Strongly first－order electroweak phase transition，electroweak sphaleron，and SGWB

Ligong Bian（Chongqing University）

电弱相变与希格斯物理专题研讨会＠IHEP July， 312020

Contents

1. GW from Strongly first-order phase transition
2. Strongly first-order electroweak phase transition
3. GWs and sphaleron
4. Related topics

Particle physics model

PT parameters

Effective action $\rightarrow \beta, H_{*}$
Energy budget $\rightarrow \alpha, \kappa\left(\alpha, v_{\mathrm{w}}\right)$ Bubble wall dynamics $\rightarrow v_{\mathrm{w}}$

GW power spectrum
Numerical simulations \rightarrow $h^{2} \Omega_{\mathrm{GW}}\left(f ; H_{*}, \alpha, \beta, v_{\mathrm{w}}\right)$

2.7 SO7: Understand stochastic GW

backgrounds and their implications for the early Universe and TeV-scale particle physics

One of the LISA goals is the direct detection of a stochastic GW background of cosmological origin (like for example the one produced by a first-order phase transition around the TeV scale) and stochastic foregrounds. Probing a stochastic GW background of cosmological origin provides information on new physics in the early Universe. The shape of the signal gives an indication of its origin, while an upper limit allows to constrain models of the carly Hyivers ond particle physics beyond the standard model. 200

LISA sensitivity
Configuration + noise level \rightarrow $h^{2} \Omega_{\text {sens }}(f)$

Signal-to-noise ratio
$\mathrm{SNR}=\sqrt{\mathcal{T} \int_{f_{\min }}^{\rho_{\max }} \mathrm{d} f\left[\frac{h^{2} \Omega_{\mathrm{GW}}(f)}{h^{2} \Omega_{\mathrm{Sens}}(f)}\right]^{2}}$

GW parameters and FOPT

Bounce solution

$$
\begin{gathered}
S_{3}(T)=\int 4 \pi r^{2} d r\left[\frac{1}{2}\left(\frac{d \phi_{b}}{d r}\right)^{2}+V\left(\phi_{b}, T\right)\right] \\
\lim _{r \rightarrow \infty} \phi_{b}=0,\left.\quad \frac{d \phi_{b}}{d r}\right|_{r=0}=0
\end{gathered}
$$

Bubble nucleation:

$$
\Gamma \approx A(T) e^{-S_{3} / T} \sim 1
$$

Latent heat:

$$
\alpha=\left.\frac{1}{\rho_{R}}\left[-\left(V_{\mathrm{EW}}-V_{f}\right)+T\left(\frac{d V_{\mathrm{EW}}}{d T}-\frac{d V_{f}}{d T}\right)\right]\right|_{T=T_{\gamma, .}}
$$

phase transition inverse duration: $\frac{\beta}{H_{n}}=\left.T \frac{d\left(S_{3}(T) / T\right)}{d T}\right|_{T=T_{n}}$

GW from FOPT
 $\Omega_{\mathrm{GW}}(f) h^{2} \approx \Omega_{\mathrm{sw}}(f) h^{2}+\Omega_{\mathrm{turb}}(f) h^{2}$

Sound Wave: $\Omega h_{\mathrm{sw}}^{2}(f)=2.65 \times 10^{-6}\left(H_{*} \tau_{\mathrm{sw}}\right)\left(\frac{\beta}{H}\right)^{-1} v_{b}\left(\frac{\kappa_{\nu} \alpha}{1+\alpha}\right)^{2}\left(\frac{g_{*}}{100}\right)^{-\frac{1}{3}}\left(\frac{f}{f_{\mathrm{sw}}}\right)^{3}\left(\frac{7}{4+3\left(f / f_{\mathrm{sw}}\right)^{2}}\right)^{7 / 2}$ Hindmarsh '17 Ellis '18
phase transition duration:

$$
\tau_{s w}=\min \left[\frac{1}{H_{*}}, \frac{R_{*}}{U_{f}}\right], H_{*} R_{*}=v_{b}(8 \pi)^{1 / 3}(\beta / H)^{-1}
$$

Root-mean-square fourvelocity of the plasma

$$
\bar{U}_{f}^{2} \approx \frac{3}{4} \frac{\kappa_{\nu} \alpha}{1+\alpha}
$$

$$
f_{\mathrm{sw}}=1.9 \times 10^{-5} \frac{\beta}{H} \frac{1}{v_{b}} \frac{T_{*}}{100}\left(\frac{g_{*}}{100}\right)^{\frac{1}{6}} \mathrm{~Hz}
$$

MHD turbulence:

$$
\Omega h_{\text {turb }}^{2}(f)=3.35 \times 10^{-4}\left(\frac{\beta}{H}\right)^{-1}\left(\frac{\epsilon \kappa_{\nu} \alpha}{1+\alpha}\right)^{\frac{3}{2}}\left(\frac{g_{*}}{100}\right)^{-\frac{1}{3}} v_{b} \frac{\left(f / f_{\text {turb }}\right)^{3}\left(1+f / f_{\text {turb }}\right)^{-\frac{11}{3}}}{\left[1+8 \pi f a_{0} /\left(a_{*} H_{*}\right)\right]}
$$

Caprini '09

$$
f_{\text {turb }}=2.7 \times 10^{-5} \frac{\beta}{H} \frac{1}{v_{b}} \frac{T_{*}}{100}\left(\frac{g_{*}}{100}\right)^{\frac{1}{6}} \mathrm{~Hz}
$$

$\kappa_{\nu}\left(v_{b}, \alpha\right)$: the fraction of

Implication of 125 GeV Higgs

CMS $\sqrt{s}=7 \mathrm{TeV}, \mathrm{L}=5.1 \mathrm{fb}^{-1} \sqrt{\mathrm{~s}}=8 \mathrm{TeV}, \mathrm{L}=5.3 \mathrm{fb}^{-1}$

BSM for EWPT

SM+Scalar Singlet

SM+Scalar Doublet

SM + Scalar Triplet
NMSSM
Composite Higgs

EFT

Espinosa, Quiros 93, Benson 93, Choi, Volkas 93, Vergara 96, Branco, Delepine, Emmanuel- Costa, Gonzalez 98, Ham, Jeong, Oh 04, Ahriche 07, Espinosa, Quiros 07, Profumo, Ramsey-Musolf, Shaughnessy 07, Noble, Perelstein 07, Espinosa, Konstandin, No, Quiros 08, Barger, Langacker, McCaskey, Ramsey-Musolf, Shaughnessy 09, Ashoorioon, Konstandin 09, Das, Fox, Kumar, Weiner 09, Espinosa, Konstandin, Riva 11, Chung, Long 11, Barger, Chung, Long, Wang 12, Huang, Shu, Zhang 12, Fairbairn, Hogan 13, Katz, Perelstein 14, Profumo, Ramsey-Musolf, Wainwright, Winslow 14, Jiang, Bian, Huang, Shu 15, Kozaczuk 15, Cline, Kainulainen, Tucker-Smith 17, Kurup, Perelstein 17, Chen, Kozaczuk, Lewis 17,Cheng, Bian 17, Bian, Tang 18, Chen, Li, Wu, Bian, 19...

Turok, Zadrozny 92, Davies, Froggatt, Jenkins, Moorhouse 94, Cline, Lemieux 97, Huber 06, Froome, Huber, Seniuch 06, Cline, Kainulainen, Trott 11, Dorsch, Huber, No 13, Dorsch, Huber, Mimasu, No 14, Basler, Krause, Muhlleitner, Wittbrodt, Wlotzka 16, Dorsch, Huber, Mimasu, No 17, Bernon, Bian, Jiang 17, Bian, Liu 18,...

Profumo, Ramsey-Musolf 12, Chiang 14, Zhou, Cheng, Deng, Bian, Wu 18,Zhou, Bian, Guo,Wu 19,...

Pietroni 93, Davies, Froggatt, Moorhouse 95, Huber, Schmidt 01, Ham, Oh, Kim, Yoo, Son 04, Menon, Morrissey, Wagner 04, Funakubo, Tao, Yokoda 05, Huber, Konstandin, Prokopec, Schmidt 07, Chung, Long 10, Kozaczuk, Profumo, Stephenson Haskins, Wainwright 15, Bi, Bian, Huang, Shu, Yin 15, Bian, Guo, Shu $17, \ldots$

Espinosa, Gripaios, Konstandin, Riva 11, Bruggisser, Von Harling, Matsedonskyi, Servant 18, Bian, Wu, Xie 19, De Curtis, Delle Rose, Panico 19, Bian, Wu, Xie 20,...

Grojean, Servant, Wells 05, Bodeker, Froome, Huber, Seniuch 05, Huang, Joglekar, Li, Wagner 15,Cai,Sasaki, Wang17,Zhou, Bian, Guo 19, ...

Model classes for catalyzing a strongly first order electroweak phase transition

I. Thermally (BEC) Driven

IIB. Tree-Level (Non-Ren.) Driven

IIA. Tree-Level (Ren.) Driven

III. Loop Driven

Tn~ 10^2 GeV

Why SFOEWPT

$$
\frac{n_{b}}{s} \approx(0.7-0.9) \times 10^{-10} \neq 0
$$

C J Moore et al. Class. Quantum Grav. 32 (2015) 015014.

Sphaleron decay rate

$$
\Gamma / V=\frac{\omega_{-}}{2 \pi} \mathcal{N}_{\mathrm{tr}}(\mathcal{N} V)_{\text {rot }}\left(\frac{\alpha_{W} T}{4 \pi}\right)^{3} \alpha_{3}^{-6} e^{-E_{\mathrm{sp}} / T} \kappa
$$

$$
\begin{gathered}
\partial_{\mu} J_{B}^{\mu}=i \frac{N_{F}}{32 \pi^{2}}\left(-g_{2}^{2} F^{a \mu \nu} \widetilde{F}_{\mu \nu}^{a}+g_{1}^{2} f^{\mu \nu} \tilde{f}_{\mu \nu}\right), \\
\Delta B=N_{F}\left(\Delta N_{\mathrm{CS}}-\Delta n_{\mathrm{CS}}\right)
\end{gathered}
$$

$$
N_{\mathrm{CS}}=-\frac{g_{2}^{2}}{16 \pi^{2}} \int d^{3} \times 2 \epsilon^{i j k} \operatorname{Tr}\left[\partial_{i} A_{j} A_{k}+i \frac{2}{3} g_{2} A_{i} A_{j} A_{k}\right],
$$

$$
n_{\mathrm{Cs}}=-\frac{g_{1}^{2}}{16 \pi^{2}} \int d^{3} x \epsilon^{i j k} \partial_{i} B_{j} B_{k}
$$

$$
A_{i} \rightarrow U A_{i} U^{-1}+\frac{i}{g_{2}}\left(\partial_{i} U\right) U^{-1}
$$

$$
\delta N_{\mathrm{CS}}=\frac{1}{24 \pi^{2}} \int d^{3} \times \operatorname{Tr}\left[\left(\partial_{i} U\right) U^{-1}\left(\partial_{i} U\right) U^{-1}\left(\partial_{k} U\right) U^{-1}\right] \epsilon^{i j k}
$$

The Standard Model already contains a process that viclates B -number. It is known as the electroweak sphaleron ("sphaleros" is Greek for "ready to fall").

Klinkhammer \& Manton (1984); Kuzmin, Rubakov, B Shaposhnikov (2985); Harvey \& Turner (1990) but also identified earlier by Dashen, Hasslacher, \& Neveu (1974) and Boguta (1983)

BNPC , v/T and EW sphaleron

$$
\frac{d n_{B}}{d t}=-\frac{13 n_{f}}{2} \frac{\Gamma_{\mathrm{sph}}}{V T^{3}} n_{B}
$$

$$
\left(\Gamma_{\mathrm{sph}} / V\right)<\alpha H T^{3}
$$

$$
\frac{n_{B}\left(\Delta t_{\mathrm{EW}}\right)}{n_{B}(0)}=\exp \left[-\frac{13 n_{f}}{2} \int_{0}^{\Delta t_{\mathrm{EW}}} d t \frac{\Gamma_{\mathrm{sph}}(T(t))}{V T^{3}(t)}\right]
$$

$$
\begin{gathered}
\frac{E_{\text {sph }}(T)}{T}>\ln \left[2 \mathcal{N}_{\mathrm{tr}} \mathcal{N}_{\mathrm{rot}} \mathcal{V}_{\mathrm{rot}} \frac{\omega_{-}}{g v(T)}\right]+4 \ln \left(\frac{\alpha_{W}}{4 \pi}\right)+7 \ln \left(\frac{4 \pi v(T)}{g T}\right)+\ln \kappa \\
\quad-\ln \alpha-\frac{1}{2} \ln \left(\frac{\pi^{2}}{90} g_{*}\right)-\ln \frac{T}{M_{\mathrm{Fl}}} \\
\frac{E_{\mathrm{sph}}(T)}{T}> \\
> \\
\hline E_{\text {eph }}(T) \approx E_{\text {eph } 0} \frac{v(T)}{v}
\end{gathered}
$$

$$
\frac{n_{B}\left(\Delta t_{\mathrm{EW}}\right)}{n_{B}(0)}>e^{-X}
$$

$$
\frac{4 \pi B}{g} \frac{\bar{v}\left(T_{C}\right)}{T_{C}}-6 \ln \frac{\bar{v}\left(T_{C}\right)}{T_{C}}>
$$

$$
\frac{v(T)}{T}>(0.973-1.16)\left(\frac{E_{\text {spl }, 0}}{1.916 \times 4 \pi v / g}\right)^{-1}
$$

$$
S=\frac{n_{B}\left(\Delta t_{\mathrm{EW}}\right)}{n_{B}(0)} \quad \begin{aligned}
& \text { baryon asymmetry erase } \\
& \text { during the phase transition }
\end{aligned}
$$

Xucheng Gan, Andrew J. Long, Lian-Tao Wang, 17

$$
X=-\ln S
$$

$$
P T_{s p h} \equiv \frac{E_{\mathrm{sph}}(T)}{T}-7 \ln \frac{v(T)}{T}+\ln \frac{T}{100 \mathrm{GeV}}
$$

SFOEWPT condition

$$
P T_{s p h}>(35.9-42.8)
$$

Class IIB
 Dim. six operator, SMEFT

Higgs potential

$$
V(H)=-m^{2}\left(H^{\dagger} H\right)+\lambda\left(H^{\dagger} H\right)^{2}+\frac{\left(H^{\dagger} H\right)^{3}}{\Lambda^{2}}
$$

Finite temperature potential $V_{T}(h, T)=V(h)+\frac{1}{2} c_{h T} h^{2}$
Thermal correction $\quad c_{h T}=\left(4 y_{t}^{2}+3 g^{2}+g^{2}+8 \lambda\right) T^{2} / 16$
Electroweak minimum being the global one

$$
\Lambda \geq v^{2} / m_{h}
$$

Potential barrier requirement $\quad \Lambda<\sqrt{3} v^{2} / m_{h}$

Class IIA (1) no extra EWSB: xSM

For the "xSM" model, the gauge invariant finite temperature effective potential is found to be:

$$
\begin{gather*}
V(h, s, T)=-\frac{1}{2}\left[\mu^{2}-\Pi_{h}(T)\right] h^{2}-\frac{1}{2}\left[-b_{2}-\Pi_{s}(T)\right] s^{2} \\
+\frac{1}{4} \lambda h^{4}+\frac{1}{4} a_{1} h^{2} s+\frac{1}{4} a_{2} h^{2} s^{2}+\frac{b_{3}}{3} s^{3}+\frac{b_{4}}{4} s^{4} \tag{C1}
\end{gather*}
$$

with the thermal masses given by
$\Pi_{h}(T)=\left(\frac{2 m_{W}^{2}+m_{Z}^{2}+2 m_{t}^{2}}{4 v^{2}}+\frac{\lambda}{2}+\frac{a_{2}}{24}\right) T^{2}$,
PT strength

$$
\begin{equation*}
\Pi_{s}(T)=\left(\frac{a_{2}}{6}+\frac{b_{4}}{4}\right) T^{2} \tag{C2}
\end{equation*}
$$

$$
\begin{aligned}
v^{\kappa \mathrm{M}} / T & \equiv \frac{v_{h}(T)}{T}=\frac{\sqrt{v_{h}^{2}(T)+v_{s}^{2}(T)} \cos \theta(T)}{T}, \\
\cos \theta(T) & \equiv \frac{v_{h}(T)}{\sqrt{v_{h}^{2}(T)+v_{s}^{2}(T)}},
\end{aligned}
$$

For small mixing limit between the extra Higgs and the SM Higgs, one have

$$
\begin{aligned}
c_{4}^{S M}= & -\frac{a_{1}^{2}-8 b_{2} \lambda}{32 b_{2}}+\frac{\theta^{2}\left(a_{1}^{2}\left(6 b_{2}-\mu^{2}\right)-8 a_{1} b_{2} b_{3}+8 b_{2}^{2}\left(a_{2}-2 \lambda\right)\right)}{32 b_{2}^{2}}+O\left(\theta^{3}\right) \\
c_{6}^{\kappa S M}= & -\frac{a_{1}^{2}\left(a_{1} b_{3}-3 a_{2} b_{2}\right)}{192 b_{2}^{3}}-\frac{\theta^{2} a_{1}}{256 b_{2}^{4}}\left(a_{1}^{3} b_{2}+4 a_{1}^{2} b_{3}\left(\mu^{2}-3 b_{2}\right)\right. \\
& \left.+4 a_{1} b_{2}\left(a 2\left(11 b_{2}-2 \mu^{2}\right)-6 b_{2}(b 4+\lambda)+4 b_{3}^{2}\right)-32 a_{2} b_{2}^{2} b_{3}\right)+O\left(\theta^{3}\right) \\
c_{8}^{\chi S M}= & \frac{a_{1}^{1} b_{4}}{1024 b_{2}^{4}}+\frac{a_{1}^{3} \theta^{2}}{1024 b_{2}^{5}}\left(a_{1}\left(a_{2} b_{2}+4 b_{4}\left(\mu^{2}-3 b_{2}\right)\right)+16 b_{2} b_{3} b_{4}\right)+O\left(\theta^{3}\right)
\end{aligned}
$$

Class III 2HDM Finite-T potential in 2HDM

$V\left(h_{1}, h_{2}, T\right)=V_{0}\left(h_{1}, h_{2}\right)+V_{\mathrm{CW}}\left(h_{1}, h_{2}\right)+V_{\mathrm{CT}}\left(h_{1}, h_{2}\right)+V_{\mathrm{th}}\left(h_{1}, h_{2}, T\right)+V_{\text {daisy }}\left(h_{1}, h_{2}, T\right)$

Tree-level

$$
\begin{aligned}
V_{0}\left(h_{1}, h_{2}\right)= & \frac{1}{2} m_{12}^{2} t_{\beta}\left(h_{1}-h_{2} t_{\beta}^{-1}\right)^{2}-\frac{v^{2}}{4} \frac{\lambda_{1} h_{1}^{2}+\lambda_{2} h_{2}^{2} t_{\beta}^{2}}{1+t_{\beta}^{2}}-\frac{v^{2} \lambda_{345}\left(h_{1}^{2} t_{\beta}^{2}+h_{2}^{2}\right)}{1+t_{\beta}^{2}} \\
& +\frac{1}{8} \lambda_{1} h_{1}^{4}+\frac{1}{8} \lambda_{2} h_{2}^{4}+\frac{1}{4} \lambda_{315} h_{1}^{2} h_{2}^{2}
\end{aligned}
$$

One-loop at zero temperature:

$$
V_{\mathrm{CW}}\left(h_{1}, h_{2}\right)=\sum_{i}(-1)^{2 s_{i}} n_{i} \frac{\hat{m}_{i}^{4}\left(h_{1}, h_{2}\right)}{64 \pi^{2}}\left[\ln \left(\frac{\hat{m}_{i}^{2}\left(h_{1}, h_{2}\right)}{Q^{2}}\right)-C_{i}\right]
$$

One-loop at finite temperature:

$$
\begin{gathered}
V_{\mathrm{th}}\left(h_{1}, h_{2}, T\right)=\frac{T^{4}}{2 \pi^{2}} \sum_{i} n_{i} J_{B, F}\left(\frac{m_{i}^{2}\left(h_{1}, h_{2}\right)}{T^{2}}\right) \quad \text { [Dolan, Jackiw '74] } \\
J_{B, F}(y)=\mp \sum_{l=1}^{\infty} \frac{(\pm 1)^{l} y}{l^{2}} K_{2}(\sqrt{y} l) \quad \text { [Anderson, Halle '92] } \\
V_{\text {daisy }}\left(h_{1}, h_{2}, T\right)=-\frac{T}{12 \pi} \sum_{i} n_{i}\left[\left(M_{i}^{2}\left(h_{1}, h_{2}, T\right)\right)^{\frac{3}{2}}-\left(m_{i}^{2}\left(h_{1}, h_{2}\right)\right)^{\frac{3}{2}}\right]
\end{gathered}
$$

Class III 2HDM The potential shape

$$
m_{H^{ \pm}}=m_{A}=m_{H}=600 \mathrm{GeV}, \tan \beta=1 \text { and } \sin (\beta-\alpha)=1
$$

Class III 2HDM Sphaleron energy and SFOEWPT condition

Sphaleron and GWs

type I/II	m_{H}	$m_{H^{ \pm}}$	m_{A}	m_{12}^{2}	$\tan \beta$
I/ BM 1	164.61	168.05	555.28	533.12	50.621
I/ BM 2	605.91	168.03	158.06	8924.4	41.104
II/BM 1	300.02	622.17	616.82	14967	5.8655
II/BM 2	497.19	766.95	751.77	112180	0.99212
II/BM 3	311.79	621.21	619.95	13956	6.8395
II/BM 4	294.33	621.83	605.56	17366	4.6623

Class III 2HDM Triple Higgs coupling

Sphaleron energy and SFOEWPT condition

Sphaleron energy and magnetic dipole moment

2008.XXXXX

$$
E_{\text {dipole }}^{(1)}(T, B)=-\mu(T) B
$$

$$
B=b T^{2}
$$

Taking $b=0.1$ for SFOEWPT

Portray sphaleron with GW ???

Gravitational waves can be searched for by cross-correlating outputs from two or more detectors, with the resulting signal-to- noise ratio(SNR)

$\mathrm{SNR}=\sqrt{\mathcal{T} \int d f\left[\frac{h^{2} \Omega_{\mathrm{GW}}(f)}{h^{2} \Omega_{\exp }(f)}\right]^{2}}$
where T is the duration of the data in years and תexp the power spectral density of the detector.

Triple and quartic Higgs coupling deviation, GW

$$
\Delta \mathcal{L}=-\frac{1}{2} \frac{m_{h}^{2}}{v}\left(1+\delta \kappa_{3}\right) h^{3}-\frac{1}{8} \frac{m_{h}^{2}}{v^{2}}\left(1+\delta \kappa_{4}\right) h^{4}
$$

$$
\delta \kappa_{3}^{h^{6}}=\frac{2 v^{4}}{\Lambda^{2} m_{h}^{2}}, \delta \kappa_{4}^{h^{6}}=\frac{12 v^{4}}{\Lambda^{2} m_{h}^{2}}
$$

$$
\begin{aligned}
& \delta \kappa_{3}^{\mathrm{xSM}}=\alpha^{2}\left[-\frac{3}{2}+\frac{2 m_{H}^{2}-2 b_{3} v_{s}-4 b_{4} v_{s}^{2}}{m_{h}^{2}}\right] \\
& \delta \kappa_{4}^{\mathrm{xSM}}=\alpha^{2}\left[-3+\frac{5 m_{H}^{2}-4 b_{3} v_{s}-8 b_{4} v_{s}^{2}}{m_{h}^{2}}\right]
\end{aligned}
$$

Related interesting topics

(1) Dark matter with phase transition
1712.03962,Michael J. Baker et al.
1810.03172, L.Bian, Y. Tang
(2) Leptogenesis with phase transition A. strumia, T. Hambye, ...
(3) Wall velocity
T.Konstandin, G. Moore, J Kozaczuk, ...
(4) Nonperturbative evaluation of EWPT

Kari Rummukainen, Anders Tranberg,Michael Ramsey-Musolf, Lauri Niemi, M. Laine, ...
(5) Sphaleron calculation and simulations

Manton, Klinkhamer, L. Carson, L. Mclerran, G. D. Moore, Mark Hindmarsh, X.M.Zhang, L. Wang, L.Bian,...

Thanks!

Table 1. Cosmological GW sources

source	$n_{\text {CWW } 1}$	$r_{\text {ciw }}$	f. [Hz]	$\Omega_{\text {cw }}$
Phase transition (bubble collision)	2.8	-2	$\sim 10^{-5}\left(\frac{f_{\mathrm{PT}}}{\beta}\right)\left(\frac{\beta}{H_{\mathrm{PT}}}\right)\left(\frac{T_{\mathrm{PT}}}{100 \mathrm{GeV}}\right)$	$\sim 10^{-5}\left(\frac{H_{\mathrm{PT}}}{\beta}\right)^{2}\left(\frac{\kappa_{\phi} \alpha}{1+\alpha}\right)^{2}\left(\frac{0.11 v_{w}^{3}}{0.42+v_{w}^{2}}\right)$
Phase transition ('turbulence)	3	-5/3	$\sim 3 \times 10^{-5}\left(\frac{1}{v_{w}}\right)\left(\frac{\beta}{H_{\mathrm{PT}}}\right)\left(\frac{T_{\mathrm{PT}}}{100 \mathrm{GeV}}\right)$	$\sim 3 \times 10^{-4}\left(\frac{H_{\mathrm{PT}}}{\beta}\right)\left(\frac{\kappa_{\text {turb }} \alpha}{1+\alpha}\right)^{3 / 2} v_{\mathrm{w}}$
Phese transition (sound waves)	3	-4	$\sim 2 \times 10^{-5}\left(\frac{1}{v_{w}}\right)\left(\frac{\beta}{H_{\mathrm{PT}}}\right)\left(\frac{T_{\mathrm{PT}}}{100 \mathrm{GeV}}\right)$	$\sim 3 \times 10^{-6}\left(\frac{H_{\mathrm{PT}}}{\beta}\right)\left(\frac{\kappa_{v} \alpha}{1+\alpha}\right)^{2} v_{w}$
Preheating ($\lambda \phi^{4}$)	3	cutoff	$\sim 10^{7}$	$\sim 10^{-11}\left(\frac{g^{2} / \lambda}{100}\right)^{-0.5}$
Preheating (hybrid)	2	cutoff	$\sim \frac{g}{\sqrt{\lambda}} \lambda^{1 / 4} 10^{10.25}$	$\sim 10^{5}\left(\frac{\lambda}{g^{2}}\right)^{1.16}\left(\frac{v}{M_{\mathrm{p}}}\right)^{2}$
Cosmic strings (loops 1)	[1,2]	$[-1,-0.1]$	$\sim 3 \times 10^{-8}\left(\frac{G \mu}{10^{-11}}\right)^{-1}$	$\sim 10^{-9}\left(\frac{G \mu}{10^{-12}}\right)\left(\frac{\alpha_{\text {loop }}}{10^{-1}}\right)^{-1 / 2}\left(\right.$ for $\left.\alpha_{\text {losp }} \gg \mathrm{FG} \mathrm{\mu}\right)$
Cosmic strings (loops 2)	$[-1,-0.1]$	0	$\sim 3 \times 10^{-8}\left(\frac{G \mu}{10^{-11}}\right)^{-1}$	$\sim 10^{-9.5}\left(\frac{G \mu}{10^{-12}}\right)\left(\frac{\alpha_{\text {loop }}}{10^{-1}}\right)^{-1 / 2}$ (for $\alpha_{\text {boop }} \gg \Gamma G_{p}$)
Cosmic strings (infinite strings)	[0, 0.2]	[0,0.2]		$\sim 10^{-[11,13]}\left(\frac{\mathrm{G} \mu}{10^{-8}}\right)$
Domain walls	3	-1	$\sim 10^{-9}\left(\frac{T_{\text {ann }}}{10^{-2} \mathrm{GeV}}\right)$	$\sim 10^{-17}\left(\frac{\sigma}{1 \mathrm{TeV}^{3}}\right)^{2}\left(\frac{T_{\mathrm{ann}}}{10^{-2} \mathrm{GeV}}\right)^{-4}$
Self-ordering scalar felds	0	0	(10-2	$\sim \frac{511}{N} \Omega_{\text {rad }}\left(\frac{v}{M_{\mathrm{pl}}}\right)^{4}$
Self-ordering scalar + reheating	0	-2	$\sim 0.4\left(\frac{T_{R}}{10^{7} \mathrm{GeV}}\right)$	$\sim \frac{511}{N} \Omega_{\mathrm{rad}}\left(\frac{v}{M_{\mathrm{pl}}}\right)^{4}$
Magneic felds	3	$\alpha_{3}+1$	$\sim 10^{-6}\left(\frac{T}{10^{2} \mathrm{GeV}}\right)$	$\sim 10^{-16}\left(\frac{B}{10^{-16} \mathrm{G}}\right)$
Inflation+reheating	~ 0	-2	$\sim 0.3\left(\frac{T_{R}}{10^{7} \mathrm{GeV}}\right)$	$\sim 2 \times 10^{-17}\left(\frac{r}{0.01}\right)$
Inflation+kination	~ 0	1	$\sim 0.3\left(\frac{T_{R}}{10^{7} \mathrm{GeV}}\right)$	$\sim 2 \times 10^{-17}\left(\frac{r}{0.01}\right)$
Particle prod. during inf	-2ϵ	$-4 \epsilon(4 \pi \xi-6)(\epsilon-\eta)$	-	$\sim 2 \times 10^{-17}\left(\frac{r}{0.01}\right)$
2nd-order (inflation)	1	drop-off	$\sim 7 \times 10^{5}\left(\frac{T_{\text {reh }}}{10^{\circ} \mathrm{GeV}}\right)^{1 / 2}\left(\frac{M_{\text {inf }}}{10^{16} \mathrm{GeV}}\right)^{2 / 3}$	$\sim 10^{-12}\left(\frac{T_{\text {ehh }}}{10^{\circ} \mathrm{GeV}}\right)^{-\mathrm{t} / 3}\left(\frac{M_{\mathrm{inf}}}{10^{16} \mathrm{GeV}}\right)^{4 / 3}$
2nd-order (PBHs)	2	drop-off	$\sim 4 \times 10^{-2}\left(\frac{M_{\text {PBH }}}{10^{20} \mathrm{~g}}\right)^{-1 / 2}$	$\sim 7 \times 10^{-9}\left(\frac{\mathcal{A}^{2}}{10^{-3}}\right)^{2}$
Pre-Big-Bang	3	$3-2 \mu$	$-$	$\sim 1.4 \times 10^{-6}\left(\frac{H_{s}}{0.15 M_{\mathrm{pl}}}\right)^{4}$

Higgs Potential Shape??? EFT or ??? First or second order

Grojean, Servant, Wells 05, P. Huang, Jokelar, Li, Wagner (2015)
F.P. Huang, Gu, Yin, Yu, Zhang (2015) F.P. Huang, Wan, Wang, Cai, Zhang (2016) Cao, F.P. Huang, Xie, \& Zhang (2017)

LHC say the quantum fluctuation (quadratic oscillation) around $\mathrm{h}=\mathrm{v}$ with $m h=126 \mathrm{GeV}$, not sensitive to the specifically potential shape

$$
\begin{align*}
& A_{i}(r, \theta, \phi)=-\frac{i}{g} f(r) \partial_{i} U(\theta, \phi)(U(\theta, \phi))^{-1} \tag{11}\\
& \Phi_{1}(r, \theta, \phi)=\frac{v_{1}}{\sqrt{2}} h_{1}(r) U(\theta, \phi)\binom{0}{1}, \tag{12}\\
& \Phi_{2}(r, \theta, \phi)=\frac{v_{2}}{\sqrt{2}} h_{2}(r) U(\theta, \phi)\binom{0}{1}, \tag{13}
\end{align*}
$$

where A_{i} are $\mathrm{SU}(2)$ gauge fields, $A_{i}=\frac{1}{2} A_{i}^{a} \tau^{a}, v=$ $\sqrt{v_{1}^{2}+v_{2}^{2}}$, and $U(\theta, \phi)$ is defined as

$$
U(\theta, \phi)=\left(\begin{array}{cc}
\cos \theta & e^{i \phi} \sin \theta \tag{14}\\
-e^{-i \phi} \sin \theta & \cos \theta
\end{array}\right),
$$

Adopting the $A_{0}=0$ gauge, the Electroweak sphaleron energy function can be obtained as:

$$
\begin{gather*}
E_{\text {sph }}\left[f, h_{1}, h_{2}\right]=\frac{4 \pi v}{g} \int_{0}^{\infty} d \xi\left[4\left(\frac{d f}{d \xi}\right)^{2}+\frac{8}{\xi^{2}}\left(f-f^{2}\right)^{2}\right. \\
+\frac{\xi^{2}}{2} \frac{v_{1}^{2}}{v^{2}}\left(\frac{d h_{1}}{d \xi}\right)^{2}+\frac{\xi^{2}}{2} \frac{v_{2}^{2}}{v^{2}}\left(\frac{d h_{2}}{d \xi}\right)^{2} \\
+\left(\frac{v_{1}^{2}}{v^{2}} h_{1}^{2}+\frac{v_{2}^{2}}{v^{2}} h_{2}^{2}\right)(1-f)^{2} \\
 \tag{15}\\
\left.+\frac{\xi^{2}}{g^{2} v^{4}} V\left(h_{1}, h_{2}\right)\right],
\end{gather*}
$$

