE

⌧⌧
is shown in Fig. 1. Parametriz-

ing the h⌧̄ ⌧ coupling as [33],

�mf

v
(Rey⌧ ⌧̄ ⌧ + Imy⌧ ⌧̄ i�5⌧)h, (11)

this constraint is transformed to circular regions in the
Rey⌧ and Imy⌧ plane between the green dot-dashed lines
in Fig. 2. The inner sky blue band is for a more SM-like
coupling with ⌧ = 1±0.1 if the coupling is parametrized
as [33]

mf

v
⌧ (cos�⌧ ⌧̄ ⌧ + sin�⌧ ⌧̄ i�5⌧)h. (12)

Note these two are the direct constraints on the h⌧̄ ⌧ cou-
pling parameters as usually done in the literature. If start
from the weak basis parameters and for r⌧µ = 1.05, the
⌧⌧ region is shrinked to the green region.
Constraints from measurement of Br(h ! ⌧µ).

The flavor o↵-diagonal NE

⌧µ
generates h ! ⌧µ with width

�⌧µ =

p
2c2

��↵
GFmh

8⇡
|NE

⌧µ
|2, (13)

This LFV process has been searched by both ATLAS and
CMS. ATLAS sets an upper limit on the branching ratio
Br(h ! ⌧µ) < 1.85% at 95C.L. [3], while CMS gives a

best fit Br(h ! ⌧µ) = 0.84+0.39

�0.37
% as well as an upper

limit Br(h ! ⌧µ) < 1.51% at 95C.L. [9]. For r⌧µ = 1.05,
this branching ratio is correlated with h ! ⌧⌧ and is
shown as the brown arc in the Rey⌧ � Imy⌧ plane in
Fig. 2 where the current CMS upper limit 1.51% as well
as two prospective future measurements of 1%, 0.5% are
labeled as dashed lines while the CMS central values are
shown as light red arc.
The rare decay ⌧ ! µ�. The flavor o↵-diagonal
ha⌧̄LµR coupling also contributes to the rare decay ⌧ !
µ� with current experimental limit Br(⌧ ! µ�) <

4.4⇥ 10�8 [25] and is given by

Br(⌧ ! µ�) =
⌧⌧↵G

2

F
m

5

⌧

32⇡4
(|C7L|2 + |C2

7R
|), (14)

where ⌧⌧ = (290.3± 0.5)⇥ 10�15
s [26] is the life time of

⌧ and C7L/R are the Wilson coe�cients of the two dipole
operators

Q
L/R

7
=

e

8⇡2
m⌧ µ̄�

µ⌫(1⌥ �
5)⌧Fµ⌫ , (15)

defined by the e↵ective Hamiltonian [27] �GF [C7LQ
L

7
+

C7RQ
R

7
]/
p
2. They receive contributions from one loop

neutral and charged Higgs mediated diagrams and two
loop Barr-Zee type diagrams [28]. For the two loop part,
mainly two groups of diagrams contribute depending on
the external legs of the inner loops. The group with an ef-
fective ha�� vertex is induced by t, W± or H± loops and
the second group with e↵ective H

±
W

⌥
� vertex is gen-

erated by W
±, H±, t/b or µ/⌫⌧ in the loops. These two

loop results are adapted from leptonic EDM and MDM
calculations in Ref. [29]. The end results of C7L is pro-
portional to N

E ⇤
⌧µ

while C7R / N
E

µ⌧
= 0.

Electric and magnetic dipole moments. The one
loop contributions to muon MDM and EDM come from
exchanges of neutral scalars ha and is proportional to
the invariant N

E

⌧µ
N

E

µ⌧
= 0. The two loop Barr-Zee

type diagrams have similar topology as that in ⌧ ! µ�.
Especially the CP-violating ha⌧̄ ⌧ generates an CP-odd
haF̃µ⌫F

µ⌫ operator in the inner loop. All these contribu-
tions vanishes since light lepton masses and the relevant
couplings are neglected in our setup.
Collider sensitivities of a CP-violating h⌧̄ ⌧ . The
CPV associated with the invariant JE represents a di↵er-
ent origin of CPV as compared with the case where the
CP-violating h⌧̄ ⌧ comes from mixing between CP-even
and CP-odd Higgs scalars originating from the CPV in
the potential which is highly constrained by EDM lim-
its [32]. Studies on collider sensitivies of a CP-violating
h⌧̄ ⌧ employing the ⇢ decay plane method and the im-
pact parameter method show that the phase �⌧ can be
determined with an uncertainty of 15

�
(9

�
) at the LHC

with an integrated luminosity of 150fb�1(500fb�1) while
⇡ 4

�
with 3ab�1 can be achieved [33]. At Higgs factories,

this phase can be measured with ⇡ 4.4
�
accuracy with a

250GeV run and 1ab�1 luminosity [34].

Mass basis (T=0) 

2

Two Higgs Doublet Model. The 2HDM naturally
provides LFV interactions at tree level if both Higgs dou-
blets couple to the right handed leptons. Since our focus
is on CPV in the lepton sector, we assume the potential
to be CP-conserving and provides a strongly first order
EWPT [21]. The particle spectrum then consists of five
scalars with two CP-even h,H, one CP-odd A0, a pair
of charged scalars H± and the lighter h is defined as the
SM Higgs. The SU(2)L⌦U(1)Y invariant weak eigenba-
sis Yukawa interactions in the lepton sector is

L Lepton

Yukawa
= �E

i

L

⇥
(Y E

1
)ij�1 + (Y E

2
)ij�2

⇤
e
j

R
+ h.c.,(2)

where �1,2 are the two Higgs doublets with the same hy-
percharge, Ei

L
is the left-handed lepton doublet in fam-

ily “i” and e
j

R
is the right-handed lepton singlet in fam-

ily “j”. We focus now on the two ⌧ � µ families, ne-
glect the muon mass at first approximatioin and assume
the Yukawa structures are such that the relevant up and
down type quarks have similar couplings as those in SM.

The relevant Jarlskog-like CPV invariant that is the
origin of both BAU and h⌧̄ ⌧ is the imaginary part of the
following basis invariant [16],

JE =
1

v2µ
HB

12

2X

a,b,c=1

vav
⇤
b
µbc

X

ij=⌧,µ

(Y E

c
)ij(Y

E†
a

)ji, (3)

with here µab the coe�cient of �†
a
�b in the potential

and µ
HB

ij
the corresponding coe�cient in the Higgs ba-

sis [12, 16]. Here the basis transformation refers to the
U(2) Higgs basis transformation as well as lepton fam-
ily transformations. Fixing the Higgs basis definition of
the two Higgs doublets, µHB

ij
is an unique real quantity

indepenent of basis choices. Note this invariant takes
di↵erent forms in weak eigenbasis which is convenient for
BAU calculations as opposed to that in mass eigenbasis
which is better for phenomenological analysis.

In weak eigenbasis, the mass matrix is one linear com-
bination of the two Yukawa matrices,

M
E = (v1Y

E

1
+ v2Y

E

2
)/
p
2, (4)

and at zero temperature it is bidiagonalized to be the
mass matrix for leptons. The textures of this mass matrix
is highly constrained by the diagonalization procedure
and we choose the type where only the elements in the
second row Y

E

1/2,⌧µ
, Y

E

1/2,⌧⌧
are non-vanishing. In this

case, after all possible rephasings of the lepton and Higgs
fields, only one of the four Yukawa matrix elements can
be complex which we choose to be Y E

1,⌧µ
and the resulting

o↵-diagonal mass matrix element can be parametrized as

M
E

⌧µ
=

vs�p
2
Y

E

2,⌧µ
[1 + cot� sgn(Y E

2,⌧µ
)r⌧µe

i�
E
⌧µ ], (5)

with r⌧µ ⌘ |Y E

1,⌧µ
|/|Y E

2,⌧µ
|. We further assume the

diagonal elements of the two Yukawa matrices to be
equal and positive for simplicity giving then M

E

⌧⌧
=

vY
E

2,⌧⌧
(s� + c�)/

p
2. From the diagonalization condi-

tioin |ME

⌧µ
|2 + |ME

⌧⌧
|2 = m

2

⌧
, we can solve Y

E

2,⌧⌧
=q

2(m2
⌧
� |ME

⌧µ
|2)/|v(s�+c�)|, which leads to the natural

requirement |ME

⌧µ
|  m⌧ . Counting degrees of freedom

in weak basis, we have |Y E

2,⌧µ
|, �E

⌧µ
, r⌧µ and �. Our study

will be fixed at tan� = 1.
The other linear combination of the Yukawa matrices

(�v2Y
E

1
+v1Y

E

2
)/
p
2 generally can not be simultaneously

diagonalized and we denote its two non-vanishing matrix
elements in mass eigenbasis by N

E

⌧µ
, NE

⌧⌧
while N

E

µ⌧
=

N
E

µµ
= 0. Phenomenologically, NE

⌧⌧
controls the Higgs

coupling to ⌧̄ ⌧ ,

�1

v
⌧L⌧R[h(m⌧s��↵ +N

E

⌧⌧
c��↵)

+H(m⌧ c��↵ �N
E

⌧⌧
s��↵) + iA0N

E

⌧⌧
] + h.c., (6)

where ↵ is the mixing angle between the two CP-even
Higgs scalars and the real and imaginary part of NE

⌧⌧
is

related respectively to that of JE ,

Re(NE

⌧⌧
) =

v
2
µ
HB

12
ReJE � 2µHB

11
m

2

⌧

2µHB

12
m⌧

tan �=1

=
v
2|Y E

2,⌧µ
|2

4m⌧

(1� r
2

⌧µ
),

Im(NE

⌧⌧
) =

v
2ImJE

2m⌧

=
v
2(�Y

E

2,⌧µ
ImY

E

1,⌧µ
)

2m⌧

. (7)

The o↵-diagonal element NE

⌧µ
controls the strength of the

Higgs LFV couplings

�
N

E

⌧µ

v
⌧LµR(c��↵h� s��↵H + iA0) + h.c., (8)

and its expression in terms of weak basis parameters is

N
E

⌧µ
= e

i�

����N
E

⌧⌧

M
E

⌧⌧

ME
⌧µ

���� , (9)

where � is an aribitrary phase undetermined from the
diagonalization procedure and can be adjusted to give a
CP-conserving h⌧µ. In fact, the absence of CPV for h⌧µ
does not depend on the choice of this arbitrary phase
since the corresponding CPV observables only depend
on invariant quantities like N

E

⌧µ
N

E

µ⌧
which vanish here.

Finally the charged Higgs interactions is governed by
�
p
2/vH+

⌫
i

L
N

E

ij
e
j

R
+ h.c.. The three physical param-

eters ReNE
⌧⌧ , ImN

E
⌧⌧ and N

E

⌧µ
depend on three weak

basis parameters |Y E

2,⌧µ
|, �E

⌧µ
and r⌧µ. For a restricted

weak basis prameter space like for a fixed r⌧µ, the phys-
ical parameters become dependent(Note r⌧µ is required
by the condition |ME

⌧µ
|  m⌧ to be close to 1). Inverting

Eq. 7, we solve |Y E

2,⌧µ
| and sin�E

⌧µ
as a function of ReNE

⌧⌧

and ImN
E

⌧⌧
. Eq. 9 then implies that h ! ⌧µ and ⌧ ! µ�

depend on h ! ⌧⌧ .

Higgs signal strength measurement. The diagonal
N

E

⌧⌧
enters the decay h ! ⌧⌧ and thus is constrained by

Flavor basis (high T) 
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Δφτ ~ 10o : 

3 ab-1 @ LHC 14 

Guo, Li, Liu, R-M, Shu 1609.09849 

m2 ⇡ MN (37)

�(N ! `H) 6= �(N ! ¯̀H⇤) (38)

Lmass = yL̄H̃NR + h.c. + mNN̄RN
C

R
(39)

Lmass =
y

⇤
L̄

c
HH

T
L + h.c. (40)

�(NR ! `H) 6= �(NR !
¯̀H⇤) (41)

m⌫ =
m

2
D

MR

(42)

hp
0
| J

EM
µ

|pi = Ū(p0)


F1�µ +

iF2

2M
�µ⌫q

⌫ +
iF3

2M
�µ⌫�5q

⌫ +
FA

M2
(q2

�µ � 6qqµ)�5

�
U(p) (43)

hp
0
| J

EM
µ

|pi
PV

=
FA

M2
Ū(p0)

⇥
(q2

�µ � 6qqµ)�5

⇤
U(p) (44)

Qquqd = ✏jkQ̄
j
uRQ̄

k
dR (45)

YB =
nB

s
= (8.82± 0.23)⇥ 10�11 (46)

mt̃R
⇠ 160 GeV (47)

⌧ cos �⌧ ⌧ sin �⌧ (48)
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We investigate the LHC and Higgs factory prospects for measuring the CP phase in the Higgs-!-!
coupling. Currently this phase can be anywhere between 0! (CP even) and 90! (CP odd). A new, ideal

observable is identified from an analytic calculation for the !" ! "" # ! $"$0# channel. It is

demonstrated to have promising sensitivity at the LHC and superior sensitivity at the ILC compared to

previous proposals. Our observable requires the reconstruction of the internal substructure of decaying

taus but does not rely on measuring the impact parameter of tau decays. It is the first proposal for such a

measurement at the LHC. For the 14 TeV LHC, we estimate that about 1 ab # 1 data can discriminate CP
even versus CP odd at the 5% level. With 3 ab # 1, the CP phase should be measurable to an accuracy of

$ 11!. At an eþ e# Higgs factory, we project that a 250 GeV run with 1 ab # 1 luminosity can measure the

phase to $ 4:4! accuracy.
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I. INTRODUCTION

The discovery of the Higgs boson [1,2] has opened a
new opportunity in the search for physics beyond the
standard model (SM). The SM predicts all couplings of
the Higgs to SM particles completely, and a measured
significant deviation of Higgs couplings from the SM
prediction will be a clear signal of new physics. The
most straightforward tests at the moment are comparisons
of the Higgs production rates times branching ratios to the
SM prediction in a variety of final states. Thus far, such
global fits roughly agree with a SM Higgs [3,4].

We can go further by testing the CP properties of Higgs
couplings. This test has already been done for the coupling
of the Higgs to electroweak gauge bosons [5,6]. In the SM,
the Higgs couples to the Z boson as a scalar, hZ&Z

&.
In general, a Higgs-like state could couple to Z bosons as
a pseudoscalar, hZ&#

~Z&#, or with any linear combination
of scalar and pseudoscalar couplings, which would imply
CP violation. In the fully leptonic channel for h ! ZZ&,
the azimuthal angle between the decay planes of the two
Z bosons is sensitive to the Z polarizations, which in turn
is sensitive to the CP structure of the Higgs couplings
[7,8]. Current data disfavors a pure pseudoscalar coupling
at 99:84% ¼ 3:3% and 99.6% (97.8%) confidence level
using CLS statistics at CMS [5] and ATLAS MELA
(ATLAS BDT) [6], respectively.

In models where the SM is augmented by heavy new
physics, this result is unsurprising. Of the two possible
interactions mentioned above, the scalar interaction is
renormalizable, while the pseudoscalar interaction arises
from a dimension-6 operator. The pseudoscalar coupling is
thus expected to be subdominant in Higgs decays and

corresponding CP violating effects will be small. While
current results favor a pure scalar coupling in the Higgs
couplings to weak gauge bosons, searches for CP violation
in fermionic decays of the Higgs are still highly motivated.
Such modified couplings can arise from a different source
which, in particular, can give a pseudoscalar interaction
comparable to a scalar, unlike the Higgs-W=Z couplings.
In this paper we investigate how the CP structure of the

coupling of the Higgs to tau leptons can be probed at
present and future colliders. The Higgs coupling to any
fermion generally consists of aCP even and aCP odd term,

Lhff / h !fðcos" þ i'5 sin "Þf: (1)

Measuring thisCP phase" requires knowledge of the spins
of the f !f state. Tau decays are complex enough to retain
nontrivial information about the direction of the tau spin,
yet clean enough that the spin information is not washed out
by hadronization effects as it is for b-quark decays [9].
Since the Higgs branching fraction to !þ !# is substantial in
the SM ($ 6:15% for mh ¼ 126 GeV), the !þ !# decay
channel is the best of a limited set of opportunities for CP
violation searches in Higgs couplings to fermions.1 In
addition, a pseudoscalar-like coupling of the Higgs to taus
can conceivably compete with the small tau Yukawa cou-
pling, and so CP violating effects can be sizable. Currently,
the only direct bound on the Higgs-tau coupling is on the
net signal strength in h ! !þ !# channels: &̂ ¼ 1:1 " 0:4
[12]. In this paper, wewill maintain &̂ ¼ 1 andmodify only
", so this constraint does not apply.
We focus on the specific tau decay channel !" ! "" #

with "" ! $"$0. This is the most common tau decay

1For opportunities in other channels see [10,11].
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Study cos (2Δ – Θ) distribution 

distribution in pp ! hj events where we have temporar-
ily assumed the neutrinos are fully reconstructed. The
various signal models with ! ¼ 0 (CP even), ! ¼ !=4
(maximal CP admixture), and ! ¼ !=2 (CP odd) clearly
show the large" cos ð"" 2!Þ contribution of the matrix
element as seen in (37). We also superimpose the "
distribution from the pp ! Zj event. Note that it is
flat. Clearly, observing the cosine oscillation in experi-
mental data will require both a favorable signal to back-
ground ratio as well as a solution for the neutrino
momenta that preserves the inherently large amplitude
of the " oscillation.

We now compare " at truth level with the "% variable
proposed in Refs. [16,17]: here, "% is the acoplanarity
angle between the decay planes of #þ and #" in the
#þ #" rest frame. The sign of "% is defined as the sign of
the product of ~p!" ' ð ~p!þ ( ~p!0Þ. Following [16,17],
the events are divided into two classes, yþ y" < 0 and
yþ y" > 0, where the two classes differ by a 180) phase
shift. In order to make a direct comparison with our "
variable, we combine the "% distributions of the two
classes with a 180) phase shift so the phases of the two
classes agree. Note that while "% does not refer to the
neutrinos, this classification into the two classes still re-
quires the knowledge of the neutrino momenta [see (21)].
Assuming the neutrinos are fully reconstructed, the " and
"% distributions for pp ! hj events are shown in Fig. 3
with ! ¼ 0. We readily see that oscillation amplitude of
the " distribution is larger than that of the acoplanarity
angle "% by about 50%. Compared to "%, the " variable
thus provides superior sensitivity to the CP phase !.

Having considered the case where the neutrinos from
the tau decays are fully reconstructed, we next turn to the
lepton collider environment, where we will find the
neutrinos can be fully reconstructed up to a twofold
ambiguity.

B. An eþe" Higgs factory

At a lepton collider running at
ffiffiffi
s

p ¼ 250 GeV, such as
the ILC, the main production mode for the Higgs is via
associated production with a Z boson. Our prescribed
decay mode for the Higgs, h ! !þ !0 #$!"!0$, has two
neutrinos that escape the detector. We use the known initial
four momenta, two tau mass and two neutrino mass con-
straints to solve for each neutrino momentum component.
Note we will assume the Z decays to visible states, which
will reduce our event yield by 20%. Solving the system of
equations for the neutrino momenta gives rise to a twofold
ambiguity, where one solution is equal to the truth input
neutrino momenta while the other gives a set of wrong
neutrino momenta. Note both solutions are consistent with
4-momentum conservation and therefore correctly recon-
struct the Higgs mass. Since these solutions are indistin-
guishable in the analysis, we assign each solution half an
event weight.
The resulting distribution of " for ! ¼ 0 is given in

Fig. 4, where we superimpose the truth level" distribution
for eþ e" ! Zh events for easy comparison. We can see
that the oscillation amplitude at the ILC is degraded from
the truth level result by * 30%. We also show the recon-
structed distribution for ! ¼ 0, ! ¼ !=4, and ! ¼ !=2
in Fig. 5. While the twofold ambiguity for the neutrino
momenta solution set does degrade the truth level result,
the reconstructable " distribution in Fig. 5 shows signifi-
cant discrimination power between various ! signal mod-
els. Note the amplitude of pseudoscalar distribution
(! ¼ !=2) is slightly higher than the scalar amplitude:
here, the ‘‘wrong solution’’ approximates the correct neu-
trino momenta on average better than the other ! ¼ 0 or
! ¼ !=4cases. This small effect can be traced back to
Eq. (9) where we derived that a pseudoscalar decays to two
taus in the singlet spin state. As a result, in this case the two
tau spins point in opposite directions, regardless of the spin
quantization axis. In the pseudoscalar case the two tau
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FIG. 3 (color online). The distributions of our " and the "%

variable of Refs. [16,17] for ! ¼ 0. The "% distribution is
aggregated from the two yþ y" > 0 and yþ y" < 0 classes as
explained in the text to make the direct comparison clearer.
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for the Higgs with ! ¼ 0 (CP even), ! ¼ !=4(maximal CP
admixture), and ! ¼ !=2 (CP odd), and the Z, assuming
neutrinos are fully reconstructed. The relative normalization of
the Z line is arbitrary.
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decays thus tend to occur with opposite orientation and the
two neutrinos are slightly more back to back and con-
sequently the two solutions for their momenta are closer
together.

We now discuss the projected ILC sensitivity for
measuring !. At the ILC, the cross section for Zh produc-
tion at

ffiffiffi
s

p ¼ 250 GeV with polarized beams Pðe#; eþÞ ¼
ð#0:8 ; 0:3 Þ for mh ¼ 125 GeV is 0.30 pb [29].6 Assuming
a Higgs branching fraction to tau pairs of 6.1%, a
!# ! "## ! $#$0# branching fraction of 26%, and a
Z-to-visible branching fraction of 80%, we calculate the
ILC should have 990 events with 1 ab#1 of luminosity.
Since the solved neutrino momenta correctly reconstruct
the Higgs mass, the ZZ backgrounds are negligible and
will be ignored.

To estimate the expected ILC accuracy for measuring!,
we perform a log likelihood ratio test for the SM
hypothesis with ! ¼ 0 against an alternative hypothesis
with ! ¼ %. In general, the likelihood ratio in N bins is
given by

L ¼
QN

i¼1 PoisðBi þ S!¼0
i jBi þ S!¼%

i ÞQN
i¼1 PoisðBi þ S!¼0

i jBi þ S!¼0
i Þ ; (38)

where Bi, S
!¼0
i and S!¼%

i are the number of background
events, signal events assuming ! ¼ 0, and signal events
assuming ! ¼ % in bin i of the " distribution. In our ILC
treatment, we neglect ZZ and Z ! !! continuum back-
grounds and so we set Bi ¼ 0. Here, Poisðkj&Þ is the usual
Poisson distribution function, Poisðkj&Þ ¼ &ke#&=k!.
We parametrize the signal " distribution with a c#

A cos ð"# 2!Þ fit function, where the offset constant c
and oscillation amplitude A are fixed by the fit of the
standard model " distribution with ! ¼ 0, giving c0 and
A0, respectively. Then, the resulting S!¼% signal " distri-
bution is given by c0 # A0 cos ð"# 2%Þ. We construct the
binned likelihood7 according to (38) for various % hypoth-
eses to test the discrimination against the SM hypothesis.
With 1 ab#1 of ILC luminosity, we find 1' discrimination
at % ¼ 0:077 rad¼ 4 :4 &, which is a highly promising
degree of sensitivity for measuring the CP phase of the
Higgs coupling to taus. We summarize our rate estimate
and accuracy result in Table I.
We remark that this sensitivity estimate is only driven by

statistical uncertainties, and systematic uncertainties are
expected to reduce the efficacy of our result. Also, detector
resolution effects and SM backgrounds, while expected to
be small, will also slightly degrade our projection. Based
on our results, which surpass earlier accuracy estimates of
6& [19], a full experimental sensitivity study incorporating
these subleading effects is certainly warranted.

C. LHC

We now develop an LHC study for reconstructing the
" distribution in pp ! hj in the $þ$0$#$0 þ jþ 6ET

final state. We use the hþ j final state for a couple of
reasons. First, since hadronic taus can be faked by jets,
pp ! h ! two hadronic taus faces an immense back-
ground from multijet QCD. By requiring another object
in the final state, we gain handles to suppress the back-
ground. Second, the collinear approximation gives ambig-
uous results if the two taus are back to back, so the
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FIG. 5 (color online). The reconstructed " distribution at the
ILC for ! ¼ 0, ! ¼ $=4 , and ! ¼ $=2.
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FIG. 4 (color online). The truth and reconstructed " distri-
butions at the ILC for ! ¼ 0.

TABLE I. Cross section, branching fractions, expected number
of signal events, and accuracy for measuring ! for the ILC withffiffiffi
s

p ¼ 250 GeV and 1 ab#1 integrated luminosity.

'eþe#!hZ 0.30 pb
Brðh ! !þ!#Þ 6.1%
Brð!# ! $#$0#Þ 26%
BrðZ ! visiblesÞ 80%
Nevents 990
Accuracy 4.4&

6We have checked the " distribution is insensitive to the
polarization of the e# # eþ beams.

7We choose N ¼ 100 bins, though we verified the number of
bins is immaterial for our results.
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A0, respectively. Then, the resulting S!¼% signal " distri-
bution is given by c0 # A0 cos ð"# 2%Þ. We construct the
binned likelihood7 according to (38) for various % hypoth-
eses to test the discrimination against the SM hypothesis.
With 1 ab#1 of ILC luminosity, we find 1' discrimination
at % ¼ 0:077 rad¼ 4 :4 &, which is a highly promising
degree of sensitivity for measuring the CP phase of the
Higgs coupling to taus. We summarize our rate estimate
and accuracy result in Table I.
We remark that this sensitivity estimate is only driven by

statistical uncertainties, and systematic uncertainties are
expected to reduce the efficacy of our result. Also, detector
resolution effects and SM backgrounds, while expected to
be small, will also slightly degrade our projection. Based
on our results, which surpass earlier accuracy estimates of
6& [19], a full experimental sensitivity study incorporating
these subleading effects is certainly warranted.

C. LHC

We now develop an LHC study for reconstructing the
" distribution in pp ! hj in the $þ$0$#$0 þ jþ 6ET

final state. We use the hþ j final state for a couple of
reasons. First, since hadronic taus can be faked by jets,
pp ! h ! two hadronic taus faces an immense back-
ground from multijet QCD. By requiring another object
in the final state, we gain handles to suppress the back-
ground. Second, the collinear approximation gives ambig-
uous results if the two taus are back to back, so the

3 2 1 0 1 2 3
0.00

0.02

0.04

0.06

0.08

0.10

N
or

m
al

iz
ed

yi
el

d

Reconstructed at the ILC

FIG. 5 (color online). The reconstructed " distribution at the
ILC for ! ¼ 0, ! ¼ $=4 , and ! ¼ $=2.

truth
reconstructed

3 2 1 0 1 2 3
0.00

0.02

0.04

0.06

0.08

0.10

N
or

m
al

iz
ed

yi
el

d

Truth level and reconstructed at the ILC for 0

FIG. 4 (color online). The truth and reconstructed " distri-
butions at the ILC for ! ¼ 0.

TABLE I. Cross section, branching fractions, expected number
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p ¼ 250 GeV and 1 ab#1 integrated luminosity.
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Brð!# ! $#$0#Þ 26%
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Nevents 990
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6We have checked the " distribution is insensitive to the
polarization of the e# # eþ beams.

7We choose N ¼ 100 bins, though we verified the number of
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loop effect 

 a2 H2φ2  :   T = 0  
tree-level effect 

 a1 H2φ  :   T = 0  
tree-level effect 

•  BAU generated by CPV during first order transition to the 
φ phase ! subsequently  transferred to Higgs phase  

 “Two Step EW Baryogenesis” •  Inoue, Ovaneysan, MJRM 
1508.05404 [CPV] 

•  H. Patel, MJRM 1212.5652 
•  Blinov, Kozaczuk, Morrissey, 

Tamarit 1504.05195 
“Partially secluded CPV” 
! evade EDM bounds 
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CPV asymmetry generated in SM 
sector via interactions with the φj  

CPV: θ = Arg (m12
2 ) = θ(x) 

m12
2 = a vΣ (x) + b vS (x) 

•  New sector: real triplet (Σ ) & real 
singlet (S) 

•  SM Sector: Z2 symmetric 2HDM 

CPV: H1 – H2 mixing 

Inoue, Ovaneysan, MJRM 1508.05404 



Two-Step EW Baryogenesis & EDMs 
Two cases: (A) δS = 0    (B) δΣ =0 

YB 

No EDM constraints 
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IV. Outlook 
•  Generation of the cosmic matter-antimatter asymmetry in 

conjunction with EWSB -- EW baryogenesis -- is one of the 
most compelling possibilities 

•  The existence of the scale TEW ! BSM ingredients for 
EWBG are experimentally accessible 

•  There exists a high level of complementarity between 
experimental probes at the energy frontier, precision Higgs 
boson studies, and low-energy symmetry tests ! exciting 
opportunities for the CEPC ! 

•  A rich opportunities exist for further experimental and 
theoretical exploration and refined theoretical computations 
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at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:

V (daisy)
1 = �

T
12⇡

X

{b}0

nb
⇥
m2

b(�, T ) � m2
b(�)

⇤3/2
, (12)

where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
12⇡

g3/2�3
!

1
12⇡

⇥
g�2 + T 2⇤3/2

. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional
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We revisit the theory and phenomenology of scalar electroweak multiplet thermal dark matter.
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at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:

V (daisy)
1 = �

T
12⇡

X

{b}0

nb
⇥
m2

b(�, T ) � m2
b(�)

⇤3/2
, (12)

where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
12⇡

g3/2�3
!

1
12⇡

⇥
g�2 + T 2⇤3/2

. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional
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at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:
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where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
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m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
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When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional
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at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:
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where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes
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When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional
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independent couplings as has been previously considered in the literature. For the phenomenologi-
cally viable case of Y = 0 multiplets, we focus on the septuplet and quintuplet cases, and consider
the interplay of relic density and spin-independent direct detection cross section. We show that
both the relic density and direct detection cross sections depend on a single linear combination of
Higgs portal couplings, �e↵ . For �e↵ ⇠ O(1), present direct detection exclusion limits imply that
the neutral component of a scalar electroweak multiplet would comprise a subdominant fraction of
the observed DM relic density.
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IX. MODELS

We consider the renormalizable Higgs portal interactions involving H and � for two illustrative cases. We restrict
our attention to � being a complex scalar with Y = 0. The form of the potential for � being a real representation of
SU(2)L with Y = 0 is relatively simple. The corresponding features have been illustrated in previous studies wherein
� is either an SU(2)L singlet or real triplet. Consequently, we focus on complex representations, using the n = 5 and
n = 7 examples, to illustrate the new features not considered in earlier work.

To proceed, we first introduce some notation. It is convenient to consider both � and the associated conjugate �,
whose components are related to those of � as

�j,m = (�1)j�m�⇤
j,�m , (53)

where j refers to the isospin of the scalar multiplet �. As we discuss in Appendix A, � and � transform in the same
way under SU(2)L. The scalar multiplet � of integer isospin can be either real or CMplex. If � is a real multiplet,
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Figure 3. Schematic temperature dependence of the effective potential.

at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:
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where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes
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When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional
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ECM(TeV) M� (GeV) | sin ✓| � (fb)
R
dtL (ab�1) N ⇥ 10�3

14 415 0.01 1 3 3
714 0.01 0.1 3 0.3

100 415 0.01 59 30 1770
714 0.01 12 30 360

TABLE IV: Comparison of the LHC and 100 TeV pp sensitivities to �0 production via the gluon fusion process, rescaling the
cross sections given in Refs. [29, 47, 48] by the minimum | sin ✓| of Eq. (29) for representative choices of M�.

VI. OTHER CONSIDERATIONS

The foregoing discussion illustrates how dynamics that modify the thermal history of EWSB and lead to a first order
EWPT cannot involve new particles that are arbitrarily heavy or interact too feebly with the SM Higgs boson. The
possible signatures for collider probes generally lie well within the reach of the LHC and/or prospective future colliders
under consideration. The results of detailed studies within specific models are broadly consistent with these simple,
more general arguments. In fact, the requirements on mass and precision reach obtained in model realizations are
generally more optimistic than those appearing above. Thus, we can be fairly confident in our primary conclusion that
TEW sets a concrete, well-defined scale for new dynamics that collider studies may, in principle, probe exhaustively.

That being said, there remain a few other general considerations that one should address on this topic.

• The foregoing arguments rely on the various patterns of symmetry breaking illustrated in Fig. 1, driven by
thermal loops involving the new degrees of freedom and/or tree-level barriers in the tree-level scalar potential
at the renormalizable level. The presence of higher dimensional operators can play a role analogous to the
tree-level barriers discussed above if the associated mass scale is not too heavy with respect to TEW.

• It is conceivable that the new particles associated with a first order EWPT are relatively light compared to
TEW. It is natural, then, to ask about the collider reach for both direct and indirect searches.

• The value of TEW itself may change in the presence of new interactions, and one may wonder about the
corresponding impact on the mass and precision targets discussed above. In particular, contributions from
loops at either T > 0 or T = 0 can lower the transition temperature under certain conditions. These changes in
TEW motivate, in part, the choice of a somewhat larger upper bound on the M� mass range compared to the
values ⇠ 360� 375 obtained from the simple arguments given above.

In what follows, I comment briefly on each of these points.

A. Non-renormalizable Interactions

The lowest-dimension non-renormalizable, gauge-invariant operators that contain only Higgs boson fields enter the
Lagrangian at d = 6. Following Ref. [49], consider the corresponding Higgs potential of the form
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the symmetric and broken phases at T = 0. Given the measured value of mh, one then requires the mass scale ⇤ to
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, one has �̃ < 0. The presence of the negative quartic term corresponds to a barrier between

the symmetric and broken phases at T = 0. Given the measured value of mh, one then requires the mass scale ⇤ to

14

ECM(TeV) M� (GeV) | sin ✓| � (fb)
R
dtL (ab�1) N ⇥ 10�3

14 415 0.01 1 3 3
714 0.01 0.1 3 0.3

100 415 0.01 59 30 1770
714 0.01 12 30 360

TABLE IV: Comparison of the LHC and 100 TeV pp sensitivities to �0 production via the gluon fusion process, rescaling the
cross sections given in Refs. [29, 47, 48] by the minimum | sin ✓| of Eq. (29) for representative choices of M�.

VI. OTHER CONSIDERATIONS

The foregoing discussion illustrates how dynamics that modify the thermal history of EWSB and lead to a first order
EWPT cannot involve new particles that are arbitrarily heavy or interact too feebly with the SM Higgs boson. The
possible signatures for collider probes generally lie well within the reach of the LHC and/or prospective future colliders
under consideration. The results of detailed studies within specific models are broadly consistent with these simple,
more general arguments. In fact, the requirements on mass and precision reach obtained in model realizations are
generally more optimistic than those appearing above. Thus, we can be fairly confident in our primary conclusion that
TEW sets a concrete, well-defined scale for new dynamics that collider studies may, in principle, probe exhaustively.

That being said, there remain a few other general considerations that one should address on this topic.

• The foregoing arguments rely on the various patterns of symmetry breaking illustrated in Fig. 1, driven by
thermal loops involving the new degrees of freedom and/or tree-level barriers in the tree-level scalar potential
at the renormalizable level. The presence of higher dimensional operators can play a role analogous to the
tree-level barriers discussed above if the associated mass scale is not too heavy with respect to TEW.

• It is conceivable that the new particles associated with a first order EWPT are relatively light compared to
TEW. It is natural, then, to ask about the collider reach for both direct and indirect searches.

• The value of TEW itself may change in the presence of new interactions, and one may wonder about the
corresponding impact on the mass and precision targets discussed above. In particular, contributions from
loops at either T > 0 or T = 0 can lower the transition temperature under certain conditions. These changes in
TEW motivate, in part, the choice of a somewhat larger upper bound on the M� mass range compared to the
values ⇠ 360� 375 obtained from the simple arguments given above.

In what follows, I comment briefly on each of these points.

A. Non-renormalizable Interactions

The lowest-dimension non-renormalizable, gauge-invariant operators that contain only Higgs boson fields enter the
Lagrangian at d = 6. Following Ref. [49], consider the corresponding Higgs potential of the form

Ṽ0(H) = �

✓
H

†
H �

v
2

2

◆2

+
1

⇤2

✓
H

†
H �

v
2

2

◆3

, (38)

where the notation Ṽ0 indicates that the leading order scalar potential is distinct from the potential in Eq. (1). In
both cases, the potential minimum occurs at hH0

i = v/
p
2 and the square of the Higgs boson mass is m2

h
= 2�v2.

Writing Eq. (38) in terms of the field h gives
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For ⇤2
< 3v2/� = 3v4/m2

h
, one has �̃ < 0. The presence of the negative quartic term corresponds to a barrier between

the symmetric and broken phases at T = 0. Given the measured value of mh, one then requires the mass scale ⇤ to
! FO EWPT ! 
Λ < 840 GeV 

! Implications for σZh  
•  Cao, Huang, Xie, Zhang 2017 
•  Grojean, Servant, Wells 2004… 
•  Grinstein, Trott 2008… 



Electroweak Phase Transition 

•  Higgs discovery ! What was the thermal 
history of EWSB ? 

•  Baryogenesis ! Was the matter-antimatter 
asymmetry generated in conjunction with 
EWSB (EW baryogenesis) ? 

•  Gravitational waves ! If a signal observed in 
LISA, could a cosmological phase transition 
be responsible ? 
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Strong First Order EWPT: Necessary condition for EW baryogenesis 


